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In order to infer the impact of the small-scale physics to the large-scale properties of the universe, we use 
a series of cosmological N-body simulations of self-gravitating matter inhomogeneities to measure, for 
the first time, the response function of such a system defined as a functional derivative of the nonlinear 
power spectrum with respect to its linear counterpart. Its measured shape and amplitude are found 
to be in good agreement with perturbation theory predictions except for the coupling from small to 
large-scale perturbations. The latter is found to be significantly damped, following a Lorentzian form. 
These results shed light on validity regime of perturbation theory calculations giving a useful guideline 
for regularization of small scale effects in analytical modeling. Most importantly our result indicates 
that the statistical properties of the large-scale structure of the universe are remarkably insensitive to 
the details of the small-scale physics, astrophysical or gravitational, paving the way for the derivation 
of robust estimates of theoretical uncertainties on the determination of cosmological parameters from 
large-scale survey observations.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The cosmic energy fluctuations on large scales provide rich 
probes of the early universe physics, the mass of neutrinos or 
the nature of dark energy. Wide-field galaxy surveys are there-
fore widely considered for unveiling the details of the universe [1]. 
Among them are the DES,1 LSST2 and Euclid3 now under devel-
opment. Such measurements rely however largely on our under-
standing of the statistical properties of the cosmic fluctuations. The 
great success of the latest cosmic microwave background observa-
tions in establishing the standard picture of our Universe largely 
owed to the fact that the measured temperature fluctuations are 
in the linear regime and thus can accurately be predicted using 
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Universe (WPI), The University of Tokyo Institutes for Advanced Study, The Univer-
sity of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan.
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francis.bernardeau@iap.fr (F. Bernardeau), ataruya@yukawa.kyoto-u.ac.jp (A. Taruya).

1 https :/ /www.darkenergysurvey.org/.
2 http :/ /www.lsst .org /lsst/.
3 http :/ /www.euclid-ec .org.
http://dx.doi.org/10.1016/j.physletb.2016.09.035
0370-2693/© 2016 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
linear theory [2,3]. Likewise, we expect that the late-time fluctua-
tions on large scales are in a mildly nonlinear stage, and there are 
robust ways to predict them precisely beyond linear-theory calcu-
lations.

Established probes such as the baryon acoustic oscillations 
(BAOs; e.g. [4,5]) that give us a robust standard ruler useful for 
dark energy studies, or the redshift-space distortions (e.g., [6]) 
as an additional clue to discriminate gravity theories [7], are 
among those that we expect in a mildly nonlinear regime. Alter-
natively, we can access cosmic fluctuations on similar and some-
what smaller scales with weak-lensing measurements (see [8] for 
a recent review). Such scientific programs can only be achieved if 
related observables can be accurately predicted either from numer-
ical simulations or analytically for any given cosmological model. 
In particular it is important that such observables are shielded 
from the details of astrophysics at galactic or sub-galactic scales.4

4 For instance in [9–11] baryonic effects are shown to be confined within the 
cluster scale, and they contribute to the matter power spectrum at most ∼ 10% at 
k = 1 h Mpc−1 and drops rapidly toward larger scales.
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One way to reformulate this question is to quantify the im-
pact of small-scale structures on the growth of large scale modes. 
Perturbation theory (PT) is a powerful framework to predict the 
growth of structure. Assuming that the system is described by 
self-gravitating pressure-less fluids, it provides the first-principle 
approach to the nonlinear growth (see [12] for a review). Its im-
portance has been heightened after the detection of BAOs in the 
clustering of galaxies, making precise predictions of nonlinearities 
crucially important.

PT calculations show precisely that mode couplings between 
different scales are unavoidable. We propose here to quantify these 
couplings with a two-variable response function,5 defined as the 
linear response of the nonlinear power spectrum at wave mode k
with respect to the linear counterpart at wave mode q6:

K (k,q; z) = q
δP nl(k; z)

δP lin(q; z)
. (1)

In the context of PT calculations, Refs. [14,15] showed progres-
sive broadening of the response function with increasing PT order, 
pointing to the need of regularization of the small-scale contribu-
tion.

If the broadness of the response function at late times is true, 
physics at very small scale can influence significantly the matter 
distribution on large scales, where the acoustic feature is promi-
nent.7 It also questions the reliability of simulations, which can 
follow the evolution of Fourier modes only in a finite dynam-
ical range. We here discuss the response function at the non-
perturbative level utilizing cosmological N-body simulations.

2. Methodology

We here describe our method to measure the response function 
from simulations. We prepare two initial conditions with small 
modulations in the linear spectrum over a finite interval of wave 
mode q, evolve them to a late time, and take the difference of the 
nonlinear spectra measured from the two. That is

K̂ i, j P lin
j ≡ P nl

i [P lin
+, j] − P nl

i [P lin
−, j]

� ln P lin� ln q
, (2)

where the two perturbed linear spectra are given by

ln

[
P lin

±, j(q)

P lin(q)

]
=

{
±1

2
� ln P lin if q ∈ [q j,q j+1),

0 otherwise.
(3)

In the above, the index i ( j) runs over the wave-mode bins for 
the nonlinear (linear) spectrum, and we choose log-equal binning, 
ln q j+1 − ln q j = ln ki+1 − ln ki = � ln q. It is straightforward to show 
that the estimator K̂ approaches to the response function K de-
fined in Eq. (1), when � ln q and � ln P lin are small. The defini-
tion (1) is advantageous in that it allows the measurement in this 
way at the fully nonlinear level.8 Note that a similar function was 
first discussed numerically in Ref. [18] in the context of local trans-
formations of the density field.

We adopt a flat-�CDM cosmology consistent with the five-
year WMAP result [19] with parameters (�m, �b/�m, h, As, ns) =
(0.279, 0.165, 0.701, 2.49 ×10−9, 0.96), which are the current mat-
ter density parameter, baryon fraction, the Hubble constant in 

5 This concept was recently utilized in Ref. [13] to compute the difference of the 
nonlinear power spectrum for slightly different cosmological models.

6 The normalization is such that K contributes to the change in P nl with uniform 
weights per decade.

7 Notice, however, that the feature can also be affected by galaxy bias [16,17].
8 This is contrasted to the function Fn appearing in PT for the n-th order coupling.
Table 1
Simulation parameters. Box size (box), softening scale (soft) and mass of the parti-
cles (mass) are respectively given in unit of h−1 Mpc, h−1 kpc and 1010h−1 M� . The 
number of q-bins is shown in the “bins” column, for each of which we run two sim-
ulations with positive and negative perturbations in the linear spectrum. The “runs” 
column shows the number of independent initial random phases over which we re-
peat the same analysis. The total number of simulations are shown in the “total” 
column.

name box particles zstart soft mass bins runs total

L9-N10 512 10243 63 25 0.97 5 1 10
L9-N9 512 5123 31 50 7.74 15 4 120
L9-N8 512 2563 15 100 61.95 13 4 104
L10-N9 1024 5123 15 100 61.95 15 1 30
high_ns 512 5123 31 50 7.74 5 4 40
low_ns 512 5123 31 50 7.74 5 4 40

units of 100 km/s/Mpc, the scalar amplitude normalized at k0 =
0.002 Mpc−1 and its power index, respectively. We also consider 
different cosmologies to check the generality of the result. Since 
we can check the dependence of the response function on the 
overall amplitude of the power spectrum by looking at the re-
sults at different redshifts, we here focus on the variety in only 
the shape of the spectrum. As a representative of the parame-
ters that control the shape, we consider the spectral tilt ns . We 
run simulations for two additional models, one with a higher 
(1.21; high_ns) and the other with a lower (0.71; low_ns) 
value of ns. Although the parameter ns has been constrained 
very tightly from observations of the cosmic microwave back-
ground (with only ∼ 1% uncertainty), we choose to give it a 
rather large (±0.25) variation to cover a wider class of models 
with different linear power spectra. The amplitude parameter As
for these models is determined such that the rms linear fluctua-
tion at 8 h−1 Mpc is kept unchanged. The matter transfer function 
is computed for these models using the CAMB code [20] with 
the high-precision mode of the calculation in the transfer func-
tion (transfer_high_precision is set to be true and accu-
racy_boost= 2) up to kmax = 100 h Mpc−1. We confirm that the 
result is well converged by testing more strict values in the param-
eter file.

We run four sets of simulations for the fiducial model with 
different volume and number of particles as listed in Table 1. 
Covering different wave number intervals, these simulations allow 
us to examine the convergence of the measured response func-
tion. The initial conditions are created using a code developed in 
[21,22] based on the second-order Lagrangian PT (e.g., [23,24]). 
The initial redshifts of the simulations are determined as follows. 
A lower starting redshift can induce transient effects associated 
with higher-order decaying modes. On the other hand, as increas-
ing the initial redshift, the randomly generated particle position 
generally gets closer to the pre-initial grid, and this can lead to 
discreteness noise in the force calculation. To minimize the sum of 
these two systematic effects, we set the initial redshift such that 
the rms displacement is roughly 20% of the inter-particle spac-
ing, and thus it depends on the resolution as shown in Table 1. 
We evolve the matter distribution using a Tree-PM code Gad-
get2 [25]. We finally measure the power spectrum by fast Fourier 
transform of the Cloud-in-Cell (CIC) density estimates on 10243

mesh with the CIC kernel deconvolved in Fourier space.
For each set of simulations, we prepare multiple initial condi-

tions with linear spectra perturbed by ±1% over q j ≤ q < q j+1. The 
amplitude of perturbation should be sufficiently small such that 
the correction from the higher-order derivative (δ2 P nl/δP linδP lin) 
does not contaminate the result. We tested different amplitudes 
(±3% and ±5%), and confirmed that the result is almost un-
changed. We set the bin width as � ln q = ln(

√
2) and each sim-

ulation set covers different wavenumber range corresponding to 
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Fig. 1. Response function measured from simulations. We plot |K (k, q)|P lin(q) as 
a function of the linear mode q for a fixed nonlinear mode at k = 0.161 h Mpc−1

indicated by the vertical arrow. The filled (open) symbols show L9-N9 (L10-N9), 
the lines depict L9-N8, while the big hatched symbols on small scales are L9-N10. 
Positive (negative) values are indicated as the upward (downward) triangles or the 
solid (dashed) lines.

the box size and resolution limit. The binning effect will be taken 
into account in the analytical calculations for fair comparison. For 
the best resolution run, L9-N10, we study only five bins on small 
scales. Further, we perform four realizations for L9-N9 and L9-N8
at each wave-mode bin to estimate the statistical scatter. The same 
random phases are used for initial conditions with positive and 
negative perturbations at each q bins for each realization. Since the 
estimator (2) takes the difference of the two spectra, this helps us 
to reduce the statistical scatter on the response function signifi-
cantly.

3. Shape of the response function and comparison with PT

We are now in a position to present the response function mea-
sured from simulations. The combination K (k, q)P lin(q) is plotted 
at a fixed k shown by the vertical arrow as a function of q in Fig. 1. 
The strong overlap among different symbols and lines ensures the 
convergence of the results against resolution and volume.

At high redshifts, we can see a prominent peak at k = q as 
expected from linear theory (i.e., no mode transfer). Nonlinear cou-
pling then gradually grows with time and the peak feature gets 
less significant. One of the key features here is the larger contri-
bution from smaller wave modes (q < k); the growth of structure 
is dominated by mode flows from large to small scales. Not sur-
prisingly, the formation of a structure is more efficiently amplified 
when it is part of a larger structure than when it contains small-
scale features.

Such findings are fully in line with expectations from PT calcu-
lations. We show the predictions in Fig. 2 up to the two-loop level 
(i.e., next-to-next-to-leading order) ignoring binning effects at this 
stage. We present the contribution from Pij(k) ∝ 〈δ(i)δ( j)〉, where 
δ(i) is the ith-order overdensity in the PT expansion. The terms at 
the same loop order cancel at small q due to the Galilean invari-
ance of the system as discussed in e.g., [26–30]. On the other hand, 
small scales are dominated by one term at each order, P13(k) and 
P15(k). Similarly, it has been shown that, at the p-loop order in 
Fig. 2. Response function predicted by PT (un-binned) up to one- (thin solid) and 
two-loop (thick solid) order at k = 0.161h Mpc−1 at z = 1. Dashed (dotted) lines 
show each of the one- (two-)loop contributions with the legend (i j) showing the 
perturbative order of the calculation. We show a negative sign in the legend when 
K is negative. The simulation data L9-N9 are also shown by triangles.

Fig. 3. Rescaled response function, T (k, q) ≡ [K (k, q) − K lin(k, q)]/[qP lin(k)]. PT cal-
culations are shown by lines, whereas the symbols are L9-N9 (see legend for 
detail). The nonlinear wave-mode bin is fixed at k = 0.161 h Mpc−1 (vertical arrow). 
Binning is taken into account to the analytical calculations consistently to the sim-
ulations.

PT, the term originating from the (2p + 1)th-order density kernel 
function, F2p+1, dominates the mode-coupling effect from small 
scales [14].

We then rescale the response function at various redshifts as 
T (k, q) = [K (k, q) − K lin(k, q)]/[qP lin(k)], where K lin is the linear 
contribution, and plot them in Fig. 3. They are compared with the 
one-loop PT calculation (solid), which is time-independent with 
this normalization. The simulation data indeed show little time 
dependence at q � k in remarkable agreement with the one-loop 
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Fig. 4. Response function divided by the two-loop PT at the three wave modes k
shown in the legend. We plot data points only at q ≥ 2k for definiteness. The over-
plotted solid lines correspond to the empirical form (4), small solid symbols are
L9-N9 while the big hatched are L9-N10.

calculation, reproducing the expected q dependence,9 as well as 
the change of sign between large and small scales. The small but 
non-negligible z-dependence at k ∼ q is further reproduced by 
the two-loop calculation (see the figure legend). Note that at the 
wave-mode k plotted here (i.e., 0.161 h Mpc−1), the two-loop PT 
prediction for the nonlinear power spectrum agrees with simula-
tions within 1% at z � 1 and the agreement gets worse at lower 
redshift reaching to ∼ 5% at z = 0 (see e.g., [15]).

At q � 0.3 h Mpc−1, however, the measured response function 
is damped compared to the PT. The one-loop PT predicts the re-
sponse function to reach a constant10; at the two-loop order, it 
grows in amplitude with time. The numerical measurements show 
on the other hand that the scaled response function is strongly 
damped with decreasing redshift. It is such that the couplings take 
place effectively between modes of similar wavelengths. This effect 
is particularly important at late time. At redshift zero, the discrep-
ancy between the model and simulations is striking. Furthermore, 
analysis of the response structure at three and higher loop order 
(see e.g., [14]) suggests that PT calculations, at any finite order, 
predict an even larger amplitude of the response function in the 
high q region. This strongly suggests that this anomaly is genuinely 
non-perturbative.

We propose an effective description of this observed behavior. 
As illustrated in Fig. 4 it can be modeled with a Lorentzian:

T eff.(k,q)
high−q−−−−→ T 1+2−loop(k,q)

1

1 + (q/q0)2
(4)

characterized by a critical wave mode, q0, which does not depend 
on the nonlinear wave mode k. We naively expect that this scale 
corresponds to the scale at which the fluctuation is order unity and 
thus perturbative expansion is not valid. Indeed, we numerically 
found that a simple fitting formula

σlin(R; z)|R=1/q0 = 1.35, (5)

9 It has the small-q asymptote [2519/4410 − (23/84)n + (1/20)n2]q2/π2 for an 
Einstein–de Sitter background, with n being the local slope of the linear spectrum.
10 This constant is −61k2/(630π2) for an Einstein–de Sitter background.
Fig. 5. Same as Fig. 4, but for cosmological models with different spectral indices,
high_ns and low_ns.

where σ 2
lin(R) is the variance of the linear density fluctuation 

smoothed with a Gaussian filter of the form exp[−(0.46kR)2/2],11

can explain reasonably well the data points not only for the fidu-
cial model but for the models with different spectral indices (see 
Fig. 5). One can find that the fit is not as accurate at z = 1 for the
low_ns model, suggesting the limitation of the fitting formula. 
Nevertheless, a simple form (4) with a single parameter 1.35 in 
Eq. (5) seems to capture the damping tail of the response function 
in a rather wide range of cosmological models at different red-
shifts. Note that, the k-dependence of the response function at the 
high-q limit is preserved in perturbative calculations (it is always 
proportional to k2 independent of the perturbative order due to 
the asymptote of the Fn kernel function). The independence of q0
on k is thus in full agreement with PT predictions.

4. Discussion

The simulation results give a clear evidence that the mode 
transfer from small to large scales is suppressed compared to the 
PT prediction when the mode q enters the nonperturbative regime. 
However, the origin of the suppression is yet to be understood. In 
particular it is not clear whether this has its roots in shell crossing 
or not. For instance, we can find in [32] that vorticity and veloc-
ity dispersion generated by shell crossing can alter the evolution 
of density fluctuations through nonlinear coupling. Especially, the 
latter is shown to give non-negligible corrections to the density 
power spectrum even on very large (∼ 0.1h Mpc−1) scales. This 
indicates that multistreaming physics, which take place on small 
scales, are somehow related to the growth of large-scale fluctu-
ations, and this is exactly the coupling of large and small scales 
that we discuss here. Effective Field Theory (EFT) approaches as 
advocated originally in [33–35] would be a natural framework to 
invoke for accounting for such multistreaming effects. In these ap-
proaches, however, the response function is ultimately encoded in 
free coefficients for which no theory exists.

It might be possible that such damping effect originates from 
simpler mechanisms in single-stream physics. It has been shown in 

11 The factor 0.46 here is chosen for a better correspondence with the top-hat 
radius in terms of the variance. See [31] for more detail.
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particular that the nonlinear density propagator, which expresses 
the evolution of a given wave mode with time, is exponentially 
damped by the large-scale displacements. This is the standard 
result on which the Renormalized Perturbation Theory is based 
[36,37]. As explicitly shown in [38] equal-time spectra are however 
insensitive to displacements of the global system, that originates 
from wave modes smaller than k. Displacements at intermediate 
scales are nonetheless expected to induce some effective damp-
ing for equal-time spectra. The physical idea behind that is that 
the force driving the collapse of a large-scale perturbation (e.g., 
a cluster of galaxies) is affected by the small scale inhomogeneities 
within the structure (say galaxies), but that this dependence might 
be damped when such small scale inhomogeneities are actually 
moving within the structure. It is however beyond the scope of 
this presentation to evaluate the importance of this effect.

5. Summary

We have presented the first direct measurement of the re-
sponse function that governs the dependence of the nonlinear 
power spectrum on the initial spectrum during cosmic structure 
formation. This measurement was done using a large ensemble of 
N-body simulations that differ slightly in their initial conditions. 
The results were found to be robust to the simulation resolution – 
as shown in Table 1 – supporting the idea that measured shapes 
were genuine features in the development of gravitational instabil-
ities.

The response functions were computed concurrently at next 
and next-to-next leading order in PT. Comparisons with measure-
ments show a remarkable agreement over a wide range of scale 
and time. We found however mode transfers from small to large 
scales to be strongly suppressed compared to theoretical expec-
tations especially at late time. We propose a description of the 
damping tail with a Lorentzian shape.

These results are of far-reaching consequences. They first give 
insights into the mode coupling structure of cosmological fluids 
and show that PT approaches capture most of their properties. 
The small scale damping signals the validity limit of the PT be-
yond next-to-leading order. It provides in particular indications on 
how to regularize their contributions. The observed damping also 
marks the irruption of collective non-linear effects although the 
underlying mechanisms are yet to be uncovered. Most importantly 
the damped response suggests that small scale physics, whether 
from the initial metric perturbations or late-time processes, can 
be effectively controlled. It paves the way for solid estimates of 
the theoretical uncertainties on the determination of cosmologi-
cal parameters (such as inflationary primordial non-Gaussianities, 
neutrino masses or dark energy parameters) from large-scale sur-
veys.
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