
HAL Id: hal-01496518
https://hal.sorbonne-universite.fr/hal-01496518

Submitted on 27 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comprehensive Resource Management and Placement
for Network Function Virtualization
Thi-Minh Nguyen, Serge Fdida, Tuan-Minh Pham

To cite this version:
Thi-Minh Nguyen, Serge Fdida, Tuan-Minh Pham. A Comprehensive Resource Management and
Placement for Network Function Virtualization. The 3rd IEEE Conference on Network Softwarization
(IEEE NetSoft 2017), Jul 2017, Bologna, Italy. �hal-01496518�

https://hal.sorbonne-universite.fr/hal-01496518
https://hal.archives-ouvertes.fr

A Comprehensive Resource Management and
Placement for Network Function Virtualization

Thi-Minh Nguyen
UPMC Sorbonne Universités

LIP6 Laboratory
France

Email: thi-minh.nguyen@lip6.fr

Serge Fdida
UPMC Sorbonne Universités

LIP6 Laboratory
France

Email: serge.fdida@upmc.fr

Tuan-Minh Pham
Hanoi National University of Education

Vietnam
Email: minhpt@hnue.edu.vn

Abstract—Network service providers have to cope with the
growing on-demand need from end-users as well as the di-
versity of usage. The softwerization and cloudification of the
network components offer an interesting solution to achieve the
agility necessary to dynamically match the requirement with
the level of resource consumption. This materializes with the
deployment of Network Functions Virtualization (NFV) where
Virtual Network Functions (VNFs) may be chained together to
create network services. This paper explores important design
and architectural issues related to this approach. We study the
resource allocation problem in an NFV system for minimizing its
cost under constraints on interconnectivity among VNFs, system
resources, and service requirements. We formalize the problem
in a comprehensive manner taking into account a broad set of
relevant parameters. The static (offline) and dynamic (online)
cases are considered. We propose and analyze three heuristic
algorithms: two for handling large dimensions of the offline
problem and one designed to address the online scenario.

The evaluation shows that our solutions outperform the state
of the art [1] with respect to critical performance index. Finally,
we focus on the online scenario, evaluate the impact of migrating
a set of running demands, and propose a simple migration
technique.

Index Terms—NFV, Network Function Virtualization, resource
allocation, optimization and migration.

I. INTRODUCTION

Softwerization of network components is a candidate to
provide the agility requested by the increasing on-demand
need of customers as well as the ability to gently match those
needs with the resource consumption. This trend is achieved
by using a cloud approach where virtualization techniques
are intensively exploited. Although this trend is prevalent,
it is still necessary to better understand the right level of
abstraction and hence performance that will be made possible
with this approach. NFV relying upon virtualization techniques
should support network operators to meet the growing cus-
tomer requirements while controlling capital and operational
expenditures.

In order to enable such an agile solution, a network service
can be decomposed into an ordered sequence of VNFs (Vir-
tual Network Functions), which can run on several standard
physical nodes. Therefore, the resources allocated to a VNF
instance will impact the capacity and performance of the
network service as a whole. This raises important issues related
to NFV deployment such as: 1) How and where to locate and

chain VNFs? 2) How to distribute resources to VNFs? and
3) What is the cost of NFV deployment in a network? Such
problems are different from the VM placement optimization
in cloud computing as VNFs are associated with a single
network service. In this paper, we consider a joint problem of
VNFs allocation upon service requests from users and routing
paths for chaining them. We develop a comprehensive solution
addressing the static and dynamic scenario, when taking into
account the execution order of VNFs in a service demand with
regard to resource constraints for nodes and links.

The major contributions of this paper are as follows:
• We formulate the optimization problem of VNF place-

ment as a quadratic program (QP) solving multiple ob-
jectives including optimal service location and optimal
routing among VNF instances of a network service, under
both resource and traffic cost constraints, simultaneously
optimizing the acceptance ratio of new demands. Both
the static and dynamic problems are considered.

• We propose three efficient heuristics for large dimensions
of the problem within an acceptable computation time.

• We evaluate our proposed solutions in various scenarios
and compare it against the ProvisionTraffic (PT) algo-
rithm [1] that illustrates the state of the art, as well as a
Random Algorithm.

• We provide a cost comparison between a network relying
on NFV and a network that does not use NFV and discuss
some architectural implications.

• We also propose a simple migration technique for the
dynamic problem. The result provides guidelines for the
percentage of traffic to be migrated in order to achieve
the best gain.

The rest of this paper is organized as follows. Section
II reviews the related work. In Section III, we model the
NFV system under study and formalize the NFV placement
problem. We present our solutions in Section IV. In Section
V, we validate the algorithms and discuss the results. Section
VI concludes the paper.

II. RELATED WORK

Managing complexity is the major challenge faced by ISPs
who need to focus on network efficiency, performance, cost,
and resource utilization. These issues relate directly to the

resource sharing and scheduling problem. In recent years, this
concern has received a lot of attention from the community
and has also evolved with the emergence of the NFV concept
[2]. In this section, we will discuss some of the most important
research works related to the network function placement
and chaining problem. We start the section by reviewing
recent efforts aimed at evaluating the technical feasibility of
deploying network functions on virtual networks in both static
and dynamic environments. Then we highlight open issues and
emphasize the competitive contributions of our work.

The NFV placement problem is related to both the virtual
network embedding (VNE) [3] and the virtual data center em-
bedding (VDCE) [4]. The survey [5], [6] provides a valuable
reference for previous works related to the VNF placement
problem. In [6], Herrera and Botero present a comprehensive
state of the art of NFV resource allocation (NFV-RA) problem.
In their novel classification, the main approaches for solving
NFV-RA are described as three stages: a, VNFs - Chain Com-
position (VNF-CC); b, VNF - Forwarding Graph Embedding
(VNF-FGE) and c, VNFs - Scheduling (VNF-SCH). In this
paper, we focus on the second stage.

Recently, Rasid Mijumbi et al. proposed an online mapping
and scheduling problem in an Network Function Virtual In-
frastructure (NFVI) [7]. However, they did not consider links
between virtual nodes while the traffic cost among virtual
nodes plays an important role in distributing resources to the
required services.

For the NFV location problem, Rami Cohen et al. [8] pre-
sented a near optimal approximation algorithm guaranteeing a
placement with theoretically proven performance. However,
they did not consider the chaining of VNFs in requested
services. The same concern is observed in other papers [1],
[9], [10] where the authors have considered a constraint on
link capacity, but ignored the order of functions in a SFC
request.

More recently, in 2016, Kuo et. al. [11] studied the joint
problem of VNF placement and path selection to better utilize
the network. They considered the link bandwidth required by
each demand, provided feasible solutions to support all the
demands with the purpose to maximize the number of accepted
demands. However, they ignored the issue of serving all the
arriving demands with the minimum cost.

The publications mentioned above provide a static allocation
strategy that pre-computes the resource allocation for each
session. There are some disadvantages to this approach such as
the resource utilization or the supplied capacity when handling
fluctuating demands. Therefore, it is important to dynamically
adjust the demand based on the current status. In [12], [13],
authors proposed a multi-objective formulation of the Virtual
Machine Placement considering Service Level Agreement.

In [14], Lukovszki et al. formulated the offline (SCEP: Ser-
vice Chain Embedding Problem) and online problem (OSCEP:
Online SCEP). They assumed that all potential paths that
can be routed through VNFs chaining for each demand are
known. In addition they did not consider the resources price
when deploying the network functions. PACE [15] addressed

the VNF placement for unordered service chains in cloud,
with the objective to satisfy as many tenant’s requests as
possible. However, in their model, they have to decide about
the placement of middleboxes before receiving the request. In
other words, the placement of middleboxes are fixed. Also,
Elias et al. [16] formulated the centralized version of VNF-
FGE as a non-linear integer optimization model and assume
that the placement of functions is fixed. Recently, Sun et.
al. investigated the offline and online solutions for the VNF
placement problem with the aim of minimizing the deployment
cost [17]. They took into account the chaining of VNFs, but
they only considered a pre-defined set of service chaining.

In contrast, our work explicitly considers the execution
order of VNFs in each requested service, integrating resource
constraints for nodes and links. We solve VNFs allocation
and routing in a coordinated way, that is VNFs in each
customer demand are placed and routed simultaneously. Our
model consists of both the OFFLINE and ONLINE case.
We compare our solution with the PT algorithm to prove its
efficiency for the resource cost. We also provide an evaluation
of the cost efficiency of NFV deployment by comparing the
overhead of an NFV system with the one of a non-NFV
system. Furthermore, we propose a simple migration technique
for the ONLINE case.

III. PRELIMINARIES

We first describe a resource allocation problem in a system
implementing NFV. Then, we formulate the problem as a
quadratic program (QP) dealing with both optimal service
location and optimal routing under constraints on service
function chaining and system resources.

A. System Description

In this section, we introduce two scenarios: the static
problem (OFFLINE case) and the dynamic problem (ONLINE
case).

1) OFFLINE case: We study a NFV system where a
network function is offered as a service. The system is
composed of three components, including a set of VNFs, a
set of customer demands and a virtual network that provides
resources to the VNFs. VNF is a software implementation of
a Network Function (NF) deployed on an NFVI. Each demand
requests access to a network service (NS) that requires special
functionalities. It can be composed of several VNFs in order
to support advanced network connectivity, e.g. deep packet
inspection, firewall, load balancer. In a NS, VNFs will need
diverse resources such as CPU, memory, storage, bandwidth,
etc. It is recognized that virtualized solutions are quite costly
in resource consumption. Resources are distributed anywhere
on the NFVI. A customer demand materializes as a packet
flow from a source to a destination visiting a set of nodes
where the required VNFs are deployed.

How to efficiently share resources for all demands with
delay constraints or limited capacity is an important challenge
for NFV providers. It is likely that the solution achieved will
trade-off agility with efficiency. For instance, a NFV solution

TABLE I: Summary of Variables

Variable Meaning
(n,m,l) Number of virtual nodes, VNFs, and demands
(V ,E) Set of virtual nodes and links

(Dn,Do) Set of new demands and old demands
Dm ⊆ Do Set of old demands that will be migrated

F Set of VNFs
R Set of resources (CPU, STORAGE, MEMORY, etc.)
F d Set of ordered VNFs of demand d
`d The number of VNFs in set F d

φdf The order of function f in the chain of VNFs F d

wv1v2 Bandwidth capacity of link between v1, v2 ∈ V
crv Resource capacity r ∈ R of node v ∈ V
λd SLA coefficient of demand d

pv(λd)
The price of resource charged per hour of node v,
according to λd

µrf Required resource r ∈ R of function f ∈ F
(sd,td) Source node and destination node of demand d
bd Required bandwidth of demand d

(ads ,∆d) Starting and total processing time of demand d
pb Price of bandwidth charged per hour
η Migration percentage

xdfv
A binary variable that equals to 1 if and only if
virtual node v hosts function f of demand d

yduv
A binary variable that equals to 1 if and only if link
(u, v) is used by demand d

χd
uv

A binary variable that equals to 1 if and only if node
u is a ancestor node of v in the routing path of d

zd
An integer variable that equals to 1 if new demand
d is served, -1 if old demand d is migrated and 0
otherwise

x̂dfv
A binary variable that equals to 1 if and only if
virtual node v hosts function f of old demand d

ŷduv
A binary variable that equals to 1 if and only if link
(u, v) is used by old demand d

(minl,maxl) Minimum and maximum number of demands

may take a longer path than the likely shortest path followed
by a non-NFV system. However, it is still applicable if the
delay lies within an acceptable range.

A virtual network is represented as an edge-weighted
undirected graph denoted by G = (V,E,w) where V is
a set of virtual nodes, E is a set of links, and w is the
bandwidth capacity assigned to each link. Each node v ∈ V
is associated with two components: 1) crv that denotes a set
of resource capacities with r ∈ R, where R denotes the set
of resources (CPU, STORAGE, and MEMORY, etc.) and 2)
pv(λd) that is the price of resource charged per hour ($/hour)
according to a Service Level Agreement (SLA) coefficient λd

of the customer d. We denote Dn as a set of l customer
demands. A demand d ∈ Dn is represented by a set of
parameters (sd, td, bd, F d,∆d) where sd is a source, td is a
destination, bd is a required bandwidth, F d = {fi1 , ..., fik} is
an ordered chaining of sub-set VNFs and ∆d is an average
total processing time of demand d. We assume that each VNF
fi ∈ F d only appears once in each demand d ∈ Dn. We
define F = {fi|i = {1, ...,m}} as a set of m VNFs. Each
function fi ∈ F has a vector µr

fi
representing its resource

requirement (r ∈ R). In the OFFLINE model, we minimize
both the computing-resource cost and the bandwidth cost
under constraints on resource and bandwidth capacity with
respect to VNFs chaining.

2) ONLINE case: We consider a scenario where an op-
erational network is serving a set of customer demands Do

(called old demands) . At this stage, a set of VNFs are already
deployed and the routing paths for the demands in Do are also
provisioned. Consider new demands Dn are incoming and the
network operator needs to provision the required VNFs and
routing paths for them. Maximizing the number of served
demands and minimizing the system resource cost are the
research challenges addressed in the sequel.

We consider an interval τ (according to the system con-
figuration) where we will update the status of all demands
running in the system. Upon completion, the system releases
the resources allocated to a demand. At time t, we collect new
demands Dn that arrived during the period (t− τ) to t.

We propose a method to select the subset of old demands
to be migrated in Section-IV-B2.

The ONLINE model addresses the multiple objectives:
• Minimize resource cost on nodes to satisfy the demands
• Minimize bandwidth cost on links from source to desti-

nation passing through VNFs
• Maximize the number of accepted demands
• Minimize the penalty cost for VNF migration

B. Formal Problem Statement

We aggregate both cases and formulate the above system as
a quadratic problem with the following inputs:
• Set of m functions F = {fi|i = {1, ...,m}}.

– µr
f : a resource requirement of function f ∈ F

• Set of old demands
Do = {(sd, td, bd, F d,∆d, ads , x̂

d
vf , ŷ

d
uv)}. Each old de-

mand d ∈ Do, we know ads is the starting process time,
x̂dvf and ŷduv indicate their solution deployed on NFVI.

• Dm ⊆ Do is the set of old demands selected to be
migrated. A migration percentage is denoted by η = |Dm|

|Do|
• Set of new demands Dn = {(sd, td, bd, F d,∆d)}
• An edge-weighted undirected graph G = (V,E,w) is

representing the virtual network.
The notations can be found in Table I.
We define the outputs of our problem as a set of decision

variables. xdfv is a binary variable that equals to 1 if and only
if node v hosts function f of demand d. Similarly, the binary
variables yduv equals to 1 if and only if demand d uses link
(u, v). The binary variables χd

uv equals to 1 if and only if
node u is an ancestor node of v in the routing path of demand
d. Finally, zd is an binary variable that equals to 1 if a new
demand d is served or an old demand d is migrated, and equals
to 0 otherwise.

We aim to:
1) Minimize nodes resource cost allocated for demands

Un (t) =
(
∆d − t+ ads

) ∑
d∈Dm∪Dn

zdx
d
fvpv (λd)

+
(
∆d − t+ ads

) ∑
d∈Do\Dm

x̂dfvpv (λd)
(1)

2) Minimize bandwidth cost on links from source to desti-
nation passing through VNFs

Ul (t) =
(
∆d − t+ ads

) ∑
d∈Dm∪Dn

pbzd
∑

u,v∈V
bdyduv

+
(
∆d − t+ ads

) ∑
d∈Do\Dm

pb
∑

u,v∈V
bdŷduv (2)

3) Maximize the number of accepted demands

Uaccept =
∑

d∈Dn

zd (3)

4) Minimize the penalty cost of VNF migration

Upenalty =
∑

d∈Dm;u,v∈V ;f∈F
xdfux̂

d
fvz

dM(.) (4)

M(.) is a function of distuv , where distuv characterizes the
length of the shortest path from u to v. It indicates the cost to
migrate a function from node u to node v. In our simulation,
we use two different cost functions to consider the migration
penalty: a linear function and a square root function, discussed
later in Section-V-C.

Constraints:
In order to guarantee that a node capacity is not over-

subscribed by the allocation of VNFs to this node, we have:

∑
d∈{Dm∪Dn}

zdxdfvµ
r
v +

∑
d∈Do

x̂dfvµ
r
v ≤ crv ∀v ∈ V (5)

Similarly for the bandwidth capacity of a link.

∑
d∈{Dm∪Dn}

zdyduvb
d +

∑
d∈Do

ŷduvb
d ≤ wuv ∀u, v ∈ V

(6)

Constraint (7) guarantees that each VNF in a demand has
to be processed in a given preference order.

xdf1ux
d
f2v − χ

d
uv ≤ 0 φdf1 < φdf2 (7)

Each VNF only appears exactly once in a demand. This
constraint is expressed as follows:

∑
v∈V

xdfv =

{
zd if f ∈ F d

0 otherwise
(8)

Constraint (9) ensures that the variables yduv are non-
symmetric.

yduv + ydvu ≤ 1 ∀u, v ∈ V, d ∈ Dm ∪Dn (9)

Equations (10) enforce that, for each computer path associated
to a demand, it always begins at its source and terminates at
its destination.

∑
v∈V

yduv −
∑

v∈V
ydvu =


zd if u = sd

−zd if u = td

0 otherwise

(10)

In addition, we need constraints (11), (12) and (13) to guar-
antee the compatibility between variables as follows:

χd
uv −

∑
i∈V,i6=v

χd
uiy

d
iv ≥ 0 ∀d ∈ Dm ∪Dn (11)

xdfv
∑
i∈V

ydiv = xdfv ∀d ∈ Dm ∪Dn, v ∈ V \ {sd, td} (12)

(χd
uv − 1)yduv = 0 ∀d ∈ Dm ∪Dn (13)

Now, for the OFFLINE case, we simply set Do = ∅.
Unfortunately, the joint problem of NFV placement and

routing is harder than the integral multicommodity flow
problem whose decision version is NP-complete. Indeed, our
problem becomes the integral multicommodity flow problem
when we consider each demand and assume that we know the
location of required functions. Hence, we study heuristic that
provides a solution close to the optimal with a reduced com-
putation time. In the next section we introduce our practical
solution to address this challenge.

IV. PROPOSED ALGORITHM

As our problem is NP-hard, we only apply exact algorithms
to small size dimension of our system that runs within an
acceptable time. So, we use the GUROBI Optimizer [18]
to solve the quadratic model in order to obtain the optimal
solution. In addition, we designed three heuristic algorithms to
cope with large size dimensions ((Max-Min and Min-Min for
the OFFLINE case, RBP for the ONLINE case). In Section-
V, we compare these algorithms with the one produced by a
Random Algorithm (OFFLINE case) and the PT algorithm
(ONLINE case). Hence, we discuss a migration technique
aiming at efficiently managing resources and balancing flows
in a dynamic environment.

The three heuristics are introduced below.

A. OFFLINE case

Our heuristics (Max-Min and Min-Min algorithm) are com-
posed of two phases: the node mapping phase and the link
mapping phase. In the first phase, we rank nodes in the virtual
network to order nodes able to host a VNF for a customer
demand. The link mapping phase uses the result of the node
mapping phase to find a path with minimum cost for each
customer demand.

1) The node mapping phase: We introduce a polynomial-
time heuristic finding an allocation of VNFs available on the
virtual network to match customer demands. The main idea
is to assign a virtual node, based on its rank in the virtual
network, to a VNF. We propose two algorithms, namely the
Max-Min algorithm and the Min-Min algorithm. The Max-
Min algorithm allocates a “costly” function (i.e., a function
whose resource requirement is large) to a cheap node that is
a node whose rank is low. The Min-Min algorithm allocates a
“cheap” function (i.e., a function whose resource requirement
is small) to a cheap node.

We use the equation (14) of the rank for node v to find the
cheapest or the best virtual node. This value is always updated
after deploying a VNF on a virtual node. It accounts for the
available resource capacity, the price for each resource unit
and the ability to connect to other nodes. It also considers
the benefit obtained by the situation where a given function
is already hosted on one node and could be mutualized with
another demand. We propose a formula for ranking the nodes
based on the components as below:

rankv = α

 pv∑
i∈V

pi
+

1∑
f∈F

C(f, v) + 1

+ β


∑

i,j∈V
wij − y∑

i∈V
wiv − xv

+

∑
d∈Dn

T (sd, v) +
∑

d∈Dn

T (td, v)∑
d∈D,i∈V

T (sd, i) +
∑

d∈Dn,i∈V
T (td, i)

 (14)

where α, β ∈ [0, 1] (α + β = 1) characterize the influence
of the resource cost on nodes and the communication cost
on links, respectively. In particular, these two parameters will
determine the priority of our system according to the price of
resources associated with nodes and communications in order
to reach source and destination of customer demands. We will
estimate thoroughly the impact of these parameters in Section-
V. xv, y are the amount of bandwidth decreased for node v and
other nodes after a function is selected to be hosted on node v.
T (u, v) is the minimum distance between two nodes u, v ∈ V .
C(f, v) specifies the number of occurrences of function f ∈ F
in all demands that were assigned to node v ∈ V .

Algorithm 1 Max-Min Resource Heuristic

1: function MAX-MIN(P (f))
. P (f)= number of occurrences of f in all demands

2: xv = 0 ∀v, y = 0
3: while F 6= ∅ do
4: fmax ← arg maxf∈F {µr

f}
5: while P (fmax) > 0 do
6: vmin ← arg minv∈V and v satisfies (5){rankv}
7: g(fmax)← g(fmax) ∪ vmin

8: maxbw = max {d ∈ Dn|fmax ∈ F d}
9: xovmin

← xvmin
+maxbw

10: y ← y +maxbw
11: P (fmax)← P (fmax)− 1
12: Update rankv, crvmin

13: end while
14: Remove fmax

15: end while
16: Compute Un(t) using equation (1).
17: return g.
18: end function

The Pseudo-code of the Max-Min algorithm is provided in
Algorithm 1. The Max-Min algorithm first selects a function
f ∈ F whose resource requirement is the highest, denoted by
fmax. It then finds a virtual node with the minimum rank in
the virtual network, denoted by vmin. Virtual node vmin is

selected to host function fmax for a customer demand. The
available resource capacity of virtual node vmin is updated.
Finally, the function fmax is removed from F when fmax

required in all customer demands is satisfied. We repeat the
process until all functions are allocated.

The Min-Min algorithm is similar to the Max-Min algorithm
where, fmax in the Max-Min algorithm is replaced by fmin

that is a function whose resource requirement is the lowest.
2) The link mapping phase: The second phase of the

heuristic is to find a path from a source to a destination
with the minimum cost for each demand. Its Pseudo-code
is presented in Algorithm 2. Specifically, using the result of
phase 1, for each f ∈ F , we have a set of virtual nodes g(f)
that can support function f . We denote the ith function of
the customer demand d by F d(i). For each customer demand,
the algorithm first finds the shortest path between the source
and a node providing F d(0). Then, for adjacent functions
(F d(i), F d(i + 1)), it finds the shortest path from a set of
nodes g(F d(i)) to a set of nodes g(F d(i+1)). Finally, it finds
the shortest path between the destination of the demand and
a node that can provide the last function in the demand (i.e.,
a node in g(F d(`d − 1)) where `d is the number of functions
for demand d).

Algorithm 2 Path Selection

1: function PATHSELECTION(g : F 7→ V)
2: {p, psol} ← {∅, ∅}
3: for demand d ∈ Dn do
4: F d(i): the ith VNF in demand d, i = 0..`d − 1
5: F d(−1)← sd, F d(ld)← td

6: for a pair F d(i), F d(i+ 1),i = −1..`d − 1 do
7: U1 ← g(F d(i)), U2 ← g(F d(i+ 1))
8: pi ← shortest path(u1 ∈ U1, u2 ∈ U2),

satisfying (6)
9: g(F d(i+ 1)) = u2

10: p← p ∪ pi
11: end for
12: Add p to psol
13: end for
14: Compute Ul(t) using equation (2).
15: return psol
16: end function

B. ONLINE case

1) Routing before Placement (RBP) algorithm: We now
present an algorithm solving the ONLINE case.

In contrast to the OFFLINE case, the RBP algorithm finds
the routing path prior to locating VNFs on virtual nodes. RBP
will consider each demand sequentially and decide whether
and how to serve it. For each demand d, we find in graph G,
a shortest path p from sd to td. Then we allocate one by one
VNF in F d on the path p, satisfying all resource constraints
(5)→(13). If this path does not satisfy all resource constraints,
we try another shortest path p′ from sd to td, and so on. If no

TABLE II: Scenarios

Scenario

Number of
virtual
nodes

n

Number of
VNFs

m

Number of
new demands

size (Dn)
minl → maxl

Number of
old demands

size (Do)

R1 7 4 1 → 1 1
R2 15 5 3 → 20 5
R3 50 15 10 → 100 20
R4 200 20 50 → 600 30
B1 n=2,k=2 10 2 → 100 10
B2 n=4,k=2 10 2 → 100 10
F1 k=4 10 2 → 100 10
F2 k=6 10 2 → 100 10

such path exists, the demand d is rejected. The Pseudo-code
of the RBP algorithm is provided in Algorithm 3.

2) Migration Technique: Another concern in the dynamic
NFV problem is to decide if and how a set of old demands
should be migrated. Selecting old demands to migrate will
impact the current resources of our system as well as affect
the system cost. Our goal is to move a flow of old demands
including nodes and links to a new position to optimize the
system resources. As mentioned earlier, there exist a penalty
cost associated to the migration tasks (4). In this section,
we propose a simple method to select a set of old demands
to be migrated. The main idea of the method is to identify
old demands that have the largest wasted bandwidth cost for
passing through nodes that do not provide resources for any
required VNFs. It results in the computation of the wasted
bandwidth cost of each old demand, as follows:

Γd =
∑

f1∗f2=0;v1,v2∈V

x̂df1v1 x̂
d
f2v2 ŷ

d
v1v2wv1v2 (15)

Then we select η % number of old demands Do depending
on the wasted resource as in (15), called Dm and re-configure
this set of demands. We release all resources provisioned in
Dm and find the solution for Dm using Algorithm 3. Finally,
we continue this algorithm until the set of all new demands
Dn has been processed.

V. EVALUATION

In this section, we evaluate the performance of our solutions
according to a large set of parameters.

A. Parameter Setting

We defined the following scenario in order to evaluate the
performance of our algorithms:
• Network Topology: In this paper, we use two types of

topologies: random networks (R1, R2, R3, R4) and data
center networks (B1, B2, F1, F2) as defined in Table
II. We focused on two types of data center topologies,
namely, Fat-Tree [19] and BCube [20]. For Fat-Tree
networks, we generated two topologies (F1, F2) with
parameters k = 4 and k = 6, where k represents
the number of ports in a switch. For BCube networks,
we generated two topologies (B1, B2) with parameters
n = 2, k = 2 and n = 4, k = 2, where n represents the
number of ports in a switch and k stands for the number
of hierarchy of switches.

Algorithm 3 Routing before Placement(RBP) Algorithm

1: function RBP(F,Dm, Do, Dn, G(V,E,w))
2: AcceptNo = 0;
3: for demand d ∈ {Dm ∪Dn} do
4: {vsubsol, fsubsol, vsol, fsol} ← {∅, ∅, ∅, ∅}
5: reject=true;
6: while true do
7: p← Shortest path(G, sd, td)
8: for f ∈ F d, v ∈ p do
9: Locate f to v

10: if satisfy constraints (5) then
11: vsubsol ← vsubsol ∪ v
12: fsubsol ← fsubsol ∪ f
13: Update crv
14: reject = false; break;
15: else
16: Mark p in G; continue;
17: end if
18: end for
19: end while
20: if reject== false then
21: Add v subsol to v sol; f subsol to f sol
22: AcceptNo ← AcceptNo +1;
23: end if
24: end for
25: end function

• Customer demands: We evaluated each network topology,
called a scenario, using eight different tests, varying the
number of demands l in a test from minl in the first test
to maxl in the last one. Each customer demand including
the source node, the destination node, a chain of VNFs,
the resource requirement and the cost factor of SLA, is
generated randomly for each individual test.

• The price of resources (i.e. CPU, storage, memory) are
collected from the Microsoft [21] and Amazon websites
[22]. For example, the price of a virtual machine with 4
CPUs, 285GB storage and 7GB memory on the Microsoft
cloud is 0.36 $/hour.

We have simulated our proposed algorithms in Java.
• In the OFFLINE case, we evaluate the performance (the

NFV cost) of our heuristics (Max-Min and Min-Min)
with the optimal solution, and a Random algorithm (to
be described later).

• In the ONLINE case, we evaluate the performance (the
average routing path length and the acceptance ratio)
of our heuristic (RBP algorithm) against the PT algo-
rithm. We also compare the gain obtained when applying
our migration strategy as a function of the percentage of
old demands considered for migration.

B. OFFLINE case

We first assess the influence of the parameters α, β in equa-
tion (14). We consider different values of α, β in [0, 1] and then
compare the NFV cost produced by our two heuristics. Fig.1

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
380

400

420

440

460

480

500

520

540

560

580
BCube(n=2,k=2)

N
F

V
 c

os
t (

$/
ho

ur
)

Max−Min
Min−Min

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β
α 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

200

220

240

260

280

300

320

340
Fat(k=4)

N
F

V
 c

os
t (

$/
ho

ur
)

Max−Min
Min−Min

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
β
α

(a) B1 (BCube, n = 2, k = 2) (b) F1 (Fat Tree, k = 4)

Fig. 1: (OFFLINE) The NFV cost with different parameters (α, β)
on a data center network

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8
0

2

4

6

8

10

12

14

16

N
F

V
 c

os
t (

$)

Max−Min algorithm
Min−Min algorithm
Random algorithm
Exact Solution(Gurobi)

Fig. 2: (OFFLINE) The NFV cost
of small scale scenarios

30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of demands

R
at

io
 o

f b
an

dw
id

th
 c

os
t (

%
)

NFV System
Non−NFV System

Fig. 3: (OFFLINE) Ratio between
the bandwidth cost of a non-NFV
system and that of a NFV system

shows the influence of the NFV cost on data center networks
when selecting different value of parameters (α, β). The NFV
cost is computed by adding the resource cost Un(t) as defined
in equation (1) to the bandwidth cost Ul(t) as in equation (2).
We observe that the best values for both algorithms (Max-Min,
Min-Min) depend on the network topology. For instance, the
best values for a BCube topology are α < β, whereas for a
Fat Tree topology they are α > β. When α < β, the priority
of nodes will mainly depend on the communication cost on
links whilst if α > β, the priority of nodes will mostly depend
on the resource cost on nodes. In fact, a BCube topology has
more links connecting switches and servers than a Fat Tree
topology. Therefore, in order to select a node that can host
VNFs in a BCube topology, it is more important to consider
the communication cost. In the reminder of the paper, we use
(α = 0.6, β = 0.4) with Fat Tree topologies, and (α = 0.4,
β = 0.6) with BCube topologies for the two heuristics.

Then, we use the GUROBI Optimizer [18] to find the
optimal solution for small instances where (m = 4, l = 1),
namely scenario 1 and introduce a simple Random algo-
rithm to evaluate the efficiency of our solutions for larger
dimensions. The Random algorithm is defined below. We first
generate randomly locations for hosting all VNFs supporting
all demands and satisfying constraints (5). We then find a path
satisfying constraints (6) for each demand. Each path will be
composed of nodes hosting the required VNFs in a given
order. The obtained result constitutes a Random solution to
our problem.

Fig. 2 shows the NFV cost obtained by Max-Min, Min-
Min, Random algorithms and the optimal solution (GUROBI

10 15 20 25 30 35 40 45
200

400

600

800

1000

1200

1400

1600

1800
BCube(n=2,k=2)

N
F

V
 c

os
t (

$/
ho

ur
)

Number of demands

Max−Min
Min−Min
Random

10 15 20 25 30 35 40 45
200

400

600

800

1000

1200

1400

1600

1800
Fat(k=4)

N
F

V
 c

os
t (

$/
ho

ur
)

Number of demands

Max−Min
Min−Min
Random

(a) B1 (BCube, n = 2, k = 2) (b) F1 (Fat Tree, k = 4)

Fig. 4: (OFFLINE) The NFV cost of large scale scenarios

optimizer [18]) for a small size system. All tests (x-axis)
in the small size scenario consider the same demand for
different network topologies that are generated randomly with
the number of vertices equals to 7. It is obvious that the
solutions produced by the heuristic algorithms (Max-Min and
Min-Min) are far better than the one provided by the Random
algorithm and close to the optimal solution. For larger scenar-
ios (R2, R3, R4, B1, B2, F1, F2) in Table II (i.e. hundreds
of virtual nodes, hundreds of demands), we run our heuristic
algorithms and Random algorithm where the customer demand
is generated randomly. Regarding the NFV cost (Fig. 4) on
data center topologies (B1 and F1), our heuristics (green
line and red line) performs obviously better than Random
algorithm (blue line) and become more effective when the
number of demands grows. In addition, Min-Min algorithm
(green line) is better than Max-Min algorithm (red line). As
expected, allocating a “cheap” function (i.e. a function whose
resource requirement is small) to a cheap node provides a more
efficient resource management.

We now consider a non-NFV system where a source node
is able to host the all set of required functions. We simply
use Dijkstra algorithm to find a shortest path for all pairs of
demand from source to destination. We then sum the costs for
all links on all the shortest paths to obtain a bandwidth cost.
We use this solution to compare it against our NFV-based
one and assess the overhead due to virtualizing the network
functions. In Fig. 3, we compare the bandwidth required to
transfer packets from a source to a destination in a NFV system
and that in a non-NFV system. We use the bandwidth cost
computed by equation (2). The result shows that a trade-off
has to be found between efficiency and the agility provided by
the virtualization of functions. It means that, in our scenario,
an operator need to spend 60% more resources to be able to
benefit from the agility and dynamicity of NFV. This confirms
the importance for instrumenting an efficient deployment of
service chaining.

We now want to evaluate the distribution of VNFs on a
multi-tier network topology as illustrated in Fig. 5. We define
three node categories: core nodes, aggregation nodes and
access nodes. An access node is connected to an aggregation
node, itself connected to core nodes, and core nodes are fully
meshed. We assume that all nodes are NFVI nodes that can
host VNFs. We compute the solution for the two heuristics

Fig. 5: Multi-tier network topol-
ogy

Max-Min Min-Min PT Random

D
is

tr
ib

u
ti
o
n
 o

f
V

N
F

s
 (

%
)

0

20

40

60

80

100

Core Layer

Aggregation Layer

Access Layer

Fig. 6: Distribution of VNFs on a
multi-tier network

50 80 100 150 200 300 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scenario 4, n=200

T
he

 a
cc

ep
ta

nc
e

ra
tio

Number of arrived demands

RBP algorithn
PT algorithm

Fig. 7: (ONLINE) Comparison
between the acceptance ratio of
RBP and that of PT

Number of arrived demands

50 80 100 150 200 300 400 600T
h
e
 a

v
e
ra

g
e
 r

o
u
ti
n
g
 p

a
th

 l
e
n
g
th

 (
H

o
p
)

0

5

10

15

20
Scenario 4, n=200

RBP algorithn

PT algorithm

Fig. 8: (ONLINE) Comparison
between the average routing path
length of RBP and that of PT

and the PT algorithm in order to compare the distribution
of VNFs among those algorithms. Fig. 6 shows that for the
Max-Min and Min-Min algorithms, VNFs are almost similarly
distributed on aggregation nodes (95%), a small part on core
nodes (4%), and rarely (1%) on access nodes, while the
PT algorithm distributes more equally VNFs to three node
types including core nodes (21%), access nodes (17%), and
aggregation nodes (62%). Finally and as expected, the Random
algorithm distributes fairly VNFs to the three node types. It
clearly suggests that the network functions should be located
on the network edge rather than the network core. The best
option will be to deploy all VNFs in every edge node but
the cost might be excessive hence the importance to identify
which VNFs can be mutualized and/or deployed only on some
specific edge nodes whilst preserving performance constraints.

C. ONLINE case

We now evaluate our solution suited to the ONLINE case.
We acknowledge the fact that there exist an abundant

literature related to the NFV placement such as [8], [9], [11].
However, we claim that our (RBT) model is comprehensive
and it is therefore difficult to compare it against the existing
ones. For instance, as mentioned earlier in Section II, the
model in [9] does not consider the request or the customer
demand as a flow from a source to a destination. Moreover,
they evaluated their approaches with at most two chained net-
work functions for each SFC request. Therefore, we decided
to select the PT algorithm [1] as a comparison as we found
that this is the one that share the largest set of characteristics
with ours. Fig. 7 and Fig. 8 show the acceptance ratio and the
average routing path length obtained by our heuristic (RBP)
compared to the PT one. It shows that our solution achieve

10 30 50 70 100 130 170 200
0

1000

2000

3000

4000

5000

6000

7000
Scenario 3, n=50

N
F

V
 c

os
t (

$)

Number of arrived demands

RBP algorithn
PT algorithm

Fig. 9: (ONLINE) Comparison
between the NFV cost of RBP
and that of PT when no migrating

0 10 20 30 40 50 60 70 80 90 100
1000

1200

1400

Migration Percentage (%)

N
F

V
 c

os
t(

$)

0 10 20 30 40 50 60 70 80 90 100
1000

1500

2000

N
F

V
 c

os
t(

$)

RBP algorithn (Linear)
RBP algorithn (Sqrt)
PT algorithm (Linear)
PT algorithm (Sqrt)

Fig. 10: (ONLINE) Different per-
centages of migration with two
penalty cost functions

higher acceptance ratio and shorter routing paths than PT. Fig.
9 showing the NFV cost as defined by (1) and (2) provide
evidence of the efficiency of our solution when no migration
exists. The idea of RBP is to implement routing before placing
the VNFs. This guarantees that demands always use good
paths. Indeed, in Fig 3, 8, and 9, the solution obtained by
RBP (red line) is obviously better than the one produced by
the PT algorithm (green line). However, it has to pay the price
for increasing the running time when trying all possible paths
for each demand.

In addition, we also compare the acceptance ratio between
RBP and PT applied on some data center network topologies
(B1, B2, F1, F2). Fig.11 shows the acceptance ratio as a
function of the number of arriving demands, from 2 to 100.
Fig. 11(a) depicts the results with a network of 32 servers
(respectively BCube B1, FatTree F1) and Fig. 11(b) shows the
results with a network of 128 servers (respectively BCube B2,
FatTree F2). We observe that our heuristic performs better on
a Bcube topology than on Fat-Tree topology. Indeed, a BCube
topology provides much more links between server nodes and
switch nodes than the Fat-Tree topology.

Finally, we evaluate the impact of migrating a set of old
demands. We address the NFV cost using various migration
percentages η from 0% (no migration) to 100% (all demands
are migrated). As mentioned earlier, we select old demands
eligible for migration according to the wasted bandwidth,
defined in equation (15), of these demands. We also consider
as a parameter, two cases for the migration penalty cost
function M(.) in equation (4): one linear function and one
square root function.

Fig. 10 provides a comparison of the NFV cost, as a function
of the migration percentage, obtained by the RBP and PT
algorithms. The NFV cost is computed as the sum of the
resource cost Un(l) defined by equation (1), the bandwidth
cost Ul(t) equation (2) and the migration penalty cost UPenalty

(4). We observe that RBP will benefit from migrating demands
whilst it is not the case for PT. The best cost is obtained for
RBP with 40% migration of old demands when using a linear
penalty cost. This cost will always decrease as a function of the
percentage of flows being migrated for a square root function
penalty cost. In summary, the migration will bring a certain
benefit when we select a proper migration percentage (as 40%
in our experiment with a linear penalty cost). However, if we

2 5 7 10 30 50 70 100

0.4

0.5

0.6

0.7

0.8

0.9

1
T

he
 A

cc
ep

ta
nc

e
R

at
io

Number of arrived demands

RBP algorithm (BCube)
PT algorithm (BCube)
RBP algorithm (FatTree)
PT algorithm (FatTree)

2 5 7 10 30 50 70 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
he

 A
cc

ep
ta

nc
e

R
at

io

Number of arrived demands

RBP algorithm (BCube)
PT algorithm (BCube)
RBP algorithm (FatTree)
PT algorithm (FatTree)

(a) Number of servers = 32 (b) Number of servers = 128

Fig. 11: (ONLINE) Comparison between the acceptance ratio of RBP
and that of PT on a data center network

only pay a smaller penalty cost for migrating (as square root
function), we obtain more benefit when updating the system
resource after an interval τ . It means we have to consider both
the penalty cost to move a function to a new position and the
distribution of system resources at present, when determining
if and how a set of old demands should be migrated.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the resource allocation problem
for NFV where a network service is composed of several VNF
instances. Our model is generic, able to handle a large and
diverse set of key parameters and can easily be customized. It
takes into account the interconnectivity among VNFs, service
requirements, and NFV costs (including both resource cost
and traffic cost). We formulated the problem as a quadratic
program for both optimal VNF location and optimal routing.
We proposed two heuristic algorithms, called Max-Min and
Min-Min, for the OFFLINE case and one heuristic, called
RBP for the ONLINE. Our extensive evaluation shows that our
heuristic algorithms always perform significantly better than
the one produced by the PT solution in [1] considering various
performance metrics such as the NFV cost and the acceptance
ratio of arriving demands. In addition, we computed the
cost uncured by a network relying on NFV to capture the
overhead introduced by a solution based on the virtualization
of functions. To complete our study, we investigated a simple
migration technique that can efficiently manage the dynamic
situation produced by a continuous flow of arriving demands.
Our future plan is to exploit the value of this model in
practical scenarios where measurement will be made available
to parametrize our solution. In addition, we started to study
the congestion issue that can arise in such an environment.

ACKNOWLEDGMENT

We are grateful to the anonymous reviewers for their con-
structive criticism. Tuan-Minh Pham was partially supported
by project B2016-SPH-17 from the Vietnam Ministry of
Education and Training.

REFERENCES

[1] M. F. Bari, S. Chowdhury, R. Ahmed, and R. Boutaba, “On orchestrating
virtual network functions,” in 11th Int. Conf. Netw. Service Manag.
(CNSM), Nov. 2015, pp. 50–56.

[2] ETSI, “White paper on network functions virtualization.”
[3] M. T. B. H. M. A. Fischer, J. F. Botero and X. Hesselbach, “Virtual

network embedding: A survey,” in IEEE Commu. Surveys Tutorials, pp.
1888–1906.

[4] M. P. G. S. L. Z. G. Md. G.Rabbani, R. P. Esteves and R. Boutaba, “On
tackling virtual data center embedding problem,” in 2013 IFIP/IEEE Int.
Symp. Integrated Netw. Manag., pp. 177–184.

[5] X. Li and C. Qian, “A survey of network function placement,” in 13th
IEEE Annu. Consumer Commu. & Netw. Conf., CCNC 2016, January
9-12, pp. 948–953.

[6] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A compre-
hensive survey,” IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp.
518–532, Sep. 2016.

[7] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and schedul-
ing of virtual network functions,” in IEEE Conf. Netw. Softwarization
(NetSoft), 2015.

[8] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Near optimal place-
ment of virtual network functions,” in 2015 IEEE Conf. Computer
Commu., INFOCOM, Apr. 26 - May 1, pp. 1346–1354.

[9] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P.
Gaspary, “Piecing together the nfv provisioning puzzle: Efficient place-
ment and chaining of virtual network functions,” in 2015 IFIP/IEEE Int.
Symp. Integrated Netw. Manag. (IM), May, pp. 98–106.

[10] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in 2015 IEEE 4th Int.
Conf. Cloud Netw. (CloudNet), Oct., pp. 171–177.

[11] T.-W. K., B.-H. L., K. C.-J. L., and M.-J. T., “Deploying chains of virtual
network functions: On the relation between link and server usage,” in
Proc. IEEE INFOCOM 2016.

[12] D. Ihara, F. L. Pires, and B. Barán, “Many-objective virtual machine
placement for dynamic environments,” in 8th IEEE/ACM Int. Conf.
Utility Cloud Comput., UCC 2015, Dec. 7-10, pp. 75–79.

[13] F. L. Pires and B. Barán, “Multi-objective virtual machine placement
with service level agreement: A memetic algorithm approach,” in
IEEE/ACM 6th Int. Conf. Utility Cloud Comput., UCC 2013, Dec. 9-12,
pp. 203–210.

[14] T. Lukovszki and S. Schmid, “Online admission control and embedding
of service chains,” CoRR, vol. abs/1506.04330, 2015.

[15] L. E. Li, V. Liaghat, H. Zhao, M. Hajiaghayi, D. Li, G. T. Wilfong, Y. R.
Yang, and C. Guo, “PACE: policy-aware application cloud embedding,”
in Proc. IEEE INFOCOM 2013, Apr. 14-19, pp. 638–646.

[16] J. Elias, F. Martignon, S. Paris, and J. Wang, “Efficient orchestration
mechanisms for congestion mitigation in nfv: Models and algorithms,”
IEEE Trans. Services Comput., vol. PP, no. 99, pp. 1–1, 2015.

[17] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted NFV service chain
deployment based on afliation-aware vnf placement,” in Proc. IEEE
GLOBECOM, 2016.

[18] http://www.gurobi.com/.
[19] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity

data center network architecture,” in Proc. ACM SIGCOMM 2008 Conf.
Applications, Technol., Architectures, Protocols for Computer Commu.,
Aug. 17-22, pp. 63–74.

[20] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: a high performance, server-centric network architecture
for modular data centers,” in Proc. ACM SIGCOMM 2009 Conf. Appli-
cations, Technol., Architectures, Protocols for Computer Commu., Aug.
16-21, pp. 63–74.

[21] https://azure.microsoft.com/en-us/pricing/calculator/.
[22] https://aws.amazon.com/ec2/pricing/.

