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Many of the decisions we make in our everyday lives are sequential and entail

sparse rewards. While sequential decision-making has been extensively investigated

in theory (e.g., by reinforcement learning models) there is no systematic experimental

paradigm to test it. Here, we developed such a paradigm and investigated key

components of reinforcement learning models: the eligibility trace (i.e., the memory

trace of previous decision steps), the external reward, and the ability to exploit the

statistics of the environment’s structure (model-free vs. model-based mechanisms). We

show that the eligibility trace decays not with sheer time, but rather with the number of

discrete decision steps made by the participants. We further show that, unexpectedly,

neither monetary rewards nor the environment’s spatial regularity significantly modulate

behavioral performance. Finally, we found that model-free learning algorithms describe

human performance better than model-based algorithms.

Keywords: reinforcement learning, exploration, SARSA(λ), Q-learning, sequential decision making

INTRODUCTION

Everyday actions are usually not recompensed by immediate reward. We have to make sequences
of decisions before reaching a goal and sometimes a decision can pull us away from the goal, rather
than getting us closer to it. Imagine developing a recipe for a new kind of cake. You start by adding
ingredient after ingredient to the dough, but, you will not know whether you added too much or
too little yeast until your cake is out of the oven. In this case, the feedback is not only delayed, but
also sparse, making it difficult to infer each action’s outcome. These situations are usually referred
to as sequential decision-making.

There are a plethora of sequential decision making models, most of them relying on
reinforcement learning algorithms (RL), such as SARSA(λ) or Q-learning, which can solve these
types of problems (for a full exposition of learning models see Sutton and Barto, 1998; Barraclough
et al., 2004; Gold and Shadlen, 2007; Dayan and Daw, 2008; Furman and Wang, 2008; McKinstry
et al., 2008; Resulaj et al., 2009; Cisek and Kalaska, 2010; Solway and Botvinick, 2012; Dolan and
Dayan, 2013). In RL models, it is assumed that an agent is in one of a number of discrete states. In
each state s, the agent chooses an action a that brings the agent to a new state s’ until a goal state
is reached, a reward is collected, and an episode is completed. For example, an agent moving on
a checker board can go north, south, west, or east. For each state s, the agent estimates the mean
future reward when choosing action a, and this reward’s value is denoted Q(s,a).
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The learning objective of the model is to choose the
state/action pairs that maximize reward collection. When a goal
is found, the obtained reward is compared with the expected
reward, that is, the reward calculated by taking the difference
between theQ-values at the rewarded and the previous locations.
The Q-value at the rewarded location is adjusted based on how
much the observed reward differs from the expected reward.
In addition, some of the Q-values for the states and actions
leading up to this penultimate state are also updated, indicating
that they lead to a reward, that is, there are a number of state-
action pairs that are eligible for estimate updates (this is called
the “eligibility trace” method). Inmodel-based learning, the agent
makes explicit use of the learned probability transitions between
states and/or of reward contingencies. Simply put, the agent
forms an explicit map of the environment and simulates various
actions before taking an actual step. Model-based learning is
particularly useful in navigation tasks, in which the buildup
of an internal representation of the environment allows for
efficient planning of the sequence of right/left turns needed
to reach a final destination. In model-free learning, the agent
does not build up a model of the environment; it just updates
Q-values, which tell the agent which actions are most likely
to yield reward at which states, but not how the states are
related to each other through those actions (Sutton and Barto,
1998).

Current paradigms for investigating sequential decision
making in human participants rely on tree-search environment
structures, in which a few consecutive binary choices have to
be made to accumulate evidence about the rewards at one of
multiple goal states (Daw et al., 2005, 2011; Gläscher et al.,
2010; Huys et al., 2012, 2015; Wunderlich et al., 2012; Solway
and Botvinick, 2015). In these paradigms, nodes in the decision
tree represents states and branches departing from each node
represent available actions. From each node only two successor
nodes can be reached (i.e., there are two available actions at
each state); tree branches are independent so that each sequence
of actions leads to a unique goal; actions inevitably bring the
agent closer to, never away from, one of the final goal states
and, most importantly, all participants attain one of the final goal
states after the same, fixed number of actions, i.e., of decision
steps (Figure 1D). Here, we have developed a more complex
environment structure to flexibly examine sequential decision
making in a setting which more closely resembles everyday
life situations. In our paradigm, each node is connected to
up to four successor nodes, tree branches are interconnected,
actions can bring the agent either closer to or farther away
from a unique goal state and, most importantly, the goal state
is reached after a variable number of decision steps, depending
on the participant’ ability to find the shortest path to the goal
(Figures 1B,C).

To test reinforcement learning models, we leveraged our new
paradigm in three sequential decision making experiments in
which we independently manipulated critical RL model variables
like the structure of the environment space (to test for the
building-up of an internal model of the environment), the inter-
stimulus-interval (ISI) between images (to test for the eligibility
trace), and the conditions of reward delivery.

FIGURE 1 | (A) Schematic representation of a single episode. An image, here

“cherries,” is presented together with four green disks representing the

potential actions. Clicking on one of the disks leads to the next image. (B)

Illustration of a 2D-non-embeddable environment, defined by the state-action

transition matrix shown. Each node represents a state and is associated with a

unique image. State 1 (outlined in red) is the goal state and is always

associated with the image “Yeah!.” Most of the actions connect

non-neighboring states and are unidirectional: only rarely are direct back and

forth transitions possible. Self-referential actions are frequent, i.e., an action

often leaves the state unchanged. (C) Illustration of a 2D-embeddable
environment. Actions connect neighboring states bi-directionally, e.g., if an

action goes from “cherries” to “coffee cup,” there exists an inverse action that

goes from “coffee cup” back to “cherries.” There are no self-referential

(recurrent) actions, i.e., every action necessarily leads to a different state.

Hence, in a 2D-embeddable environment, states and actions are arranged in a

grid-world structure. (D) Illustration of a tree-search structure, typically used in

other sequential decision making tasks present in the literature, in which

multiple goal states (in red) can be reached after a fixed number of decision

steps (i.e., two consecutive actions in the depicted example).

GENERAL SETUP

Experiments were conducted on a Phillips 201B4 monitor,
running at a screen resolution of 1,024 × 768 pixels and a
refresh rate of 100 Hz, using a 2.8 GHz Intel Pentium 4 processor
workstation running Windows XP. Experiments were scripted in
Matlab R© 7.11 using custom software and extensions from the
Psychophysics Toolbox for Windows XP (Brainard, 1997; Pelli,
1997).

Participants
A total of 68 naïve students from the École Polytechnique
Fédérale de Lausanne (EPFL), the Université de Lausanne
(UNIL), and the Beritashvili Institute of Physiology in Tbilisi
participated in the experiments (age range 18–30). Students were
paid by the hour for their participation (except for Experiment
3 where they were paid based on performance). This study
was carried out in accordance with the recommendations of
the “Commission cantonale d’étique de la recherche sur l’être
humain,” Protocol 384/2011 with written informed consent
from all subjects. All subjects gave written informed consent in
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accordance with the Declaration of Helsinki. The protocol was
approved by the “Commission cantonale d’étique de la recherche
sur l’être humain.” Participants were told they could quit the
experiment at any time they wished.

Stimuli and General Procedure
The general layout for an experiment is illustrated in Figure 1A.
Participants were presented with different images, i.e., states, and
for each state they chose one out of four actions. Each action
took the observer to a new image. The objective was to find
the state-action sequence leading to the goal-state, which always
came with a reward. The way the actions connect the states
defines the environment space. The environment space and the
reward delivery were deterministic: at a given state a certain
action always led to the same next state and finding the goal-state
always entailed a reward. Below, the stimuli and procedures are
described in detail.

Stimuli consisted of clip-art images presented centrally on the
screen (Figure 1A). Image size was approximately one quarter of
the screen. The images were semantically irrelevant for the task.
Before the first experiment, participants were presented with a
screen showing the entire image set used in the experiment. The
observation distance was ∼50 cm. A 3 cm diameter disk was
presented at the screen’s bottom. Participants had to click on the
disk using the mouse to start the experiment.

One image was presented per trial. For every image,
participants could choose among four possible actions. The
actions were represented by four gray, 3 cm diameter disks
presented in a horizontal line at the screen’s bottom as depicted
in Figure 1A. The four gray disks appeared at the same time
as the image. To avoid any possible confusion, each time the
mouse cursor hovered over a given disk, the disk turned from
gray to green. The stimulus remained on the screen until the
observer made his or her choice by clicking on one of the
disks. Immediately after the observer clicked on a disk, both
the image and the disks disappeared. The next image appeared
after a certain inter stimulus interval (ISI), i.e., after a blank
screen. For a given image, the same action always led to the same
next image. This is because the structure of the environment
space (Figures 1B,C), which defines all the image-action-image
transitions, was fixed at the beginning of each experimental
condition and remained unchanged thereafter. The sequence of
images (and disks) proceeded until the observer reached the goal-
state. The goal-state was a flashing “Yeah!” positioned centrally
on the screen for ∼1 s. We refer to the sequence of states
and actions leading up to and including the goal-state as an
episode. Participants were instructed ab initio about the nature
of the goal state, i.e., they knew what it looked like and that
its position within the environment space remained unchanged
across episodes. The participants’ task was to reach the goal-state
as frequently as possible within the allotted time (i.e., 15 min in
Experiments 1 and 3; in Experiments 2a and 2b the allotted time
varied depending on the ISI).

DATA ANALYSIS

Wemeasured performance with three metrics.

Measure I: Number of Completed Episodes
First, performance was quantified by counting the number of
episodes completed in the allotted time: the higher the number
of episodes, the better the performance (note that each episode is
composed of a given number of trials, i.e., the number of actions
chosen by the participants until the goal was reached). Different
participants have different reaction times and, thus, some could
complete more episodes purely by means of their faster trial-by-
trial reaction times and not necessarily because of faster learning.
To compensate for this unwanted source of variability, first, we
determined—in each condition—the minimum number of total
trials across all participants, i.e., by summing up for each observer
the number of trials over all episodes. For each observer, we used
only this minimum number of trials and examined how many
episodes they completed, i.e., we discarded all trials beyond the
minimum.

Measure II: Path Length
Second, to capture how learning evolved on an episode-by-
episode scale, we computed the path length, i.e., the number
of states visited before reaching the goal state in each episode.
We re-referenced the path length in each episode to the optimal
path length, i.e., we subtracted from the actual path length the
minimum number of images needed to reach the goal-state and
added one. Hence, a path length equal to one indicates that the
observer reached the goal-state by taking a shortest path. Since
participants’ data were linear in log-log coordinates, we took
the natural logarithm of the participants’ path lengths (PL) and
episode numbers (E) and fitted a linear function (which gave a
good approximation to the data):

ln(PL) = β × ln(E) + η (1)

where β reflects the learning rate so that lower β values indicate
better performance, i.e., participants learned faster to take shorter
paths (β is negative). η indicates the initial performance, so that
the higher η, the worse is the initial performance, i.e., the higher is
the path length in the first few episodes. We computed fits for the
individual participants and compared the averaged parameters,
β and η, between conditions in a repeated-measures ANOVA.
In all conditions, β or η were not significantly correlated with
the observer’s reaction times (results not shown). This indicates
that our path length measure is independent of reaction times
and allows us to use all of the existing data instead of cutting
off the number of completed trials at the group minimum as
in our Number of Completed Episodes analysis. Moreover, both
the initial performance and the learning rate are independent
measures from the number of episodes completed. Performance
can be very bad at the beginning, e.g., if it takes a long time
to find the goal during the first episode (high η), but then it
could improve very quickly, i.e., low β , or, to the contrary,
performance can be quite good from the beginning, i.e., low η,
but decrease more slowly toward the optimal path length, i.e.,
high β . Therefore, even if both cases could theoretically yield
an identical number of episodes completed, they would have
completely different path-length diagrams.
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Measure III: Exploratory Behavior
Third, we quantified how exploratory participants were by
plotting the number of different actions the participants tried
over the course of all episodes in each condition, averaged
across states and across participants. Higher numbers of actions
chosen per state indicate more exploratory behavior (four is the
maximum, i.e., all actions available in a given state have been
taken at least once, and zero is the minimum). A repeated-
measures ANOVA was conducted for each experiment with
average number of actions chosen per state as the dependent
variable and experimental condition as the independent variable.

Similarly to path length, the average number of actions chosen
per state was not significantly correlated with the observer’s
reaction times in any condition, indicating that the participants’
exploratory behavior was independent of reaction time.

MODELING

We fitted observer’s data individually to the standard
reinforcement learning models Sarsa(λ) and Dyna-Q.
In addition, we employed a simplified single-parameter
model, which we call the exploration/exploitation model,
which leverages the fact that the state-action transitions are
deterministic in our experiments. The model memorizes the
shortest deterministic paths to the goal from each visited state.
Furthermore, the model uses a probabilistic policy, which sets
the trade-off between participants’ exploration and exploitation
strategies in a slightly modified version of the classical epsilon-
greedy strategy (Sutton and Barto, 1998). At each state the
model chooses between exploring new paths that might lead to
the goal (with probability pexplore) or exploiting known paths
to the goal (with probability pexploit = 1-pexplore), as in the
epsilon-greedy strategy. However, in contrast to the epsilon-
greedy strategy, as soon as all actions have been tried at a given
state, pexplore is set to zero, and from then on, the model always
exploits. The advantage of exploiting known paths to the goal
in a deterministic environment (i.e., an environment in which
state-action transitions do not stochastically change) is that once
one has found the optimal path to the goal, there is no point in
exploring any further paths.

A comparison of the exploration/exploitation model with
Sarsa(λ) using an ε-greedy action selection rule is presented in
Figure 2 for the learning environment used in Experiment 1.

All models details and fitting procedures are provided in the
Appendix in Supplementary Material.

EXPERIMENTS

Experiment 1: 2D-Embeddable vs.
Non-embeddable Environments
Our first experiment was designed to test whether there are
performance differences between 2D-embeddable (Figure 1C)
and 2D-non-embeddable environments (Figure 1B). We
reasoned that an embeddable structure might facilitate the
building-up of an internal, explicit representation, i.e., a map of
the environment. If participants take advantage of this structure,

FIGURE 2 | Comparison of the exploration/exploitation model with the

Sarsa(λ) model for the learning environment used in Experiment 1. The

exploration/exploitation algorithm quickly converges on the optimal path to the

goal and continues exploiting it, while the Sarsa(λ) performs well initially, but

takes much longer to converge on the optimal path to the goal, even when

using an ε-greedy action selection rule. Here, each line represent averages

over 500 simulated experiments. Plots show the best possible performance

for each algorithm over the entire parameter space [three parameters for

Sarsa(λ) and one for the exploration/exploitation algorithm].

then a model-based reinforcement learning algorithm like
Dyna-Q should provide the best fit to the data.

Stimuli and Procedure
We used 11 images (plus the image “Yeah!” associated with
the goal-state) and we varied whether or not the environment
structure was embeddable. Participants were instructed (via
written instructions) to find the goal-state as often as possible
within 15 min. The assignment of images to state numbers was
randomized from subject to subject such that all subjects had
the same state-action transition matrix within each condition,
but each subject had different images representing the different
states. The starting states for each episode were limited to the
four images farthest away from the goal-state and were selected
randomly on each new episode. The position of the goal state was
fixed at the beginning of each condition through the state-action
transition matrix and did not change across episodes, i.e., it was
independent of the starting states. For each of the two structure
conditions, a new image set was employed.

In addition, participants were asked to “draw how to get from
one image to another, using circles and arrows” via pen and paper
at the end of each condition. Six participants participated in this
experiment. The order of the conditions was randomized across
participants.

RESULTS

Experiment 1A
Contrary to our expectations, we found little effects of the
environment’s 2D-embeddability on performance. With measure
I, there was no significant effect of embeddability on the
number of episodes completed [t(5) = 1.07, p = 0.334, 2-tailed;
Figure 3A]. No effect of embeddability was found even when

Frontiers in Psychology | www.frontiersin.org 4 March 2017 | Volume 8 | Article 312

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Tartaglia et al. Human Sequential Decision Making Paradigm

FIGURE 3 | Results for the environment structure. (A) Number of

episodes for the two conditions did not significantly differ. (B) Parameter fits for

the two conditions also did not significantly differ. (C) Number of actions visited

per state. Participants explored significantly more in embeddable than in

non-embeddable environments. Error bars denote ±1 SEM for six

participants. (D) Model comparisons (lower AICc values imply greater support

for the given model). The exploration vs. exploitation model provides the best

account of the data. *p < 0.05 for the indicated comparisons.

considering the entire data set, without cutting off trials at the
group minimum. Similarly, for measure II, there was no effect of
embeddability on the log-log fit parameters [β: t(5) = −0.09, p =
0.928, 2-tailed; η: t(5) =−0.21, p= 0.843, 2-tailed; Figure 3B].

Interestingly, the embeddable environment leads to more
exploration [t(5) = −2.84, p = 0.036, 2-tailed, Cohen’s d =

1.158—large effect; Figure 3C]. However, this does not lead, as
mentioned, to superior performance for either the number of
episodes (measure I), or the path length (measure II). Thus,
subjects do not retain the extra information they gain from
exploringmore in the embeddable condition to find shorter paths
to the goal. This result is surprising since a higher exploration
rate in a more easily remembered condition should lead to better
performance, particularly, when map formation is involved,
however, this seems not to be the case, suggesting that subjects
forget some of the states they explore.

This conclusion is also supported by the participants’
drawings. After the experiment proper, participants were asked
to reconstruct as much of the state-action decision space as
they could, using a pen and paper. Examination of the sketches
indicated that participants primarily remembered isolated
chunks of the environments rather than remembering its full
structure, even in the easy embeddable condition (see Figure 4

for a typical example). These results are further indication that
the environment’s structure has little effect. It may well be that
participants perform the task with minimal knowledge about the
environment and make their decisions based solely on the Q-
values at each state, i.e., without making predictions beyond the

FIGURE 4 | Example drawing for one observer for the structure

experiment (non-embeddable condition). In this typical example, the

observer remembers some paths to the goal, but not the full structure of the

environment (compare with Figure 1B).

current and subsequent state. Future research needs to address
this question.

Next, we fitted model parameters to the data for the
Sarsa(λ), Dyna-Q, and our Exploration/Exploitation model. The
Exploration/Exploitation model best captured the participants’
data (Figure 3D). This result holds true for each individual
experimental condition. For the parameter fits to the data, no
significant differences were found between structure conditions
for any of the models (see Appendix A.4 in Supplementary
Material, Tables 1–3 for the parameter values and Table 4 for
comparative statistics).

For this experiment we also tried to fit the data to the
Successor representation (SR) model (Dayan, 1993; Gershman
et al., 2012; Momennejad et al., 2016) and to a hybrid mixture
(HM) ofmodel-free andmodel- based algorithms (Gläscher et al.,
2010), to check whether our participants’ learning strategy rather
relies on a combination of the two algorithms.

The SR model lies in between pure model-free and pure
model-based RL model; it exploits the knowledge that states
can have similar successors by encoding the expected future
visitations of each state along given trajectories (Appendix
A.7 in Supplementary Material). The results of the SR model
fits revealed significant differences between conditions in the
learning rate (α) and eligibility trace (λ), but not in the
exploration rate (τ). For both significant cases, the non-
embeddable condition had higher parameter values than the
embeddable condition (see Table 17 in Supplementary Material).
The corresponding AICc values for this model, however, were
somewhere between those for Dyna-Q and Sarsa(λ), indicating
that this model does not explain the data as well as the
Explore/Exploit model, but does a better job than Sarsa(λ) (Table
18 in SupplementaryMaterial). Thus the results from this model’s
parameter fits remains somewhat equivocal.

We also fit a model that takes a weighted average between
Sarsa(λ) and Dyna-Q in making action selections (i.e., a hybrid
model). Here, the model has one extra parameter (w) relative to
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Sarsa(λ), which weights between Sarsa(λ) and Dyna-Q decisions
(Appendix A.8 in Supplementary Material). Model fits for
this model yielded no significant differences as a function
of embeddability condition (see Table 19 in Supplementary
Material). Furthermore, the corresponding AICc values for this
model were much worse than Sarsa(λ) because of the extra
parameter. We thus, exclude this model in the remaining
experiments.

Experiment 1B
To ensure that the null result in Experiment 1a was not due to
insufficient training, we replicated Experiment 1a with a sample
of 9 participants, who underwent a training session of 15 min in
a different, non-embeddable environment, before the experiment
proper. The procedure was otherwise identical to the procedure
of Experiment 1a.

Results revealed no effect of embeddability on the number of
episodes completed [t(8) = −0.22, p = 0.830, 2-tailed], no effect
of embeddability on the slopes of the log-log fit parameters [β:
t(8) = 0.41, p= 0.694, 2-tailed; η: t(8) = 0.90, p= 0.396, 2-tailed],
no effect of embeddability on the number of actions visited per
state [t(8) = −0.33, p = 0.753, 2-tailed]. Again, however, there
was a significant effect of model type on AICc [F(2, 16) = 24.21, p
= 1.4 × 10−5], such that the Dyna-Q and the Explore/Exploit
models had significantly better AICc values than the Sarsa(λ)
model (both p < 0.05), but the Dyna-Q and Explore/Exploit
models did not significantly differ from each other (p > 0.05).
All other comparisons failed to reach statistical significance.

We found no effect of embeddability on any of our behavioral
measures when pooling together data from Experiments
1a and 1b.

Experiment 2A: ISI
Many reinforcement learning models keep track of the states that
the agent visited in the past via the eligibility trace, whose length
is controlled by the parameter λ. When λ = 0, the value of a
given state is updated only when the agent visits it, i.e., there is
no memory of previously visited states; when 0 < λ < 1 the value
of a given state is updated—even if only to a minor extent—if the
agent has visited it in the past. The state’s trace gradually decays
with time since it was last visited. Eventually, if the state has not
been visited for a while, its value will not be updated. When λ =

1, the model has perfect memory: at each time step all previously
visited states are updated and their traces do not decay with time
(Sutton and Barto, 1998).

One unknown in this process is whether the eligibility trace
decays with each trial or with absolute time, for example, related
to a decay of dopamine levels or other molecular mechanisms
(Fosnaugh et al., 1995; Plath et al., 2006). In models, the two
are confounded. To investigate this question, we varied the ISI
between image states in Experiment 2. We reasoned that if a
long ISI negatively affected performance this would provide an
indication that the eligibility trace decays with absolute time. If
there were no effect on performance, then the eligibility trace
would rather decay with the number of states.

Stimuli and Procedure
The environment consisted of 11 different images. The structure
of the environment was non-embeddable (as in Figure 1B). Three
out of ten images led directly to the goal-state. The initial
image (at the beginning of each episode) was randomly chosen
among all states which did not lead directly to the goal-state. We
measured performance in three different conditions in which we
provided ISI’s of 0.5, 2, and 8 s. Different image sets were used
in the three ISI conditions. Each ISI condition had a different
total duration in order to have, on average, the same number of
episodes in each of them. The duration of each condition was
computed from the previous experiment and from a pilot. The
long ISI condition lasted 40min; the medium ISI condition lasted
12 min; the short ISI condition lasted 8 min, so that participants
could complete an average of 35 episodes per condition (as
estimated through pilot experiments). Each condition was run
just once. Since the long ISI condition was very long, we divided
it into two runs of 20 min each, one after the other with a
break in between. We counterbalanced the order of the three ISI
conditions across participants. Participants were instructed (via
written instructions) to reach the goal state as often as possible.
Eleven participants participated in the experiment.

Results
We found no significant effect of ISI on the number of episodes
completed [F(2, 30) = 0.33, p = 0.722; Figure 5A], on the
asymptotic performance, or on the learning rate [β: F(2, 30) =
0.64, p = 0.535; η: F(2, 30) = 0.33, p = 0.722; Figure 5B]. There
was also no significant effect of ISI on exploratory behavior
[F(2, 30) = 0.48, p= 0.6245; Figure 5C].

Hence, our results support the notion that the eligibility trace
decays with the number of visited states rather than with absolute
time. One interpretation is that, for example, when playing chess
what matters is the number of moves and not so much howmuch
time it took to make them.

We found a significant effect of ISI on the λ parameter
of the Sarsa(λ) model, such that the average of the short
and medium ISI conditions were significantly different from
the long ISI condition [F(1, 20) = 6.7222, p = 0.01740]. We
found no other effects of ISI on any of the remaining Sarsa(λ),
Dyna-Q, or the Exploration/Exploitation parameter fits (Tables
A.7, A.8, A.9, and A.10 in Supplementary Material), indicating
that the same parameter setting in each model well-described
subject performance in each condition. We again found a
significant effect of Model on AICc [F(2, 20) = 71.98, p =

7.29 × 10−10] such that that the Dyna-Q and “exploration
vs. exploitation” models best captured the whole data set for
this experiment [Sarsa(λ) vs. Dyna-Q: F(2, 20) = 49.53, p =

1.79 × 10−8; Sarsa(λ) vs. Explore/Exploit: F(2, 20) = 58.10, p
= 4.66 × 10−9; Dyna-Q vs. Explore/Exploit: F(2, 20) = 0.34,
p = 0.715; Figure 5D]. This result holds for all experimental
conditions.

As a final analysis, we split the episodes into first and last
quarters and re-fit the model parameters within each quarter to
see if there were any changes from the beginning to the end of
the experiment (see Appendix A.6 in Supplementary Material
for detailed parameter fits). Results revealed no significant main
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FIGURE 5 | ISI. (A) There was no clear difference in the mean number of

episodes completed in the 0.5, 2, and 8 s ISI conditions. (B) Parameter fits

show a similar outcome of no effect over the three ISIs. (C) The mean number

of actions visited per state is also not significantly different for the three ISIs.

Error bars denote ±1 SEM for 11 participants. (D) Model comparison for the

ISI experiment. Here, the Dyna-Q and “exploration vs. exploitation” models

provide the best account of the data. *p < 0.05 for the indicated comparisons.

effects or interactions with ISI for the λ or τ parameters of
the Sarsa(λ) model (all p > 0.05). There were significant main
effects of ISI and Quarter on α [ISI: F(2, 38) = 9.31, p = 5.11
× 10−4, Quarter: F(1, 19) = 8.40, p = 0.009], but no significant
interaction [F(2, 38) = 0.44, p = 0.646]. α-values were higher
for the 2 s ISI than for the 0.5 or 8 s ISI (both p < 0.05), but
the 0.5 s ISI was not significantly different from the 8 s ISI (p
> 0.05), and the results from the last quarter had higher α-
values than the first quarter at all ISI’s (all p < 0.05). This
finding was not replicated in the Dyna-Q model, where no
significant main effects or interactions of Quarter or ISI were
found for the α-parameter (all p > 0.05). For the τ-parameter,
however, there was a significant main effect of quarter [F(1, 19)
= 12.25, p = 0.002] such that the last quarter had lower τ-
values than the first quarter. There was no main effect of ISI
[F(2, 38) = 0.3, p = 0.74], and no ISI × Quarter interactions
[F(2, 38) = 0.27, p = 0.77]. This suggests that exploration rates
decrease as learning progresses. This sentiment was echoed by
the Exploration/Exploitation model parameter fits, where for the
pExplore parameter, there was a significant main effect of Quarter
[F(1, 19) = 25.27, p = 7.49 × 10−5], but no main effect of ISI
and no ISI×Quarter interaction (both p > 0.05). The parameter
values for the first quarter were higher than for the last quarter
(p < 0.05).

The effects of time on the α-, τ-, and pExplore-parameters
suggest that as time passes, people learn faster paths to the goal
and explore less.

EXPERIMENT 2B: ISI

In Experiment 2a, we needed to vary the allotted time
proportionally to the ISIs in order to properly compare the
number of episodes completed. Here, we avoided this procedure
by using a fixed number of episodes with no time pressure. We
determined the total number of trials over all episodes. Good
learners completed the task using fewer trials than poor learners.

Stimuli and Procedure
Twelve new subjects participated in this experiment and were
each given as much time as they needed to complete 50 episodes.
We used ISI’s of 0.5, 2, and 6 s. Otherwise the conditions were
identical to Experiment 2a.

Results
There was no significant effect of ISI on the number of trials
required to complete the 50 episodes [F(2, 33) = 0.15, p = 0.859;
Figure 6].

These results corroborate our previous findings, and suggest
that the previous lack of an effect of ISI on the number of episodes
completed is not attributable solely to differences in the time
provided to complete the task for a given ISI condition.

EXPERIMENT 3: MONETARY INCENTIVE

Given the crucial nature of reward in reinforcement learning
models, we investigated whether monetary incentives influence
learning. We tested two groups of participants. We kept the
total monetary reward fixed for both groups while manipulating
whether or not reward delivery was performance-contingent
between the groups—one group was paid based on their
performance while, in the other group, participants’ payments
were matched to those of the participants in the performance-
contingent reward group.

Stimuli and Procedure
The environment consisted of 11 different images and was non-
embeddable (Figure 1B). The goal-state was reachable from four
states. The initial images were randomly selected from among
those farthest away from the goal-state. The first group of
participants (n = 15; the “flexible reward” group) was instructed
(via written instructions) to reach the goal-state as often as
possible. They were informed that each time they reached the
goal-state, they would receive 0.25 Swiss Francs. The second
group of participants (n = 15; the “fixed reward” group)
performed the same experiment but received a fixed reward at
the end of the experiment, independent of how many times they
reached the goal-state. The amount of reward provided to each
individual in the fixed reward group was matched to the reward
provided to a corresponding individual from the first group.

Results
We found no effects of the monetary incentive on any of our
measures, neither on the number of episodes [t(28) = 0.73,
p = 0.471, Cohen’s d = 0.27; Figure 7A], nor on asymptotic
performance, nor on the initial learning rate [β: t(28) = −0.23,
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FIGURE 6 | Experiment 2B. Total trials completed over all episodes as a

function of ISI. Error bars represent ±1 SEM. There are no significant

differences between the different ISI conditions. Since the other analyses

presented in Figure 5 are robust to differences in the amount of time provided

to perform the task, we omit them here.

p= 0.817, Cohen’s d= 0.09, 2-tailed; η: t(28) =−0.03, p= 0.976,
Cohen’s d = 0.01, 2-tailed. Figure 7B], nor on the exploratory
behavior [Figure 7C: t(28) = −0.06, p = 0.952, Cohen’s d =

0.02, 2-tailed]. We also checked out the “number of episodes
completed” measure to see if any effects emerged when we
included all trials, instead of cutting off each subject’s data at
the group minimum. This analysis also revealed no effect of
monetary incentive.

We found significant effects of incentive on the α and λ

parameters of the Sarsa(λ) model [α: t(28) = 2.36, p = 0.03,
Cohen’s d= 0.86, λ: t(28) =−2.03, p= 0.05, Cohen’s d= 0.74]. α
was higher in the flexible-reward condition, while λwas higher in
the fixed reward condition. Otherwise, there were no significant
effects of incentive on any of the remaining parameters for any
of the models (all p > 0.05; Appendix A.4 in Supplementary
Material: parameters are provided in Tables 11–13, statistical
comparisons are provided in Tables 14–16). We found that,
in both groups, the Dyna-Q and Exploration vs. Exploitation
models provided significantly better accounts of the data than the
Sarsa(λ) model [Figure 7D; Model: F(2, 56) = 176.18, p = 6.92
× 10−25, partial-eta2 = 0.863; Incentive: F(1, 28) = 0.497, p =

0.495, partial-eta2 = 0.02; Model × Incentive: F(2, 56) = 0.081,
p = 0.922, partial-eta2 = 0.003; Sarsa(λ) vs. Dyna-Q: p = 2.95 ×
10−14; Sarsa(λ) vs. Explore/Exploit: p = 3.32 × 10−14; Dyna-Q
vs. Explore/Exploit: p= 0.144].

DISCUSSION

Classic RL models are distinguished by (1) whether or not
they build up a map of the environment (i.e., “model-based”
vs. “model-free” learning), (2) the use (or not) of an eligibility

FIGURE 7 | Monetary reward. (A) There was no difference in the mean

number of episodes completed between the fixed- and the flexible-reward

groups. (B) Parameter fits for each of the reward conditions showed no

significant difference between the two groups. (C) The mean number of

actions visited per state was not significantly different between the fixed and

flexible groups. Error bars denote ±1 SEM for 15 participants. (D) Models

comparison: here, the Dyna-Q and the “Exploration vs. Exploitation” models

provide significantly better accounts of the data than the Sarsa(λ) model.

*p < 0.05 for the indicated comparisons.

trace, and (3) the primacy of external rewards. We found very
little evidence that these elements play a pivotal role for human
learning.

First, human participants do not seem to build up a complete
map of the environment, as indicated by the line drawings
showing that participants only remember short path segments
leading to the goal and not full maps (Figure 4). Furthermore,
participants seem to be relatively unaffected by whether or not the
state-action connectivity matrix was 2D-embeddable. This holds
true at least for the learning periods we used. More extensive
training may potentially lead to more elaborate map formation,
however we did not observe exhaustive map formation even with
participants who completed as many as 82 episodes. Moreover,
we did not find any effect of the 2D-embeddable structure in our
control experiment (Experiment 1b) in which a different group
of participants (n= 9) underwent a longer training session.

In embeddable environments, it is possible to infer the optimal
action even for states that were never visited. For example, in
Figure 1C one can infer that taking action 2 from state 6 will lead
to state 7, where one should subsequently take action 2 to get to
the goal state. Our findings, however, suggest that humans do not
seem to rely on this information to find the shortest path to the
reward.

Second, we found that learning was unaffected by ISI, lending
support to the hypothesis that the eligibility trace is updated
as a function of the number of trials, or learning events, and
not as a function of a fixed time interval. This suggests that
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the human reinforcement learning system is not limited by
a single fixed-duration neurotransmitter-based processes, such
as transient dopamine concentrations, and instead, is robust
enough to integrate information over multiple time scales.

Third, external reward seems to play only a minor role
since we found no difference in learning performance regardless
of whether or not participants received performance-based
monetary compensation. However, it might well be that humans
receive internal rewards for learning task-relevant skills that
are independent of the monetary rewards they receive. This
would explain, for example, why people play video games that
provide no monetary compensation. It is worth mentioning
that participants enjoyed our paradigm and, possibly, found
reaching the goal rewarding enough to outweigh the added
incentive of making money. However, other studies, using
different experimental paradigms, have reported the opposite
result. For example, it has been shown that when offered
monetary compensation, participants performed better in a
delayed memory task, which has led to the hypothesis
that monetary incentives promote memory formations via
hippocampal dopamine release (Adcock et al., 2006).

Model Results and Implications
In most experiments, we found no significant behavioral effects
and concomitantly no significant parameter difference in our
model fits.

For example, with an embeddable environment structure, one
might expect that subjects are able to exploit regular structure
to retain more information about the environment. In the
model, any additional retained information about past states
manifests as an increase in the λ parameter of the Sarsa(λ)
algorithm. Our model fits revealed that this parameter was
not significantly higher for the embeddable condition than
for the non-embeddable condition of Experiment 1. Likewise,
participants’ performance in the two conditions was comparable.

However, we found significantly different parameter fits when
comparing short vs. long ISIs and fixed vs. flexible reward
conditions. These differences may be explained by the fine-
grained nature of the model parameter fits, which take into
account trial-by-trial variability. Our behavioral measures, like
the number of completed episodes, are coarser in scale, and
pool together information from all trials, thereby losing some
of the details about how learning progressed throughout the
experiment. The model parameter fits reflect underlying features
of how subjects learn and the differences suggest that the
eligibility trace (parameterized by λ in our models) varies as a
function of ISI, taking into account the most information for
short and medium ISI’s and falling off with higher ISI’s. For the
reward experiment, the higher α and lower λ parameters for
the flexible condition indicate that subjects integrate information
over fewer past states, but weight this information more heavily
than in the fixed reward condition—possibly indicating an
urgency to find a good solution as fast as possible so as to
maximize gains within the 15 min allotted for the experiment.

In terms of which model best describes human learning
for our paradigm, we found that the exploration/exploitation
model had the best (i.e., lowest) Akaike Information Criterion

scores in all experiments. This is likely due to our use of a task
with deterministic state-action transitions. Here, participants
can simply memorize which actions lead to which states. With
stochastic state-action transitions, however, the probability of
transferring to each state must be learned for each state-
action pair. Classic reinforcement learning models such as
Sarsa(λ) and Dyna-Q integrate information over many trials to
estimate the value of each state and action or the probabilities
of the state-action transitions within the environment. Our
Exploration/Exploitation algorithm, on the other hand, knows
a-priori that our state-action transitions are deterministic and
needs only to memorize which actions lead to which states. This
type of learning is much faster (Figure 2) and, interestingly,
humans seem to be able to capitalize on this fact, thereby
matching the algorithm’s performance on all of our tasks.

Relation to Other Experimental Paradigms
There are a plethora of one-stage decision making experiments
where choosing between two or more options entails an
immediate outcome (Hanes and Schall, 1996; Shadlen and
Newsome, 1996, 2001; Schall and Thompson, 1999; Gold and
Shadlen, 2000; Sugrue et al., 2004; Daw et al., 2006; Dayan
and Daw, 2008; Wittmann et al., 2008; Ito and Doya, 2009;
Krajbich et al., 2010). Even though these experiments can capture
basic decision-making situations, it remains an open question
whether sequential decision making, which requires multiple
decision stages to attain the final outcome, can be modeled
as a linear concatenation of such basic processes. Very recent
research has addressed this issue using a two-stage decision
making paradigm, in which participants had to make two
binary choices before receiving feedback about rewards (Solway
and Botvinick, 2015). There the authors show that standard
decision-making models, in which evidence about task-relevant
variables is accrued in time until a choice is made, can be
extended at least to two-stage decision-making problems. The
same binary decision tree, but with stochastic state transitions,
has been used by Gläscher et al. (2010) to examine behavioral
learning performance and simultaneously track correlated BOLD
activations. Our paradigm, has been leveraged to probe learning
effects over a much larger and more complex state space, in
which, contrary to the previous studies, paths in the decision
trees are not necessarily disjointed, i.e., the same state may
be visited through more than one path to the goal. These
features not only bring our paradigm closer to real-life situations,
but also allow examining the effects of the state space’s layout
on learning performance (e.g., in our embeddable vs. non-
embeddable experiments). Furthermore, we showed how our
paradigm could flexibly be adapted to answer questions about
stimulus timing, and reward.

Outlook
Here we have shown the versatility and flexibility of our
new behavioral paradigm for testing human reinforcement
learning. Several interesting questions have been answered,
such as the influence of 2D-embeddability on learning, the
effect of stimulus timing on learning, and the influence of
monetary rewards on learning. We believe that these results
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are just a starting point for the systematic investigation of
sequential decision-making beyond two states. For example,
it would be interesting to investigate which environments
lead to faster learning than others based on different graph
theoretical measures. Studies like this may be of crucial
interest for how to organize decision making in human
navigation, sports, medical surgery, or work processes, where
several actions need to be executed in order to complete a
task.
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