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Decaying homogeneous isotropic turbulence with an imposed mean scalar gradient is in-
vestigated numerically, thanks to a specific eddy-damped quasi-normal Markovian (EDQNM)
closure developed recently for passive scalar mixing in homogeneous anisotropic turbulence
[Briard et al., J. Fluid Mech. 799 (2016)] (BGC). The present modelling is compared suc-
cessfully with recent direct numerical simulations and other models, for both very large and
small Prandtl numbers. First, scalings for the cospectrum and scalar variance spectrum in
the inertial range are recovered analytically and numerically. Then, at large Reynolds num-
bers, the decay and growth laws for the scalar variance and mixed velocity-scalar correlations
respectively, derived in (BGC), are shown numerically to remain valid when the Prandtl
number strongly departs from unity. Afterwards, the normalized correlation ρwθ is found to
decrease in magnitude at a fixed Reynolds number when Pr either increases or decreases, in
agreement with earlier predictions. Finally, the small scales return to isotropy of the scalar
second-order moments is found to depend not only on the Reynolds number, but also on the
Prandtl number.
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1. Introduction

The mixing of a passive scalar field in homogeneous turbulence has been the
subject of many theoretical, numerical and experimental works. Despite this
attention, there are still some open questions, as reviewed by Warhaft [1], notably
about local isotropy of the scalar field. The return to isotropy of scalar small
scales has been greatly investigated and it appears that even at moderately high
Reynolds numbers, anisotropy seems to persist at small scales in shear flows
[2]. Homogeneous shear flows being rather complex, it is convenient to study
simpler frameworks to investigate the distribution of anisotropy at the level of
the passive scalar field: decaying homogeneous isotropic turbulence with a mean
scalar gradient (HITSG). Even in such a configuration where the velocity field is
isotropic, persistent small scales anisotropy is often observed at the level of the
third-order moments [3–5], at least at the moderate Reynolds numbers considered.
Nevertheless, this is not incompatible with second-order moments being locally
isotropic in HITSG [6], in agreement with a recent numerical work performed at
very large Reynolds numbers [7]. It is worth noting that local isotropy was also
recovered experimentally in HITSG for the scalar third-order moments [8]. The
diversity of the results regarding the return to isotropy of the scalar field in HITSG
illustrates that such a framework still requires some work. Since most of the avail-

∗Corresponding author. Email: antoine.briard@upmc.fr

ISSN: (online only)
c© 2017 Taylor & Francis
DOI:
http://www.tandfonline.com



March 29, 2017 Journal of Turbulence JOT˙Main˙BG

2 Briard and Gomez

able research in HITSG was performed with a Prandtl number close to unity, where
Pr is the ratio of kinematic viscosity ν to scalar diffusivity a, the emphasis is con-
sequently put here on effects of Prandtl numbers very different from unity, at large
Reynolds numbers, on spectral scalings and dynamics of scalar one-point statistics.

As stated before, HITSG received some attention in the past decades both ex-
perimentally and numerically [4, 8–14]. This configuration is of particular interest
in direct numerical simulation (DNS) since it is often used as a way to obtain a
stationary scalar field without an artificial forcing term. Indeed, in such a config-
uration, the vertical mean scalar gradient ∂Θ/∂x3 produces scalar fluctuations so
that the scalar variance KT =< θ2 >, where θ and Θ are respectively the fluctuat-
ing and mean parts of the scalar field, can increase with time, or at least balance
diffusion. Whereas in HITSG, the kinetic energy K =< uiui > /2 decreases with
time, where ui is any component of the fluctuating velocity field. Such a framework
presents also the advantage that the velocity field remains completely isotropic, so
that all anisotropic effects addressed are exclusively the results of the mean scalar
gradient. The first effect of anisotropy, created through the mean scalar gradient, is
the appearance of the mixed-correlation < u3θ >, or cospectrum in spectral space,
which is of practical importance for the development and improvement of Reynolds
Average Navier Stokes (RANS) models and Large Eddy Simulations (LES) sub-
grid models: indeed, the scalar flux is the unclosed term of the mean scalar field
evolution equation. Since < u3θ > acts as a production term for < θ2 >, it is the
cause of the scalar field departure from isotropy.
Most of the papers dealing with a Prandtl number different from unity in HITSG

were done at moderate Reynolds numbers, and focused on its effects on high-
order scalar statistics, and on the cospectrum F(k, t) and scalar variance spectrum
ET (k, t) spectral scalings as well [15–17]. The aim of the present study is to ex-
plore asymptotic regimes of HITSG, at very large Reynolds numbers and either
very high or small Prandtl numbers, in order to predict the growth and decay
rates of the scalar variance < θ2 > and mixed-correlation < u3θ > of highly and
weakly diffusive scalars, which is a new feature, and to verify the proposed spec-
tral scalings as well. This is of theoretical interest since these regimes cannot be
reached experimentally nor in DNS yet. In addition, this permits to analyze the
combined effects of anisotropy that mainly affect large scales, and Pr which domi-
nantly modifies small scales of the spectra. Furthermore, it has been shown recently
numerically, thanks to a classical eddy damped quasi normal Markovian (EDQNM)
closure, that the Prandtl number did not affect the theoretical decay exponent of
the scalar variance in homogeneous isotropic turbulence (HIT) [18]. Consequently,
a natural extension of this work is to address effects of Prandtl numbers on the
time evolution of < θ2 > and < u3θ > in an anisotropic framework such as HITSG
at large Reynolds numbers.
In order to do so, a spectral anisotropic closure was recently developed for passive

scalar dynamics, in Briard, Gomez and Cambon [7], referred to as (BGC). This
closure, called anisotropic EDQNM modelling, is dedicated to the investigation
of passive scalar mixing at large Reynolds numbers in homogeneous anisotropic
turbulence (HAT), and is valid in the presence of both mean velocity and scalar
gradients. The procedure of the modelling is twofold: first, the exact evolution
equations of the two-point second-order spectral correlations are closed by a clas-
sical EDQNM procedure, as intensively detailed in [7, 18–20]. Then, expansions in
spherical harmonics of these two-point correlations are performed, and truncated
at the second order, so that anisotropy can be investigated thanks to spherically-
averaged tensors which depend only on the modulus k of the wavevector k. The
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validation of these assumptions is done by comparisons to multiple cases with
shear, distortion, mean scalar gradients, various intensities of mean gradients, and
multiple Reynolds numbers in three papers [7, 20, 21]. However, in (BGC), only
the case Pr = 1 was addressed: therein, theoretical decay and growth exponents
for < u3θ > and < θ2 > respectively were derived for HITSG, and assessed nu-
merically. Therefore, the present work is an application of the anisotropic EDQNM
modelling when the Prandtl number strongly departs from unity, basically from
10−5 to 104. Investigating an anisotropic configuration such as HITSG at large
Reynolds numbers, with either very large or small Prandtl numbers, with an ap-
proach previously validated in more complex configurations such as shear-driven
flows, is an important contribution in terms of modelling.
The paper is structured as follows. In section 2, the main elements of (BGC) are

recalled, notably the definitions and final evolution equations within our anisotropic
EDQNM modelling framework. Initial conditions and the numerical setup are pro-
vided as well. Then, in section 3, the theoretical spectral scalings of the cospectrum
and scalar variance spectrum are derived in HITSG for Pr ≪ 1 and Pr ≫ 1, and
four comparisons are performed to assess the relevance of the model when the
Prandtl number strongly departs from unity: this part serves as a new and addi-
tional validation of the present anisotropic modelling. The new numerical results
of the present study are gathered in section 4. Effects of both very large and very
small Prandtl numbers on the time evolution of < θ2 > and < u3θ > are firstly in-
vestigated, similarly to what was performed in HIT [18]: results are compared with
the theoretical predictions of (BGC). Afterwards, the normalized mixed correlation
ρwθ is studied as a function of the Reynolds and Prandtl numbers, and compared
to results obtained in DNS. Furthermore, the effects of varying the Prandtl num-
ber on the small scales return to isotropy of the scalar second-order moments are
analyzed. These different features are finally discussed in the concluding section 5.

2. Anisotropic EDQNM modelling for homogeneous turbulence

In this section, the main elements of Briard, Gomez and Cambon [7] (BGC) are
reported to introduce the modelling of the passive scalar field and its flux in homo-
geneous isotropic turbulence with a mean scalar gradient (HITSG): definitions and
evolution equations are recalled. In this configuration, the velocity field is decaying
in an isotropic fashion and the mean scalar gradient produces scalar fluctuations
so that the scalar variance < θ2 > increases with time, with exponents proposed
and assessed in [7].

2.1. Modelling of the passive scalar and cospectrum

In this first part, the modelling of the passive scalar field is addressed. The three
two-point second-order spectral correlations of interest for the present study are the
following ones: the spectral Reynolds tensor R̂ij - or velocity-velocity correlation
-, the scalar-scalar correlation ET , and the scalar flux Fi, or mixed velocity-scalar
correlation. Their respective definitions are then

R̂ij(k, t)δ(k − p) =< û∗i (p, t)ûj(k, t) >, (1)

ET (k, t)δ(k − p) =< θ̂∗(p, t)θ̂(k, t) >, (2)

Fi(k, t)δ(k − p) =< û∗i (p, t)θ̂(k, t) >, (3)
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where (̂) denotes the Fourier transform, ûi and θ̂ are respectively the spectral
fluctuating velocity and scalar fields, and k and p are wavevectors. The exact
evolution equations of R̂ij , ET , and Fi are

(
∂

∂t
+ 2νk2

)

R̂ij(k, t) = TNL
ij (k, t), (4)

(
∂

∂t
+ 2ak2

)

ET (k, t) = TT,NL(k, t)− 2λjFj(k, t), (5)

(
∂

∂t
+ (ν + a)k2

)

Fi(k, t) = TF,NL
i (k, t)− λjR̂ij(k, t), (6)

where ν and a are the kinematic viscosity and the scalar diffusivity, λj = ∂Θ/∂xj
is the mean scalar gradient along xj , and TNL

ij , TT,NL and TF,NL
i are respectively

the kinetic, scalar, and scalar flux non-linear transfers.
In the HITSG framework, without mean-velocity gradients and helicity, the spec-

tral Reynolds tensor is isotropic and simply reads

R̂ij(k, t) = E0(k, t)Pij(k), E0(k, t) =
1

2
R̂ii(k, t), (7)

where Pij = (δij −αiαj), αj = kj/k, and E0 is the isotropic kinetic energy density.
The spherical average on a sphere Sk of radius k of these two-point correlations,
which depend on the wavevector k, yields the classical spectra that only depend
on the wavenumber k. In particular, one obtains the kinetic energy spectrum E,
the scalar variance spectrum ET , and the cospectrum F , according to

E(k, t) =

∫

Sk

E0(k, t)d2k, ET (k, t) =

∫

Sk

ET (k, t)d2k, (8)

F(k, t) =

∫

Sk

F3(k, t)d
2k. (9)

From these spectra, one can define the one-point statistics, or integrated quantities,
such as the kinetic energyK(t), the scalar varianceKT (t), the mixed velocity-scalar
correlation KF (t), and their respective dissipation rates ǫ(t), ǫT (t) and ǫF (t):

K(t) =
1

2
< uiui >=

∫ ∞

0
E(k, t)dk, ǫ(t) = 2ν

∫ ∞

0
k2E(k, t)dk, (10)

KT (t) =< θ2 >=

∫ ∞

0
ET (k, t)dk, ǫT (t) = 2a

∫ ∞

0
k2ET (k, t)dk, (11)

KF (t) =< u3θ >=

∫ ∞

0
F(k, t)dk, ǫF (t) = (ν + a)

∫ ∞

0
k2F(k, t)dk. (12)

The departure from isotropy at the level of the scalar field is measured thanks to

the deviatoric and symmetric tensor H
(T )
ij defined as

2ET (k, t)H
(T )
ij (k, t) =

∫

Sk

(

ET (k, t)− ET (k, t)

4πk2

)

Pij(k)d
2k. (13)

Notably, H
(T )
ij reflects directional anisotropy at the level of the scalar field, i.e. the
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difference between the energy contained along k and the average energy. Since θ̂ is
a scalar field, there is no polarization anisotropy (anisotropy between components).
This decomposition comes from an expansion of ET in spherical harmonics trun-
cated at the first non-trivial order (the second one) as detailed in [7], and consistent
with the expansion of the energy density E used for shear-driven flows [20, 21]. It
is worth noting that such a decomposition is exact in HITSG [9].
Finally, the decomposition of the scalar flux reads

Fi(k, t) =
3

2
EF
j (k, t)Pij(k), (14)

as detailed in (BGC): the vector EF
j is real. For the axisymmetric configuration

considered here in HITSG, only its third component along the mean scalar gradi-
ent is non-zero, so that EF

3 = F/(4πk2). Analogous expressions can be found for
instance in [9, 12].
In the next part, the final evolution equations, arising from the present

anisotropic EDQNM modelling for the passive scalar and its flux in HITSG, are
given. A classical EDQNM procedure, as detailed in [7, 18] is used to close the non-
linear transfers of the exact evolution equations (4), (5), and (6), and the previous
decompositions for the two-point correlations are used to model anisotropy (at the
scalar level) in both the non-linear and linear transfers.

2.2. Final evolution equations and numerical setup

In this section, a classical EDQNM procedure is used to close the non-linear trans-
fers TNL

ij , TT,NL and TF,NL
i : all the details are given in (BGC) and the same con-

stants for the kinetic and scalar eddy-damping terms are used here for consistency.
In the end, the dynamics of HITSG is given by only four independent equations

because of axisymmetry, which notably implies that H
(T )
11 = H

(T )
22 = −H

(T )
33 /2:

(
∂

∂t
+ 2νk2

)

E(k, t) = SNL(iso)(k, t), (15)

(
∂

∂t
+ 2ak2

)

ET (k, t) = ST,NL(iso)(k, t) + 2ΛF(k, t), (16)

(
∂

∂t
+ 2ak2

)

ET (k, t)H
(T )
33 (k, t) = S

T,NL(dir)
33 (k, t) +

2

15
ΛF(k, t), (17)

(
∂

∂t
+ (a+ ν)k2

)

F(k, t) = SF,NL
3 (k, t) +

2

3
ΛE(k, t). (18)

The first rhs terms like SNL are the spherically-averaged non-linear transfers. In

particular, S
T,NL(dir)
33 reflects the directional anisotropy for the passive scalar field.

The second rhs terms are the linear production terms, where the mean scalar
gradient intensity is Λ = −λ3 to ensure that the cospectrum F is positive.
Integration over the whole wavenumber space of the previous spectral equations

yields ∂tK = −ǫ for the kinetic energy since the velocity field is isotropic. And for
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the scalar variance and scalar flux, one has

∂KT

∂t
= 2ΛKF (t)− ǫT (t), (19)

∂KF
∂t

=
2

3
ΛK(t)− ǫF (t) +< p

∂θ

∂x3
>

︸ ︷︷ ︸

ΠF

. (20)

In the last rhs term of (20), p is the fluctuating pressure, and the scalar-pressure

correlation can be obtained by integrating SF,NL
3 over the whole wavenumber space:

this term ΠF leads the return to isotropy (i.e. destruction) of the scalar flux, as
detailed in [7], and is analogous to the pressure-strain tensor for the velocity field
in shear flows for instance [21]. The pressure-scalar correlation is briefly addressed
in section 4. Finally, the evolution equations of both ǫT and ǫF are derived in
Appendix A: these equations are not often considered and developed, and the
authors believe it could be of interest to recall them.
In this work, two types of large scales initial conditions are addressed: Saffman

and Batchelor turbulence, which correspond respectively to infrared slopes σ = 2
and σ = 4, where E(k < kL) ∼ kσ, with kL the integral wavenumber. This choice
can be justified as follows. It has been shown recently that, despite the strong
scatter of the decay exponents of the kinetic energy and scalar variance obtained
in DNS and experiments, the values are mainly gathered between the theoretical
predictions for Saffman and Batchelor turbulence [18, 22]. This is because the
decay exponents mainly depend on the slope of the spectrum at the wavenumbers
crossed by the integral scale during the decay, as shown in [23]. Since Saffman
and Batchelor spectra cover most of the possible spectra, this makes these two
configurations interesting, on top of their physical meaning, i.e. conservation of
linear momentum for Saffman turbulence, and angular momentum for Batchelor
turbulence. Furthermore, initial sharply peaked or Gaussian kinetic energy spectra
would result in E ∼ k4 at large scales [24], which further justifies the relevancy of
Batchelor turbulence.
Here, the initial conditions are isotropic, meaning that F(k, t = 0) = 0, and are

taken from [25]

E(k, t = 0) = K0 k
−5/3 ǫ2/3fL(kL) fη(kη), (21)

where fL and fη are shape functions for large and small scales respectively

fL(x) =

(
x

(x1.5 + 1.5− σ/4)2/3

) 5

3
+σ

, fη(x) = exp
(

− 5.3((x4 + 0.44)
1

4 − 0.4)
)

.

(22)
If not mentioned otherwise, we choose ET (k, t = 0) = E(k, t = 0) and a unit mean
scalar gradient. Furthermore, it has been shown in (BGC) that without any loss
of generality, one can always choose the same infrared slope for the kinetic energy
and scalar spectra in HITSG.
The four previous generalized and spherically-averaged Lin equations for(

E,ET , ETH
(T )
33 ,F

)

are solved using a third-order Runge-Kutta scheme with im-

plicit treatment of diffusion terms. The wavenumber space is discretized using a
logarithmic mesh ki+1 = 101/fki where f = 17 is the number of points per decade.
This mesh spans from kmin to kmax, where kmax is either 10kη for Pr ≤ 1, or 10kB
for Pr ≥ 1, where kη = (ǫ/ν3)1/4 and kB =

√
Prkη are the Kolmogorov and Batch-
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elor wavenumbers respectively. The time step is monitored by defining a constant
CFL number and is obtained by considering the characteristic time scales of scalar
and kinetic dynamics. The initial Reynolds number Reλ(0) is varied, roughly from
∼ 102 to ∼ 105: if not mentioned otherwise, the Reynolds number indicated when
spectra are displayed is obtained after ten characteristic turnover times τ0, where
τ0 = K(0)/ǫ(0).
Finally, it is recalled that intermittency cannot be addressed with EDQNM:

indeed, due to the physical hypothesis introduced to close the spectral evolution
equations, EDQNM is rather suited for the investigation of second-order moments
such as kinetic energy and scalar variance for instance, and third-order moments
in HIT such as derivative skewnesses [26]. Therefore, higher-order moments, which
could be strongly affected by intermittency, cannot be analyzed with EDQNM
[1, 9].
Effects of a Prandtl number very different from unity on the dynamics of the

cospectrum F(k, t) and of the scalar variance spectrum ET (k, t) are investigated
in section 3. Notably, the scaling in the inertial range of the spectral velocity-
scalar correlation is addressed, and comparisons with recent numerical works are
performed in order to assess the present anisotropic EDQNM modelling in config-
urations different from the ones proposed in [7] where Pr = 1.

3. Inertial scaling of ET (k, t) and F(k, t) for Pr 6= 1 - Comparisons

The emphasis is put on the inertial scaling of the scalar variance spectrum ET (k, t)
and cospectrum F(k, t) when the Prandtl number is either very low or very large.
These theoretical scalings are recovered analytically and numerically, and are then
compared with recent numerical studies, such as DNS, LES and other spectral
models. The fact that the present results are not always compared with DNS is
because in most of the DNS, either the Reynolds number is not high enough, or
the Prandtl number is too close to unity.
The successful comparisons proposed here notably illustrate that the anisotropic

EDQNM modelling developed in [7] can be applied as well for highly and weakly
diffusive passive scalar fields.

3.1. Highly diffusive passive scalar: Pr ≪ 1

It is recalled that for Pr ≪ 1, after the classical inertial-convective range where
ET ∼ ǫT ǫ

−1/3k−5/3, the inertial-diffusive range spans from the Corrsin-Obukhov
wavenumber kCO = Pr3/4kη, where diffusion effects become dominant [27], to
the Kolmogorov wavenumber kη . In the framework of completely homogeneous
isotropic turbulence, without any mean scalar gradient, the authors defined a
convective-diffusive wavenumber kCD =

√
Pr kη from which small scales convec-

tion balances diffusion [28]. In this section, both the inertial scalings of ET and F
are investigated and assessed numerically.
In HIT, the scalar spectrum scales in the inertial-diffusive range as [27]

ET (k, t) =
K0

3
ǫT a−3 ǫ2/3 k−17/3, (23)

where K0 ≃ 1.4 is the Kolmogorov constant. Such a scaling was notably recov-
ered with EDQNM numerous times [18, 28, 29]. It has been shown that with an
additional mean scalar gradient Λ sustaining the scalar fluctuations, the scalar
dissipation rate ǫT should take into account this production mechanism [30], thus
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leading to

ǫT
︸︷︷︸

HIT

→ ǫT + 2aΛ2

︸ ︷︷ ︸

HITSG

, (24)

where 2aΛ2 is a pseudo scalar dissipation rate arising because of the presence of
the mean gradient. The HIT scaling for ET given in (23) is thus modified in HITSG
into

ET (k, t) =
K0

3
ǫT a−3 ǫ2/3 k−17/3

(

1 + 2
aΛ2

ǫT

)

. (25)

Such a result was recovered analytically with the Sparse Direct-Interaction Pertur-
bation (SDIP) [15]. Here, an alternative method is proposed, based on dimensional
analysis and physical arguments that are consistent with further developments.
In the HITSG framework, the integration of the scalar Lin equation (16) directly
yields

∂KT

∂t
= −ǫT

(

1 +
2ΛKF
ǫT

)

. (26)

The whole rhs term can be seen as a general scalar dissipation rate, and dimensional
analysis gives KF ∼ Λa which results into (24).
The present simulations, at very low Prandtl numbers and very large Reynolds

numbers, show that 2aΛ2/ǫT ≪ 1, so that the classical scaling (23) is still relevant.
This is consistent with the return to isotropy of small scales in the inertial-diffusive
range at large Reynolds numbers: this feature will be illustrated in section 4.3.
However, when a moderate Reynolds number is combined with a very small Pr,
this ratio becomes greater than unity, so that the isotropic scaling is modify into

ET (k, t) ∼ Λ2 a−2 ǫ2/3 k−17/3, (27)

derived in [16, 17], and is notably obtained by neglecting the non-linear contri-
bution in the scalar Lin equation with respect to production and dissipation. It
is worth noting that in [17], the Prandtl number is very low, and the Reynolds
number moderate, so that very likely small scales are still anisotropic due to pro-
duction mechanisms. Consequently, the general expression (25) should be kept,
since it gives, for the inertial-diffusive scaling, both the isotropic expression and
the anisotropic correction, for large and moderate Reynolds numbers respectively.
The k−17/3 scaling of the scalar spectrum for low Prandtl numbers in HITSG

has been assessed recently by DNS [17]. Present results are compared with the
latter DNS in figure 1(a). The final Reynolds number is Reλ = 240 after ten turn-
over times. The Prandtl number is Pr = 1/2048, and initially the integral scales
are L(0) = 1.346 and LT (0) = 3.468, and ET (k, t = 0) = 0, so that the scalar
fluctuations arise from the mean scalar gradient. A good agreement is found for the
scalar spectrum k−17/3 scaling in the inertial-diffusive range. Near the Kolmogorov
wavenumber (kη = 1), our scalar spectrum slightly increases, and this is probably
due to small scale convection [28]: the latter phenomenon increases with higher
Reynolds numbers and lower Prandtl numbers. This does not happen in the DNS
result, very likely because small scales are not completely resolved beyond kη:
indeed kmax = 1.347kη in the DNS, whereas kmax = 10kη here. Nevertheless, the

k−17/3 is well recovered over two decades, which is the most important feature.
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Figure 1. (a) Scalar spectrum scaling ET (k, t) ∼ k−17/3 obtained with EDQNM compared to DNS [17],

with Pr = 1/2048 and σ = 2 at Reλ = 240. (b) Cospectrum scaling F ∼ k−11/3 obtained with EDQNM
compared with the LES [15], with Pr = 2.10−4, Reλ = 1500, and σ = 2.

We now move on with the determination of the cospectrum inertial scaling. The
starting point is the cospectrum Lin equation (18). A reasonable hypothesis when
the Prandtl number is very low is to assume that the diffusive timescale (ak2)−1 is
much smaller than the non-linear one

τ(k) =
(

k3E(k)
)−1/2

=
(

k2ǫ
)−1/3

=
kE(k)

ǫ
. (28)

This is obvious at large k for high thermal diffusivity a. Therefore, non-linear
contributions can be neglected, consistently with the argument for the scaling (27).
Then, for scaling considerations, the time derivative is dropped off, so that

ak2F(k, t) =
2

3
ΛE(k, t), (29)

which yields the inertial-diffusive range scaling for the cospectrum

F(k, t) =
2

3
K0Λa

−1ǫ2/3k−11/3. (30)

A similar process was performed in [15, 16, 17], the key point being to neglect
the non-linear transfers. Another approach is possible: it was shown numerically
in [7] at Pr = 1, consistently with DNS and experiments, that the normalized
cospectrum correlation

ρwθ =
< u3θ >

√

< u23 >< θ2 >
, (31)

where u3 = w, is constant at large Reynolds numbers. One can define an analogous
spectral normalized cospectrum as constant in the inertial range [17]. Hence, using
Kolmogorov scaling for E, and scaling (23) for ET , one gets

ρwθ(k) =
F(k)

√

E(k)ET (k)
⇔ F(k, t) ∼ a−3/2ǫ

1/2
T ǫ2/3k−11/3. (32)

Moreover, since the scalar field as no retro-action on the velocity one, ǫT should
not appear in (32): one can recover (30) by replacing ǫT with aΛ2, as already done
previously.
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The k−11/3 inertial-diffusive scaling of the cospectrum for Pr ≪ 1 is assessed in
figure 1(b): our EDQNM simulation with ET (k, t = 0) = 0 is compared to the LES
[15] where Pr = 2.10−4 and Reλ = 1500 (after 10 turn-over times for EDQNM).
The agreement with the k−11/3 is rather good at this Reynolds number, and the
agreement between EDQNM and LES is excellent in the inertial-diffusive range.

3.2. Weakly diffusive passive scalar: Pr ≫ 1

The case Pr ≫ 1 is now considered: small scales of the scalar variance spectrum
experience convection from the velocity field of the Kolmogorov scale, which results
in a viscous-convective range from kη, the smallest active turbulent scale for the

velocity field, to the Batchelor wavenumber kB =
√
Prkη, where ET scales as [31]

ET (k, t) = KBǫT

√
ν

ǫ
k−1, (33)

where KB is the Batchelor constant, found to be ≃ 2.5 in the present simula-
tions. This value is close to the first proposal by Batchelor [31] KB = 2, and in
agreement with Gibson’s predictions [32]

√
3 ≤ KB ≤ 2

√
3 for HIT. Other values

measured in the ocean are slightly higher (see [33] and values reported therein)
even though other mechanisms may play a non-negligible role in this environment.
Values obtained in DNS at moderate Reλ are also slightly higher [34, 35].
Then, beyond kB , scalar fluctuations are destroyed by diffusive processes. Inter-

actions that are at the origin of the viscous-convective range are strongly non-local.
As already done numerous times, non-local expansions from very large to very small
scales are added to the scalar (isotropic) non-linear transfers of equation (16): the-
oretical details are gathered in [19], and some applications within the EDQNM
framework were thoroughly examined recently [18, 26].
The scaling of the cospectrum F(k, t) for a weakly diffusive passive scalar field

has been discussed notably in [15] and it has been found that the spectral velocity-
scalar correlation is not strongly modified in the framework Pr ≫ 1, unlike the
case Pr ≪ 1. This is expected if one compares the cospectrum Lin equations (18)
for Pr = 1 where a = ν, so that the dissipative term is 2νk2F , and for Pr ≫ 1,
where a ≪ ν, which yields for the dissipative term only νk2F . Hence, for a weakly
diffusive scalar, the cospectrum still scales in k−7/3 in the inertial-convective range.
Finally, two comparisons are proposed hereafter. Since in DNS when the Prandtl

number increases, the Reynolds number conjointly decreases for numerical resolu-
tion issues, we first propose a large Reynolds number comparison with the SDIP
model [15] at Pr = 100 in figure 2(a). However, since the SDIP model provides
asymptotically large Reynolds numbers results, the Reynolds number is unknown.
The agreement is acceptable, and the slight discrepancy may be attributed to the
uncertainty for the Reynolds numbers, which is Reλ = 2.104 here with the present
anisotropic EDQNM modelling.
Then, in figure 2(b), the compensated scalar variance spectrum is compared with

the low Reynolds number DNS of Yeung and coworkers [36], where Reλ ≃ 8 and
Pr = 1024. Initially, the scalar variance spectrum is zero, and the Reynolds number
is chosen so that after ten turnover times the Reynolds number is Reλ = 10.
Our minimum wavenumber was decreased on purpose to match with the DNS
configuration, and the reason for the slight discrepancy at large wavenumbers could
be that the DNS is forced at large scales, whereas here we have a freely decaying
Saffman turbulence. This does not prevent us from getting a very good agreement,
both in the viscous convective range and further in the viscous-dissipative range,
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Figure 2. (a) Compensated cospectrum compared with the SDIP model [15] at Reλ = 2.104 and Pr = 100.
(b) Compensated scalar variance spectrum compared with the DNS [36] at Reλ ≃ 8 and Pr = 1024.

which validates our approach, even at low Reynolds numbers.

3.3. Spectral transfers and conclusions for the inertial scalings

The inertial scalings of the cospectrum F(k, t) and scalar variance spectrum
ET (k, t) were investigated for both low and large Prandtl numbers in subsections
3.1 and 3.2, where a mean scalar gradient Λ sustains the fluctuations in a ho-
mogeneous isotropic decaying turbulence. The theoretical predictions were recov-
ered analytically, and more importantly, assessed numerically over a wide range of
Reynolds and Prandtl numbers, which illustrates the relevance of our anisotropic
EDQNM modelling.

• For a highly diffusive scalar, ET and F scale respectively in k−5/3 and k−7/3 in
the inertial-convective range, and then, from the Corrsin-Obukhov wavenumber
kCO, in k−17/3 and k−11/3 in the inertial-diffusive range. For illustration purposes,
these spectra are displayed in figure 3(a) for Saffman turbulence at very large
Reλ and Pr = 10−5. The less steep slope while approaching kη is due to small
scales convection and this was addressed in [28]: here, the emphasis is put on
the spectral scalings k−17/3 and k−11/3 which are recovered numerically with the
present anisotropic EDQNM modelling at large Reynolds numbers, and with a
clear separation of dominant mechanisms at kCO between large scales convection
and diffusion.

• For a weakly diffusive scalar, the viscous-convective range in k−1 from kη to
kB is not modified by the presence of a mean scalar gradient for ET (k, t): this
is illustrated in figure 3(b). Furthermore, there is no viscous-convective range
for the cospectrum: instead, F decays slightly later, in terms of wavenumbers,
when Pr = 104 than with Pr = 1, because the viscous dissipation is reduced, as
explained earlier.

Finally, the budget terms of the evolution equation of ET (k, t) are analyzed
in figure 4, for large (left column) and low (right column) Reynolds numbers, at
high (top line) and small (bottom line) Prandtl numbers. The first observation is
that for all four cases, the linear production term is more intense than the non-
linear transfer at large scales, and then is negligible at smaller scales, meaning that
production of scalar fluctuations through the mean gradient is dominant at large
scales: it will be illustrated in section 4.3 that anisotropy is consistently gathered
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Figure 3. Scalar variance spectrum ET (k, t) and cospectrum F(k, t) at large Reynolds numbers for σ = 2. (a)
Reλ = 2.105 and Pr = 10−5, along with the integral, Corrsin-Obukhov and Kolmogorov wavenumbers kL,
kCO and kη . (b) Reλ = 104 and Pr = 104, along with the integral, Kolmogorov and Batchelor wavenumbers
kL, kη and kB . The cospectrum at Pr = 1 at the same Reynolds numbers is displayed in grey as well.

at these scales.
In the very large Péclet number case (a) where Peλ = Reλ

√
Pr = 1.8 105,

there is a clear separation of three domains, in agreement with [17], even though
freely decaying turbulence is considered here: at low wavenumbers, one has almost
−ST,NL(iso) ≃ 2ΛF , and the difference is due to the term ∂tET 6= 0; at interme-
diate wavenumbers, all three contributions are very small and of the same order;
finally, at large wavenumbers, there is a balance between non-linear transfer and
dissipation ST,NL(iso) ≃ 2ak2ET .
In the opposite case (d) where Peλ → 0, non-linear transfers are small and

production balances well dissipation, in agreement with the prediction of [17]. Fur-
thermore, in the two low Prandtl number cases (c) and (d), the insets show that the
dissipation term is always more intense that non-linear transfers, even in the high
Reλ configuration, in accord with the latter reference. For the two high Prandtl
number cases (a) and (b), non-linear transfers are more intense around kη, and
then dissipation takes over while approaching kB at larger wavenumbers.

4. Time evolution and anisotropy

In section 3, the present anisotropic EDQNM modelling was assessed for small
and large Prandtl numbers in HITSG, for both low and high Reynolds numbers,
by investigating the inertial scalings of the scalar variance spectrum ET (k, t) and
cospectrum F(k, t). In this part, effects of the Prandtl number Pr on the time
evolution of the scalar variance KT , the mixed-correlation KF , the normalized
cospectrum correlation ρwθ, and the Nusselt number Nu, are analyzed, along with
the small scales return to isotropy of the flow. Effects of Prandtl numbers at mod-
erate Reynolds numbers are discussed as well.

4.1. Prandtl effects on the decay and growth of < u3θ > and < θ2 >

The growth of KT =< θ2 > and decay of KF =< u3θ > are addressed for both
highly and weakly diffusive passive scalars. This part is a direct application of the
modelling developed in [7] and of the theoretical exponents derived therein and
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Figure 4. Budget terms of the evolution equation (16) of the scalar variance spectrum ET (k, t), along with

the previous characteristic wavenumbers, for σ = 2. − Non-linear term kST,NL(iso); −− Production term
2kΛF ; −· Dissipation term −2ak3ET . The insets represent the ratio ST,NL(iso)/2ak2ET . (a) Reλ = 1800
and Pr = 104, (b) Reλ = 23 and Pr = 102, (c) Reλ = 2.104 and Pr = 10−4, and (d)Reλ = 400 and
Pr = 10−4.

recalled here:

KF (t) ∼ tαF , αF = −σ − pF − 1

σ − pE + 3
, (34)

KT (t) ∼ tα
Λ

T , αΛ
T =

1

2

pF − pE + 8

σ − pE + 3
, (35)

where σ is the infrared slope of the kinetic energy spectrum, i.e. E(k < kL) ∼ kσ,
pE and pF are the kinetic and cospectrum backscatter parameters: in Batchelor
isotropic turbulence pE ≃ 0.55, whereas it is zero for σ ≤ 3 [19, 24, 37].
In [7] for Pr = 1, one had pF = 0.4075. Here, for Pr ≪ 1 and Pr ≫ 1, it is found

that pF slightly increases to pF ≃ 0.42 when Pr departs from unity, consistently
with the variations of the scalar backscatter parameter pT in HIT with Pr [18].
It makes sense that pF varies less with Pr than pT since < u3θ > is a mixed
correlation where the velocity field is not affected at all by a change in Pr.
The theoretical decay exponent of the kinetic energy is also recalled [18, 19, 22]

K(t) ∼ tα, α = −2
σ − pE + 1

σ − pE + 3
, (36)
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where for Saffman and Batchelor turbulence, one has respectively K ∼ t−6/5 and
K ∼ t−1.38.
In figures 5(a) and 5(b), both theoretical predictions for αF and αΛ

T given in (34)
and (35) are recovered numerically. The Reynolds number Reλ is much higher for
Pr ≪ 1 than for Pr ≫ 1 in order to keep a sufficiently high Péclet number. One
can say from figures 5(a) and 5(b) that the respective decay and growth of KF and
KT in HITSG is not affected by high or small Prandtl numbers at large Reynolds
numbers. A similar result was obtained for scalar integrated quantities such as KT

in decaying HIT [18].
In addition, αΛ

T is presented in figure 5(c) at moderate Reynolds numbers, typical
of DNS and experiments, for various Prandtl numbers. This figure should be com-
pared to the case Pr = 1 presented in [7] and recalled in grey in figure 5(c), where a
monotonic decrease of αΛ

T is observed from the high Reynolds to the low Reynolds
predictions. Therefore, this figure clearly illustrates that even though a Pr strongly
different from unity does not modify the asymptotic theoretical predictions at very
large Reynolds numbers, it significantly alters the decay of the scalar variance KT

at moderate ones. For Pr ≫ 1, the growth exponent αΛ
T slightly increases before

diminishing toward the low Reynolds numbers (Reλ ≤ 1) predictions of [7]: this is
because when Reλ decreases, the k−5/3 inertial range vanishes. However, the k−1

viscous range survives temporarily, thus slightly slowing down the decay. Whereas
for Pr ≪ 1, the decrease of αΛ

T starts at quite high Reynolds numbers, because
the Péclet number is very small. The same observations are made for the decay
exponent αF of the mixed-correlation.
Consequently, one could conclude from figure 5(a), 5(b) and 5(c) that the Prandtl

number does not affect the time exponent at very large Reynolds numbers, but at
moderate ones. This is of importance because it could explain why in DNS there is
a significant scatter of the normalized mixed-correlation ρwθ for instance, addressed
in the next part.
As a direct application of the theoretical decay exponents, the scalar-pressure

correlation ΠF =< p∂3θ > is investigated: this correlation has not received much
attention, even though it is the destruction mechanism of the scalar flux. In [7],
it was shown that one cannot define a decay rate for the dissipation ǫF at large
Reynolds numbers, because it is not conserved in the inertial range unlike ǫ and
ǫT . But it is possible for ΠF : indeed, according to the evolution equation (20) of
< u3θ >, ΠF should evolve in time similarly to the production mechanism, which
is proportional to the kinetic energy K(t). This is confirmed numerically in figure
6 for Saffman turbulence: ΠF is found to decay in t−6/5, as the kinetic energy.
Furthermore, figure 6 once more illustrates that the theoretical decay rate does
not depend on the Prandtl number.

4.2. Normalized cospectrum correlation ρwθ and Nusselt number Nu

The normalized correlation ρwθ, defined in (31), is addressed in figure 7(a). Some
values of this quantity at Pr = 1 were reported in [7]: therefore, the emphasis is
put here on the influence of Pr on ρwθ. The first feature to point out is that at large
Reynolds numbers, either with a small or large Prandtl number, ρwθ is constant:
this can be obtained analytically by considering the exponents (34)-(36). Then,
ρwθ diminishes with decreasing Reynolds numbers because of the joint decay of
< u3θ > and growth of the scalar variance, both studied in the previous part. It is
worth noting that the magnitude of ρwθ strongly depends on Pr at moderate Reλ,
because the Prandtl number affects decay exponents in this region of moderate
Reynolds numbers, as revealed previously in figure 5(c).
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Figure 5. Scalar growth exponent αΛ
T defined in (35) (black lines), and cospectrum decay exponent αF

defined in (34) (grey lines). Simulations σ = 2 (-) and σ = 4 (- -), with � the theoretical predictions, for
(a) Pr = 10−4 and (b) Pr = 104. (c) αΛ

T at intermediate Reynolds numbers, for both σ = 2 and σ = 4 and
various Pr (in black); the case σ = 4 and Pr = 1 is recalled in grey.

In addition, several low Pr values from the DNS [17] are included in figure 7(a),
and there is a good quantitative agreement with the present anisotropic EDQNM
modelling: the three simulations of [17], for Pr = 1/2048, Pr = 1/512, and Pr =
1/128, are almost all consistently contained within our EDQNM simulations at
Pr = 10−4 and Pr = 10−2. Moreover, at these moderate Reλ, it is recovered that
ρwθ increases in magnitude with the Reynolds number at a given Prandtl number.
Furthermore, an interesting behaviour is recovered, which is the decrease in mag-

nitude of ρwθ when Pr departs from unity, either for Pr ≪ 1 or Pr ≫ 1, at a fixed
moderate Reλ: this notably confirms the DNS results and predictions of [17, 35],
and can be interpreted in terms of loss of phase alignment between spectral veloc-
ity and scalar fluctuations: indeed, for both Pr ≪ 1 and Pr ≫ 1, there exists a
subrange in wavenumber space (the inertial-diffusive and viscous-convective ranges
respectively) where the scalar variance spectrum strongly depart from the kinetic
energy one. This phenomenon is much more visible for Pr ≪ 1.
This decrease in magnitude of ρwθ with a Prandtl number different from unity

is of practical interest since it happens at moderate Reynolds numbers only. This
might be an additional reason for the scattering of the obtained values of the nor-
malized correlation ρwθ, in addition of moderate Reynolds numbers effects, already
mentioned in [7].
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Figure 7. (a) Normalized correlation ρwθ for Batchelor turbulence (σ = 4) at various Prandtl numbers as
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Pr.

Finally, the Nusselt number, defined as

Nu = −< u3θ >

aΛ
, (37)

is investigated for various Prandtl numbers. Nu is in fact another normalization of
the mixed-correlation < u3θ > which is of practical interest for heat transfers. The
theoretical prediction for the Nusselt number, detailed and assessed in [38], is that
it should vary as Nu ∼ Pe, where the Péclet number is Pe = PrReT , with the
turbulent Reynolds number ReT = 3Re2λ/20. This scaling is successfully recovered
in figure 7(b) for a wide range of Péclet and Prandtl numbers.

4.3. Scale-by-scale distribution of anisotropy

The anisotropy of the flow is investigated here, at the level of the scalar second-order
moments: it is recalled that in [7], it was shown that small scales were completely
returning to isotropy at Pr = 1 in HITSG, which is expected since the velocity field
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remains isotropic. Consequently, one can wonder if the Prandtl number has an in-
fluence on the scalar small scales return to isotropy. It is important to precise here
that with EDQNM, one cannot investigate third-order moments such as deriva-
tive skewnesses, except in HIT where there are expressions which link third-order
moments and non-linear transfers [26].
The scale by scale analysis of anisotropy is done thanks to the symmetric and

deviatoric tensor H
(T )
ij (k, t), defined in (13), which measures directional anisotropy

at the level of the scalar second-order moments: if H
(T )
ij (k1 < k < k2) = 0, it means

that the scales between k1 and k2 are isotropic.
As expected, it is found hereafter that the impact of the Prandtl number on the

return to isotropy of small scales is comparable for instance to moderate Reynolds
numbers effects for the kinetic field in shear flows [21]: indeed, the relevant dimen-
sionless parameter for the scalar is not only Reλ, but the product Reλ

√
Pr, which

could be called a Taylor Péclet number Peλ.
Thus, even with a large Reλ, if the Prandtl number is as small as 10−4, Peλ will be

moderately small, so that scalar small scales may not be not completely isotropic,
in addition to other issues, such as the lack of scale separation in the spectra [17].
Consequently, very large Reλ are required for highly diffusive passive scalars. This
is illustrated in figure 8(a), where the Taylor Reynolds number is very large Reλ ∼
105, so that even at small Prandtl numbers of order ∼ 10−4, the Péclet number
based on the Taylor scale is still sufficiently high Peλ ∼ 103: this is an important
condition for weakly diffusive passive scalars to obtain clear scalings, as underlined
in [17]. This allows to observe in figure 8(a) that there is a complete return to
isotropy of scalar second-order moments small scales. It is worth noting that from
the Corrsin-Obukhov wavenumber kCO, i.e. in the inertial-diffusive range, there is
no more anisotropy: the non-linearity being much stronger in the inertial-convective
range, for kL < k < kCO, the return to isotropy mechanism occurs dominantly in
this region of the wavenumber space.
For a weakly diffusive scalar field, analogous assessments leading to a similar

conclusion are made in [35], where it is shown numerically that even with a mod-
erate Reλ, increasing the Pr - which amounts to increase Peλ - allows to recover
scalar isotropic small scales. It is proposed to illustrate this feature in figure 8(b),

where H
(T )
33 is displayed for Saffman turbulence at Reλ = 100, for Pr = 1 and

Pr = 104. It is clear, notably with the zoom around the Kolmogorov wavenumber
kη , that increasing the Prandtl number at a fixed Reynolds number participates
into restoring isotropy at small scales.
It is recalled that a complete return to isotropy of scalar second-order moments

at small scales is not incompatible with third-order moments being anisotropic at
these same scales, as shown for HITSG in [6]. However, with a model based on a
EDQNM closure, third-order moments such as derivative skewnesses are accessible
only in HIT [26], so that they cannot be investigated here in HITSG.
Finally, within our modelling, according to figures 8(a) and 8(b), the large scales

level of anisotropy seems to be independent of the Prandtl number in Saffman

turbulence, and always very close to 1/15, with 1/15 ≥ H
(T )
33 . This value of 1/15

is interesting because it is the maximum level of anisotropy that the scalar field
can handle: indeed, the exact expansion for the spectral scalar-scalar correlation
in HITSG reads [7]

ET (k, t) =
ET (k, t)

4πk2

(

1− 15H(T )
pq (k, t)αpαq

)

, (38)
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Figure 8. Prandtl number effect on the small scales return to isotropy usingH
(T )
33 (k, t) in Saffman turbulence

σ = 2. The integral and Kolmogorov wavenumbers kL and kη are indicated. The horizontal dashed line
indicating 1/15 refers to the maximal level of anisotropy detailed in the text. (a) Pr = 10−4 and Reλ = 2.105

so that Peλ = 2.103. The Corrsin-Obukhov wavenumber kCO = kηPr3/4 is displayed. (b) Pr = 1 in black
and Pr = 104 in grey, both at Reλ = 100, so that the Péclet number varies from Peλ = 102 to 104. The

Batchelor wavenumber kB = kη
√
Pr is displayed.

and a realizability condition was thus derived in BGC, namely

max (LT
i )i=1,2,3 ≤

1

15
, (39)

where LT
i are eigenvalues of H

(T )
ij . Using the axisymmetric relations H

(T )
11 = H

(T )
22 =

−H
(T )
33 /2, one obtains that the largest eigenvalue is H

(T )
33 . Thus, in HITSG, the

realizability condition is verified (otherwise one would have negative scalar variance
spectra) and the important feature is that the anisotropy reaches its maximal value
at large scales in Saffman turbulence.
The case of Batchelor turbulence is a bit different: indeed, because of classical

backscatter of energy, strong inverse transfers initiate a return to isotropy mech-
anism at large scales [7, 21, 37], so that the large scales level of anisotropy can
decrease with time (or equivalently can decrease when Reλ decreases). This is
more visible in the case Pr ≪ 1 because the Péclet number is in general lower

than in the case Pr ≫ 1, as illustrated in figure 9. There, H
(T )
33 for Pr = 10−4 is

displayed at different times during the decay, or equivalently at various decreas-
ing Reynolds numbers, so that the Péclet number goes from Peλ = 193 down to
Peλ = 15. Even though the large scales level of anisotropy remains close to 1/15,
it nevertheless slightly diminishes.

5. Conclusion

Decaying homogeneous isotropic turbulence with a mean scalar gradient (HITSG)
that sustains scalar fluctuations has been investigated numerically at large
Reynolds numbers with the use of a recent anisotropic EDQNM modelling devel-
oped by Briard, Gomez and Cambon [7]. The present work is a direct application
of the latter spectral modelling in a framework where the Prandtl number is either
very small or very large: first, four quantitative comparisons are proposed. The
good agreement between the present results and DNS, LES and other models, per-
mits to assess the relevance of the model at Pr ≪ 1 and Pr ≫ 1 over a wide range
of Reynolds numbers. This notably confirms numerically theoretical spectral scal-
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(T )
33 in Batchelor turbulence (σ = 4) for Pr = 10−4, along with the

integral wavenumber kL. The four different curves are at Peλ = 193, 87, 36 and 15.

ings for the scalar variance spectrum ET (k, t) and the cospectrum F(k, t). Hence,
in HITSG, at large Reynolds numbers, it is notably recovered that for Pr ≪ 1,
ET and F scale respectively in k−5/3 and k−7/3 in the inertial-convective range,
and then, from the Corrsin-Obukhov wavenumber kCO, in k−17/3 and k−11/3 in the
inertial-diffusive range. Moreover, when Pr ≫ 1, the k−1 viscous convective range
beyond kη for ET is not modified with the presence of a mean scalar gradient. The
assessment of these scalings is one of the main results of the present paper. For
both low and large Prandtl numbers, budget terms of the evolution equation of
ET (k, t) were analyzed as well: it was shown that at large scales, the production
is always stronger than non-linear transfers. At small scales for Pr ≪ 1, even at
large Reλ, dissipation is stronger than non-linear transfers: in the limit where the
Péclet number tends to zero, dissipation balances production.
Secondly, the time evolution of the scalar variance < θ2 > and the mixed-

correlation < u3θ > was investigated at large Reynolds numbers: it was shown
numerically that the theoretical predictions of [7] for the algebraic time exponents
are still valid for Pr ≪ 1 and Pr ≫ 1, consistently with a similar result for the
scalar variance decay in HIT [18]: the Prandtl number does not affect the asymp-
totic time evolution of < θ2 > and < u3θ > at large Reynolds numbers, only at
moderate ones. This is an important feature: indeed, the algebraic time exponents
for < θ2 > and < u3θ > as functions of the large scales initial conditions were first
derived in (BGC), and to assess them for Prandtl numbers strongly different from
unity was needed to underline some similarities with HIT. In addition, it was shown
numerically that the pressure-scalar correlation < p∂3θ >, which is responsible for
the destruction of the scalar flux, decays with the same rate as the kinetic energy,
independently of the Prandtl number.
Afterwards, the Reynolds and Prandtl numbers dependence of the normalized

cospectrum correlation ρwθ was addressed as well: the present spectral modelling
provides good quantitative results with respect to DNS. Notably, it was found that
at a fixed moderate Reynolds number, say Reλ ∼ 100, ρwθ decreases in magnitude
when the Prandtl number either increases or decreases, in agreement with the
prediction of Yeung and Sreenivasan [17]. The linear dependence of the Nusselt
number with the Péclet number is also recovered.
Moreover, it was shown numerically that the small scales of the scalar second-

order moments return to isotropy, provided the Péclet number is large enough.
This notably implies, for highly diffusive passive scalars, the need to reach very
high Taylor Reynolds numbers Reλ when one wants to obtain a clear k−17/3
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inertial-diffusive scaling, which numerically requires that Pr ≤ 10−3.

This numerical work is a direct application of the anisotropic EDQNM modelling
developed by Briard, Gomez and Cambon [7] for homogeneous anisotropic turbu-
lence, valid for any mean velocity and mean scalar gradients, which in particular
permits to reach very large Reynolds numbers. The main goal of this paper was
to show that this spectral model can be used to produce relevant results when the
Prandtl number strongly departs from unity. In particular, regimes of either very
large Reynolds and Prandtl numbers, or very large Reynolds numbers and very
low Prandtl numbers, never reached before in HITSG, were investigated: the con-
sistency of the results over this wide range of parameters constitute an interesting
result, both for theoretical considerations, and for practical purposes as well, re-
garding for instance one-point modelling with the predictions of < θ2 >, < u3θ >
and ρwθ.
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Appendix A. Evolution equations of the dissipation rates ǫT and ǫF

Unlike the scalar variance KT and the mixed-correlation KF whose evolution equa-
tions are often investigated, the time evolution of their respective dissipation rates
ǫT and ǫF is less addressed. This is the reason why their general evolution equa-
tions are derived here, only using the homogeneity assumption, and are further
simplified for HITSG.
The starting point is the equations for the fluctuating velocity and scalar fields

ui and θ, in the presence of both mean velocity and scalar fields Ui and Θ:

(
∂

∂t
+ uj

∂

∂xj

)

ui + Uj
∂ui
∂xj

+ uj
∂Ui

∂xj
= − ∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, Aij =
∂Ui

∂xj
, (A1)

∂θ

∂t
+ Uj

∂θ

∂xj
+ ujλj +

∂

∂xj
(θuj) = a

∂2θ

∂xj∂xj
, λj =

∂Θ

∂xj
. (A2)

Let’s define as well the scalar gradient ξi = ∂iθ, so that one has ǫT = a < ξiξi >,
where we write < ξiξi >=< ξ2 >. To obtain the general evolution equation of
the scalar covariance < ξiξj >, one needs to derive the evolution equation (A2)
of θ with respect to xi, to multiply it by ∂jθ, and to sum it with the equation
of ∂jθ multiplied by ∂iθ. After ensemble average, this yields in the homogeneous
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framework

∂ < ξiξj >

∂t
+ λl

(

<
∂ul
∂xi

∂θ

∂xj
> + <

∂ul
∂xj

∂θ

∂xi
>

)

+ <
∂θ

∂xj

∂2θul
∂xl∂xi

> + <
∂θ

∂xi

∂2θul
∂xl∂xj

>

+ < Ali
∂θ

∂xl

∂θ

∂xj
> + < Alj

∂θ

∂xl

∂θ

∂xi
> + < Ul

∂θ

∂xj

∂2θ

∂xi∂xl
> + < Ul

∂θ

∂xi

∂2θ

∂xj∂xl
>

= a
[

<
∂θ

∂xj

∂3θ

∂xi∂xl∂xl
> + <

∂θ

∂xi

∂3θ

∂xj∂xl∂xl
>

]

. (A3)

This equation can be simplified: first, < ∂l(Ul ξi ξj) >= 0 which simplifies the two
terms in Ul. Then, using < ∂l(ul ξi ξj) >= 0 simplifies the fourth and fifth terms.
Finally, the diffusion terms can be grouped remarking that < ∂2

ll(ξiξj) >= 0. This
yields

∂ < ξiξj >

∂t
+ λl

(

<
∂ul
∂xi

∂θ

∂xj
> + <

∂ul
∂xj

∂θ

∂xi
>

)

+ <
∂θ

∂xj

∂ul
∂xi

∂θ

∂xl
> + <

∂θ

∂xi

∂ul
∂xj

∂θ

∂xl
>

+ < Ali
∂θ

∂xl

∂θ

∂xj
> + < Alj

∂θ

∂xl

∂θ

∂xi
>= −2a <

∂2θ

∂xj∂xl

∂2θ

∂xi∂xl
> . (A4)

This equation is more simplified than the one given in [39], thanks to <
∂l(ul ξi ξj) >= 0. In the end, the evolution equation of < ξ2 > in homogeneous
turbulence reads

∂ < ξ2 >

∂t
+ 2λj <

∂uj
∂xi

∂θ

∂xi
> +2 <

∂θ

∂xi

∂uj
∂xi

∂θ

∂xj
> +2 < A+

ij

∂θ

∂xi

∂θ

∂xj
>

= −2a <
∂2θ

∂xi∂xj

∂2θ

∂xi∂xj
>= −2a <

∂ξi
∂xj

∂ξi
∂xj

> . (A5)

This equation further simplifies in HITSG where Aij = 0 and only λ3 = −Λ. This
yields

∂ < ξ2 >

∂t
= 2Λ <

∂u3
∂xi

∂θ

∂xi
> −2 <

∂θ

∂xi

∂uj
∂xi

∂θ

∂xj
> −2a <

∂ξi
∂xj

∂ξi
∂xj

>, (A6)

in agreement with [40].
However, for the evolution equation of < ∂jui ∂jθ >, no references have been

found. Here are some details. The process is similar to what was done for < ξ2 >:
one needs to derive the evolution equation (A2) of θ with respect to xj, to multiply
it by ∂jui, and to sum it with the equation (A1) of ui derived by xj and multiplied
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by ∂jθ. This yields

∂

∂t
<

∂ui
∂xj

∂θ

∂xj
> +λj <

∂uj
∂xl

∂ui
∂xl

> +Aij <
∂uj
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∂θ

∂xl
>

+ < uj
∂θ

∂xl

∂2ui
∂xj∂xl

> + < uj
∂ui
∂xl

∂2θ

∂xj∂xl
> + <
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∂xj
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∂xl

∂uj
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> + <
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∂θ

∂xj

∂uj
∂xl

>

+Ajl

(
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>
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∂3θ
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∂xj∂xj∂xl

> . (A7)

This equation simplifies using similar relations as before, such as <
∂j(uj∂lθ ∂lui) >= 0 and < ∂l(∂lui ∂

2
jjθ) >= 0, and reads

∂

∂t
<

∂ui
∂xj

∂θ

∂xj
> +λj <

∂uj
∂xl

∂ui
∂xl
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In HITSG, this equation further simplifies into

∂

∂t

( ǫF
ν + a

)

= Λ
ǫ

3ν
− <

∂u3
∂xj

∂θ

∂xl

∂uj
∂xl

> − <
∂u3
∂xl

∂θ

∂xj

∂uj
∂xl

>

+ <
∂p

∂x3

∂2θ

∂xl∂xl
> −(ν + a) <

∂2u3
∂xl∂xl

∂2θ

∂xj∂xj
> . (A9)

It seems that such an equation was not derived before: its deeper investigation
with DNS may notably provide further information for the improvement of RANS
models.


