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Abstract

Positioning systems in self-organizing networks generally rely on measurements
such as delay and received signal strength, which may be difficult to obtain and
often require dedicated equipment. An alternative to such approaches is to use sim-
ple connectivity information, that is, the presence or absence of a link between any
pair of nodes, and to extend it to hop-counts, in order to obtain an approximate
coordinate system. Such an approximation is sufficient for a large number of appli-
cations, such as routing. In this paper, we propose Jumps, a positioning system for
those self-organizing networks in which other types of (exact) positioning systems
cannot be used or are deemed to be too costly. Jumps builds a multiple coordinate
system based solely on nodes’ neighborhood knowledge. Jumps is interesting in
the context of wireless sensor networks, as it neither requires additional embedded
equipment nor relies on any node’s capabilities. While other approaches use only
three hop-count measurements to infer the position of a node, Jumps uses an ar-
bitrary number. We observe that an increase in the number of measurements leads
to an improvement in the localization process, without requiring a high dense envi-
ronment. We show through simulations that Jumps, when compared with existing
approaches, reduces the number of nodes sharing the same coordinates, which paves
the way for functions such as position-based routing.
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1 Introduction

Wireless sensor networks are composed of cooperative elements that acquire
measurements of physical phenomena and send the resulting data to a collector
node, called sink. Sensors are usually characterized by their small size, light
weight, low power consumption, and limited memory and energy. In such
a context, any functionality introduced into the network must be carefully
designed and deployed.

While some scenarios allow for manual deployment of sensors (e.g., structure
monitoring), in others, sensors deployment might be disordered or even ran-
dom (e.g., a battlefield). In this second type of scenario, the network needs to
self-organize, in order to provide nodes with identifiers and to build routing
paths. Knowing the geographic positions of the nodes can be of great utility
in self-organizing networks. For instance, node positions can be used to facil-
itate and increase the efficiency of routing protocols [1,2]. In sensor networks,
positioning is particularly important, since gathering physical measurements
without attaching coordinates to the collected data might be of little use. In
this paper, we focus on the process of attributing coordinates to nodes in
sensor networks.

The state of the art in absolute positioning systems is dominated by satellite-
based methods, like GPS [3], Glonass [4], and the upcoming Galileo [5]. Yet,
equipping each sensor node with a satellite receiver might neither be feasible
nor always useful. Such a receiver would increase the cost of the sensor network,
the size and weight of the individual sensors, as well as the overall power
consumption, which is in contradiction with the objectives of most sensor
network scenarios.

Some solutions propose to equip a subset of the nodes with a satellite receiver
and use these nodes as references, also called landmarks, to infer the posi-
tions of other nodes by using signal strength measurements and deducing an
approximation of their Euclidean distances to each of these landmarks using
radio propagation laws. While this situation can lead to accurate positioning
of the nodes in an outdoor scenario, it is much less efficient (or even unfeasible)
in indoor or underground environments.

To compute relative positions of nodes, for example when satellite receivers
are not available, or simply to enhance satellite measurements, nodes can
use different types of information. Received signal strength (RSS) can be con-
verted into distances when the propagation law is uniform and known, either
directly or using multiple signals and time difference of arrival (TDoA) [6].

Timur.Friedman@upmc.fr (Timur Friedman), David.Simplot@lifl.fr (David
Simplot-Ryl).
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Positions can then be inferred using trilateration techniques. Directional an-
tennae can also be used to triangulate relative positions [7]. In spite of their
accuracy, these techniques might be unusable because of the dedicated and
costly equipment they require. Using only connectivity information is algo-
rithmically simpler and, despite its relative simplicity, can still lead to usable
positions. Rao et al. propose [8] to discover border nodes, compute their co-
ordinates, and finally infer, through a relaxation method, their coordinates to
other nodes. Benbadis et al., authors of the present paper, propose in a prior
work [9], as Caruso et al. [10], to use hop distances to landmarks to compute
nodes coordinates. Both works have shown that using hop-counts is a sufficient
metric to implement positioning systems in a number of applications.

The use of landmarks is not exclusive to the context of self-organizing net-
works. Geoping [11] and GeoLIM [12] use well-known landmarks to attribute
coordinates to Internet hosts. In the latter case, GeoLIM aims at providing the
geographic location of an Internet host using its IP address. GeoLIM trans-
forms delay measurements between landmarks at well known locations and
a target host into geographic distance constraints. Like GPS, it uses multi-
lateration to estimate the geographic location of the target host. While three
landmarks are sufficient to estimate a host position, GeoLIM uses up to 74
landmarks to increase the accuracy of its location estimations. We can learn
from the Internet experience and transpose the use of multiple landmarks
to the context of sensor networks. However, less information is available in
our context, as it lacks preliminary location information. Moreover, delays are
not accurate in the wireless context due to the unpredictable nature of the
medium.

The idea of using multiple landmarks and hop-counts between nodes and land-
marks seems to be suitable for positioning in sensor networks too. Yet prior
work [9,10] has been constrained to three landmarks. The question we address
in this paper is: what improvement can be obtained by the use of a greater
number of landmarks? To the best of our knowledge, no other study uses
hop-counts with more than three landmarks, and so the potential benefits are
unknown.

The idea behind Jumps, the system we propose here, is to construct a vir-
tual coordinate system where each node uses its hop-count distances to each
landmark as its coordinates. In the resulting system, each node has as many
coordinates as there are landmarks. In order to evaluate the impact of this
additional information on the accuracy of the system, we have performed a set
of simulations. Prior work [9,10] concluded that increasing the node density,
either by introducing more nodes or by increasing transmission range, im-
proved the localization accuracy. Our simulation results show that increasing
the number of landmarks leads to a similar improvement without an increase
in the number of nodes. We also show, through a theoretical study, that using
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more landmarks instead of increasing the node density does not increase the
energy consumption.

This paper is organized as follows. Section 2 presents prior work in positioning
algorithms for sensor networks. Section 3 describes our multi-coordinate hop-
count positioning algorithm. Section 4 describes the simulations we performed
and analyzes the results. Section 5 analyzes the energy consumption of Jumps

and compares it with other approaches’ one. Section 6 draws conclusions and
points to future work.

2 Positioning systems

Many positioning systems for sensor networks have been proposed in the lit-
erature. In this section, we briefly present the most important ones and focus
more specifically on the solutions that use hop-counts as distances, as they are
the most closely related to our proposal. All the solutions are measurement-
based, and we classify algorithms into two distinct groups: signal-based ap-
proaches and connectivity-based approaches. While in signal-based approaches
measurements are performed on the physical characteristics of each link or the
angle of the received signal, connectivity-based approaches rely solely on the
existence, or lack thereof, of a link between two nodes. In the following, we
explain each of these groups.

2.1 Signal-based approaches

This family of mechanisms uses the physical characteristics of links between
pairs of nodes in order to estimate distance. The first class of methods uses
the received signal strength (RSS). RSS is based on the principal that a radio
signal between a sender and a receiver attenuates with an increase in distance.
Bahl et al. [13] suggest the use of average received signal strength to estimate
distances. To take into account the fact that, in the presence of obstacles,
signals do not follow the free space attenuation model, they apply a wall
attenuation factor [14]. The estimated distances are then used to locate a
node by trilateration, i.e. by estimating the distances to three points of known
coordinates and solving the equation corresponding to the intersection of the
three corresponding circles to deduce the related node’s position.

The Ad hoc Positioning System (APS) proposed by Niculescu and Nath [7] uses
the capability of certain nodes to measure the angle of arrival (AoA) of incom-
ing signals. They assume that some of the nodes know their exact positions via
GPS, and that each node that joins the network is equipped with a directional
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antenna. Sharing location and angle information through a distance-vector-like
information propagation mechanism allows non-GPS nodes to estimate their
locations through trilateration.

Gustafsson and Gunnarsson use the Time Difference Of Arrival (TDoA) be-
tween multiple signals to compute a relative coordinate system [6]. In this
approach, when a node sends a signal to two receivers, the correlation analy-
sis of the received signals gives one hyperbolic function. With a larger number
of receivers, more hyperbolic functions are obtained. Computing the intersec-
tion of these hyperbolas gives the estimated coordinates of the sending node.

Kwon et al. [15] propose a variation of TDoA to localize nodes in a sensor
network using sound signals. This method assumes a topology with GPS and
non-GPS nodes. GPS nodes, called anchor nodes, know their coordinates and
are equipped with a compact loud speaker, called sounder. Non-GPS nodes
have a microphone to receive sound signals from anchor nodes. Four anchor
nodes, at least, should be used in order to create a 3-dimensional coordinate
system. The TDoA service implemented here is used to measure distances
needed for trilateration. The method uses the difference in arrival time of
radio and sound signals from an anchor node to compute the distance.

Even if in the original TDoA method no specific equipment is required, a time
synchronization is necessary in order to lead to good position estimation. Such
synchronization requires specific devices, e.g. GPS, which makes this method
difficult to implement in many situations, e.g. underground scenarios where
GPS is not available.

In GPS-free [16], each node discovers its neighborhood and measures its dis-
tance as its delay to all of its one-hop neighbors. The list of all of a nodes’
neighbors and their distances is sent to all of the nodes’ neighbors. Every node
then knows the identity of its one and two-hops neighbors and some of the
distances between them. Considering itself as the center of its own coordi-
nate system, a node is able to compute coordinates for every node among its
two-hops neighbors. The global network coordinate system is then derived by
translating each local coordinate systems into a global coordinate system.

For comprehensive surveys on these signal-based methods, please refer to
Nordlund et al. [17] and Hightower et al. [18].

2.2 Connectivity-based approaches

This section surveys positioning algorithms that do not make any assumption
regarding node capabilities other than their ability to discover their direct
neighbors.
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Rao et al. [8] use only hop-count distance to achieve positioning in an ad
hoc network. Their algorithm involves three steps. First, nodes evaluate their
hop-count distance to a bootstrap node. The nodes that are at a maximum
distance from the bootstrap node in their neighborhood are assumed to be
on the boundary of the network. Second, each border node sends a beacon
that contains a counter. This operation allows border nodes to discover their
distance to all other border nodes and build a vector with these distances.
Each border node then sends its distance vector to all the other border nodes.
The resulting distance matrix is then used to compute, through a minimizing
function, virtual coordinates for the border nodes. Finally, each node computes
iteratively its coordinates as the average of its neighbors coordinates.

Although this method gives accurate coordinates, it leads to high overhead
since too many network-wide floods are required. Such a method is not advis-
able for a sensor network, where energy efficiency is paramount and in which
radio communications are an important source of energy consumption. The
use of hop-count distance is, however, promising measurements to exploit since
it does not require any specific material and is easy to implement.

GPS-Free-Free [9], proposed by the authors of the present paper, and
Caruso et al.’s VCap [10] use this simple measurement to construct a co-
ordinate system. In both methods, authors use three nodes as landmarks.
These three nodes are similar to the other nodes and have no any additional
capabilities. The hop-count distances to these landmarks form the basis for a
coordinate system. While GPS-Free-Free constructs a coordinate system
based on the trilateration of the three hop-count distances, VCap uses the
distances directly as coordinates. We believe that VCap, since it uses the
available information more fully, should give more accurate results with less
computation than our own earlier proposal.

2.3 Injecting redundancy into the coordinates system with Jumps

GPS-Free-Free and VCap both suffer from a problem: using hop-counts as
metrics introduces discretization into the distance measurements. For instance,
a node that is at a distance of three hops from a particular landmark is, under
certain density assumptions, between two and three times the communication
range of a node. Jumps, our proposal, allows further smoothing by increasing
the number of landmarks. It relies on the same principles as GPS-Free-

Free and VCap, i.e., it is based purely on the use of landmarks and hop-
count distances. We show in this paper that the number of landmarks is a
fundamental parameter for the accuracy of the positioning system.
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3 Virtual positioning using N coordinates

The algorithm presented here creates a virtual coordinate system for sensor
networks. We consider a static, random network with no isolated nodes. 1 For
each node, we call neighbors the set of nodes within its transmission range; we
further assume links to be symmetric (if a is the neighbor of b, then b is the
neighbor of a). A critical parameter for our evaluation, presented in Section 4,
is the neighbor density, given by the average number of neighbors per node
and further described in Section 4.2.1.

Our algorithm uses N landmarks to attribute as many coordinates to each
node. These landmarks may be either specific, dedicated nodes, or a set of
nodes dynamically selected within the network. In this paper, we do not specif-
ically address the problem of selecting which nodes should play the role of
landmarks, and focus on the study of the efficiency of using more than three
landmarks to build a virtual coordinate system. The landmark positions are,
in this study, set on the perimeter of the network, regularly spaced. We opted
for such a configuration for generality reasons. For instance, a number of land-
mark placement techniques rely on network-wide floods, and a specific flooding
technique may have an impact on the results. By defining a regular structure
inscribed in a circle to avoid any bias from specific landmark determination
algorithm in our results.

Let L = {L1, L2, . . . , LN} be the set of N landmarks chosen to build the
coordinate system. For any node ni, {xi1 , xi2 , . . . , xiN} denotes the coordinates
of ni using Jumps, where xij is the minimum hop-count distance, i.e., the
lowest count of successive links, from Lj to ni. Thus, the underlying basis
of our coordinate system is that each node uses as coordinates its hop-count
distances to each of the N landmarks. A positioning mechanism should enable
nodes to learn these distances from the network.

Jumps’ positioning phase begins upon completion of network deployment.
There are two steps. While we do not focus on specific methods for these
steps, we propose a generic method for any situation. First, a node wakes up,
and second, it obtains its coordinates.

We assume that a node, which may be the sink, is chosen to initiate the first
step; any node can be assigned (e.g. through specific software configuration)
with this task, regardless of its physical location. We denote such a node as s,
which can be chosen periodically through a local random process.

1 Precisely, for any two nodes ni, nj, there is always a succession of one or more
links between ni and nj.
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Note that nodes do not need to be synchronized. Any node can promote itself
as initiator, and multiple nodes may get promoted. The only condition to
be respected is that the random promotion process be stopped once a WAKE

message is received.

Once chosen, node s generates and floods a wake up message, noted WAKE,
which purpose is to trigger the hop-count distances discovery between land-
marks and the remainder of the nodes. Upon reception of the WAKE message,
landmark L1 initiates the second step, which consists in making nodes learn
their hop-count distances to L1. To this end, L1 generates a Distance Discov-

ery Message, DDML1
, which carries a counter initially set to 0, and floods it

throughout the network. Nodes receiving this message increment the counter
and forward the message, following a classical flooding algorithm. Clearly, a
node does not forward a DDM if it has already received a copy of the same
message with a lower or equal counter value. When the flood is over, each
node knows its hop-count distance to L1. The main goal of DDML1

is achieved.

At the same time, a second functionality of DDML1
has been obtained: it wakes

up L2, which, in turn, generates DDML2
in order to initiate the establishment

of the second axis of the virtual coordinate system. The algorithm can be
generalized in the following way. Any landmark Li is awaken by the reception
of DDMLi−1

and generates its own DDMLi
.

When the last landmark, LN , has flooded DDMLN
, every node in the network

knows its hop-count distance to every landmark. At this point, all nodes have
their hop-count distance to landmarks as coordinates. If d1, d2, . . . , dN denote
the hop-distance from node n to, respectively, landmarks L1, L2, . . ., LN , then
{d1, d2, . . . , dN} are the virtual coordinates of n in this N -dimensional space.

Fig. 1 shows an example of the coordinate system attribution algorithm. In
this figure, eight landmarks are used, and the virtual coordinates of n are
{3, 6, 7, 7, 8, 7, 6, 3}, according to its hop-distance to landmarks.

4 Numerical Analysis

In order to evaluate the efficiency of our solution, we performed a set of simu-
lations. We simulated static sensor networks within which up to ten landmarks
were deployed on the field’s boundary. It is important to note that our simu-
lator has been designed to provide further understanding on the behavior of
the coordinate system, and does not intend to model realistic physical and
MAC layers. The simulation environment, parameters, and measurements are
described in the following.
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4.1 Environment

The simulated field is a disc area of 1000 meter radius, R. The node transmis-
sion range, r, is set to 50 meters.

With the exception of landmarks, node locations in the field are realizations
of a uniformly distributed pseudo-random variable.

4.2 Parameters

Prior work [10,9] focused on densely populated networks. In such cases, the
correlation between hop-count and Euclidean distance increases with the den-
sity. This clearly helps hop-count based solutions, which explains why previous
works limited their analysis to dense networks. In this paper, we are also in-
terested in investigating sparse networks.

We adjust the density D of nodes by choosing the number of nodes scattered
in the field, M.

Precisely:

D =
M

π × R2
· (1)

4.2.1 Neighborhood density

Nodes are uniformly distributed in the simulated area. Thus, the average num-
ber of nodes per coverage range dcov can be calculated as:

dcov = D × π × r2 =
M

π × R2
× π × r2 = M×

(

r

R

)2

· (2)

However, in our simulations, for better comparison with Caruso et al.’s work [10],
instead of using density, we consider the average number of neighbors per node,
dneig. We present results for dneig varying in the range from 10 to 50, in steps
of 10. Basically, dneig = dcov + 1.

For r = 50 and R = 1000, we thus have the following relation between nodes
population M and neighbor density dneig:

M = 400 × (dneig + 1) · (3)
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Consequently, our simulations use 4400, 8400, 12400, 16400 and 20400 nodes
in order to simulate networks of respective neighbor densities of 10, 20, 30, 40
and 50.

4.2.2 Number of landmarks

The number of landmarks is a crucial parameter in our work. We simulated
topologies with a number of landmarks, N , varying from 3 to 10. Landmarks
are placed on the border of the field, at equal angles from the center of the
field (cf. Fig. 1).

4.3 Metrics

In general, evaluation of positioning mechanisms is based on the error between
the computed coordinates and the real ones. This is meaningless in our work
because the coordinate system we build is purely virtual and uses N coordi-
nates rather than the 2 or 3 coordinates of physical space. Again, our goal
is not to get to such an approximation, but to provide a virtual system that
would help networking functionalities such as routing.

Instead, we focus on the following metrics (illustrated in Fig.2):

• Zone: following the definition by Caruso et al. [10], a zone is a set of two
or more nodes sharing the same set of virtual coordinates. The use of hop-
counts as a distance measure tends to favor coordinate collisions.

• Intra-zone distance: this parameter represents the average Euclidean dis-
tance, in the physical world, between two nodes belonging to the same zone.

• Zone size: the maximum distance between two nodes within the same zone.
• Maximum zone size: defines the size of the largest zone in the topology. It

is equivalent to the maximum distance between any two nodes sharing the
same virtual coordinates in the whole network. In a nutshell, this measure
provides the maximum localization error in the network.

• Number of nodes per zone: the average population in a zone.
• Number of zones: the number of zones in the network.

For each scenario, defined by an instance of couple (N, dneig), we simulated
1000 different topologies, and considered only completely connected networks.
Curves in the figures are accompanied by 99,9% confidence intervals. In figures,
distances such as intra-zone distance, zone size and maximum zone size were
divided by r and noted as factors of the radio range (reference value). Since
histograms led to poor legibility, we preferred to represent data as a function
of the number of landmarks.
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4.4 Results

In this section, we present the results of the simulations we performed. We
have performed experimentations with forty scenarios, but for the sake of
legibility, we show only nine representative curves in distribution figures. The
other thirty-one scenarios can be obtained online [19].

4.4.1 Zone size

Fig. 3 presents the repartition diagrams of zone sizes for different numbers of
landmarks and different densities. By separating the columns, we can compare
the effect of density with a fixed number of landmarks. Observe that the
distribution does not vary too much, whatever the number of landmarks. On
the other hand, by separating the rows, we can compare the effect of the
number of landmarks. We clearly see that increasing the number of landmarks
reduces the number of zones with sizes larger than one hop.

We recall that zone sizes are represented in radio range units, which means
that nodes in zone with a size less than one are under coverage of each other.
Fig. 4(a) presents the average zone size as a function of the number of land-
marks. Different neighbor densities are represented. We see that whatever the
density, increasing the number of landmarks reduces the average zone size.
This reduction is, however, more important in high dense networks. An impor-
tant result here is that increasing the density when more than six landmarks
are employed is useless if it is initially set to twenty.

Fig. 4(b) recasts the data in comparative forms. It shows the benefit, in per-
centage, on zone size for scenarios with N landmarks with respect to the initial
case in which only 3 landmarks are deployed. It thus expresses the cumulated
reductions of zone size resulting from the addition of (N − 3) landmarks, rep-
resented as a relative value. We first observe that using ten landmarks, instead
of three, reduces zone size by about 40% in the sparse networks considered
and by up to 65% in the densely populated ones. Adding a fourth landmark
is sufficient to reduce the zone size by approximatively 20% when density is
low, and 30% when it is high.

Fig. 5 presents zone size as a function of density, for different numbers of
landmarks. Clearly, we notice that the density effect depends on the number of
landmarks used. With six or fewer landmarks, the average zone size grows with
density, while this tendency appears to be reversed but with low significance
with seven or more landmarks. For a sufficiently high starting density (at
least twenty neighbors per node), an increasing density either does not reduce
significantly zone size or provokes an adverse effect.
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4.4.2 Maximum zone size

The maximum zone size is, as described above, the size of the largest zone
in the whole network. It represents the largest distance, in number of hops,
between any two nodes sharing the same coordinates. The distribution of
maximum zone size is shown in Fig. 6. The first observation is that the density
has a non-negligible effect on this measure, contrarily to the average zone
size. While increasing the density reduces the maximum zone size, adding
landmarks reduces it drastically. The most significant result is obtained with
six and ten landmarks in relatively high dense networks. With six landmarks
the maximum zone size is usually around one radio range, while it is less than
one in almost all the cases when the number of landmarks is ten. This result is
very important as it shows that nodes sharing the same coordinates are under
the coverage range of each other.

Fig. 7(a) shows the same result. If we except networks with a density of ten
neighbors per node, the curves are pretty close. This means that, beyond
a certain threshold, increasing the density only has a limited effect on the
average maximum zone size. Adding landmarks, however, significantly reduces
this value. The gain obtained with one more landmark is considerable as shown
in Fig. 7(b). The greatest gain is obtained when the first landmark is added.
Indeed, using four landmarks instead of three reduces the maximum zone size
by about 30%. Continuing to add landmarks improves the result but in a less
significant way.

From these results, we can first observe that using three landmarks in a net-
work with a density of ten neighbors per node results in a 2.4 ‘radio range
units’-wide largest zone. This means that there exist nodes sharing the same
coordinates with, at least, three hops between them.

In such a case, using a 2-hop proactive ad hoc routing protocol coupled with
a position-based routing protocol, as proposed by Caruso et al. [10], may be
insufficient.

Now, by considering only networks with a neighbor density of twenty or more,
we can see that we can avoid the use of a proactive routing protocol if we
use seven landmarks or more, while the maximum zone size is less than or
equal to one radio range. In this case, two nodes sharing the same coordinates
are immediate neighbors. We recall that the goal of coupling a position based
routing protocol to a proactive one is to allow communication between nodes
within the same zone even if they are not directly connected.
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4.4.3 Intra-zone distance

As described in Section 4.3, this measure represents the average distance be-
tween two nodes sharing the same virtual coordinates. The perfect coordinate
system we can obtain is the one where every intra-zone distance is less than
one radio range unit.

If we observe the results presented in Fig. 8, we notice that the intra-zone dis-
tance is usually less than one radio-range unit, especially when six landmarks
or more are used. For this measure, as for the zone size one, the density has
almost no effect.

We can see in Fig. 9(a) the average intra-zone distance as a function of the
number of landmarks, for different neighbor densities. The tendencies are com-
parable with those of maximum zone size (cf. Section 4.4.2); except the case
of ten neighbors per node, density does not seem to have a significant effect
on the average intra-zone distance.

Fig. 9(b) presents the gain compared to the initial scenario and confirms the
results of Section 4.4.2: adding one landmark reduces significantly the intra-
zone distance while increasing the density has a less noticeable effect.

4.4.4 Number of nodes per zone

The number of nodes per zone is the average number of nodes sharing the
same coordinates. While more nodes with the same coordinates means more
ambiguity, it is obvious that the lower the number of nodes per zone, the
more accurate the coordinate system. 2 We see in Fig. 10 that increasing the
density, by adding nodes in the topology, increases the number of populated
zones: zones with up to twenty nodes appear when density is set to fifty and
only three landmarks are used.

In Fig. 11(a), we see that increasing the number of landmarks has a limited
effect in sparse networks, in which there are, on average, fewer than three
nodes sharing the same coordinates in all cases.

In more densely populated networks, however, the number of landmarks plays
an important role, as it allows, as shown on Fig. 11(b), a reduction in the
number of nodes per zone of up to 60%. Also, when using ten landmarks, less
than three nodes share one position, regardless of the density. In contrast, for
a given landmark count, an increase in the neighbor density results in more
populated zones, as shown in Fig. 11(c).

2 Ambiguity is the unclearness due to having more than one node for one virtual
position.
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4.4.5 Number of zones

Fig. 12 presents the average number of zones in the network: first for any fixed
density, as a function of the number of landmarks (Fig. 12(a)), and second for
any fixed number of landmarks, as a function of neighbor density (Fig. 12(b)).
The results on these figures are related to the results of Fig. 11. First, let us
consider a fixed landmark count scenario, and analyze Figs. 11(c) and 12(b).
We observe that, as neighbor density grows, both the number of zones and the
number of nodes per zone grow. This implies that neighbor density growth
adds ambiguity. Now, let us consider a fixed density scenario, and analyze
Figs. 11(a) and 12(a). With the number of landmarks, the number of zones
first tends to grow to a maximum value, but then decreases. Meanwhile, the
number of nodes per zone steadily decreases. As a consequence, we identify
the following behavior: up to the maximum value, the number of zones grows,
but each zone contains fewer nodes. Beyond the maximum value, the number
of zones regresses, and still each zone contains fewer and fewer nodes. In
both cases, the distinction between nodes becomes more significant with the
addition of landmarks.

5 Energy consumption concerns

As stated before, the goal of Jumps is to build a coordinate system based on
hop-distances to landmarks. In order to allow each node to discover its coor-
dinates, each landmark is supposed to flood the network with a probe, whose
goal is to permit other nodes to discover their hop-distance to the landmark.
Thus, every single landmark added requires one additional flood. In this sec-
tion, we show, through a theoretical analysis, that in spite of increasing the
number of floods, Jumps does not require more energy than other approaches
that use only three landmarks to build an accurate coordinate system.

Let us consider a network composed of M nodes, where the average number
of neighbors per node is dneig and the density per coverage range is dcouv (cf.
section 4.3). We suppose that there are N landmarks and that we wish to
discover the distances of each node to every landmark. For this purpose, each
landmark floods the network with a probe.

In this scheme, each node should, at least, forward the probe once. If we assume
a perfect communication scheduling and no collision nor packet loss, such a
flooding results in M packets emissions and approximatively M×dneig packet
receptions. For N landmark, the distances discovery phase requires M × N
packet emissions and M× N × dneig packet receptions.
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In order to evaluate the energy consumption of this process, we consider
the datasheet of the CC2420 radio chipset [20] present in the Moteiv Tmote
Sky [21] sensors nodes and in the Xbow [22] motes. This chip consumes 19.7
mA for reception and proposes different emission powers ranging from −25
dBm to 0 dBm.

If we consider, as reference, the lowest power level (-25 dBm), increasing the
output power (in Watt) by a factor λ results in: (i) a α

√
λ gain in range (α

denotes the path loss exponent); and therefore (ii) an increase in the coverage
area by a factor ( α

√
λ)2. Table 1 summarizes the values for a free-space propa-

gation model [23] and relates them to the CC2420 energy consumption figures.

Interpolating the current consumption ITx as a function of density gives ITx ≃√
dneig/d0+15.338

1.8709
. With a constant voltage U , we can state that the energy con-

sumption can be expressed as a function of the number of landmarks (N) and
of the average number of neighbors (dneig) by :

E ≃ U ×M× N ×




√

dneig/d0 + 15.338

1.8709
+ 19.7 × (dneig/d0)



 ·

Fig. 13 represents the energy required by Jumps, compared to a reference
case of a minimal transmission power and a single landmark. The transmission
levels have been chosen in order to fit values used in simulations. Therefore,
the maximum power level used leads to a network density of 51 nodes per
coverage range. From these figures, we can see that increasing the transmission
range can be equivalent to adding landmarks in terms of energy consumption.
For instance, a scenario with 50 nodes as average number of neighbors and 3
landmarks is approximatively equivalent to a scenario with 10 neighbors and
10 landmarks.

Relating these results to the zone sizes’ ones presented in section 4.4.1, a
50-node dense network with three landmarks leads to a zone size of 0.7 ra-
dio ranges and 7.7 nodes per zone, while a 10-node dense network with 10
landmarks leads to a 0.29 radio ranges zone size and 2.3 nodes per zone.
Therefore, adding landmarks does not only improve accuracy of positioning,
but also leads to either better energy consumption, allowing to reduce the
transmission range of sensors, or to a lower network cost, allowing to deploy
less sensors.
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6 Conclusion and future works

In this paper, we presented Jumps, a positioning system based solely on par-
tial connectivity knowledge. Whereas existing algorithms use only three nodes
as landmarks for hop-count positioning, we studied through extensive simula-
tions the behavior of such a method with up to ten landmarks. The simulation
results show that increasing the number of landmarks makes our coordinate
system significantly more accurate than previous approaches. With a suffi-
cient number of landmarks, the average distance between two nodes sharing
the same coordinates is less than one radio coverage range, which makes it
possible to avoid the use of any proactive routing protocol in favor of a pure
position-based one. While adding one landmark involves one more flood when
building the coordinate system, it avoids the need of increasing the neighbor-
hood density, either by increasing the node population or the transmission
power of these nodes. Thus, we show that adding landmarks, in addition to
improving the accuracy of the positioning system, also reduces the energy re-
quired to establish an accurate coordinate system. Moreover, we believe that
using more landmarks allows more freedom in landmark position choice, which
gives ability to select them based on local criteria. In this paper, we consider
only static sensor networks.
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Table 1
This table gives some values of current power consumption (ITx), radio range cov-
erage, and average neighbor density as a function of the output power. R0 and d0

represent the values for the minimum output power.

Output power ITx Radio range neighbors

(dBm) (mA) α = 2 α = 2

-25 8.5 R0 d0

-15 9.9
√

10 × R0 ≃ 3.16 × R0 10 × d0

-10 11.2 103/4 × R0 ≃ 5.62 × R0 103/2 × d0 ≃ 31.62 × d0

-7 12.5 109/10 × R0 ≃ 7.94 × R0 109/5 × d0 ≃ 63.1 × d0

-5 13.9 10 × R0 100 × d0

-3 15.2 1011/10 × R0 ≃ 12.59 × R0 1011/5 × d0 ≃ 158.49 × d0

-1 16.5 1012/10 × R0 ≃ 15.84 × R0 1012/5 × d0 ≃ 251.2 × d0

0 17.4 105/4 × R0 ≃ 17.78 × R0 105/2 × d0 ≃ 316.22 × d0

L1

L2

L3

L4

L5

L6

L7

L8

n

Fig. 1. Virtual coordinates computation with eight landmarks.
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Fig. 2. Partition of the network into zones; details of a zone.
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Fig. 3. Zone size distribution
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Fig. 4. Zone size mean value in simulated scenarios, as functions of the number of
landmarks, for five different neighbor densities.
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Fig. 6. Maximum zone size distribution.
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Fig. 7. Maximum zone size as a function of number of landmarks. Observe that
densities 20 and more have the same result.
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Fig. 8. Intra-zone size distribution.
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Fig. 9. Intra-zone size as a function of number of landmarks. As for the maximum
zone size, increasing the density beyond 20 neighbors per node has no effect.
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Fig. 10. Number of nodes per zone distribution.
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Fig. 11. Number of nodes per zone as a function of number of landmarks.
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Fig. 11. Nodes per zone mean value in simulated scenarios, as a function of neighbor
density, for height different numbers of landmarks.
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Fig. 12. Number of zones mean value in simulated scenarios.
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Fig. 13. Energy consumption per node as a function of number of landmarks and
neighbor density. The results are represented as a comparison to an initial case of
a single landmark with minimum transmission power.
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