

True link detection in the presence of per packet load balancers

Thomas Bourgeau, Timur Friedman

▶ To cite this version:

Thomas Bourgeau, Timur Friedman. True link detection in the presence of per packet load balancers. 11e Rencontres Francophones sur les aspects Algorithmiques des Télécommunications (ALGOTEL), Jun 2009, Carry-Le-Rouet, France. . hal-01500466

HAL Id: hal-01500466

https://hal.sorbonne-universite.fr/hal-01500466v1

Submitted on 3 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Algotel 2009

True link detection in the presence of per packet load balancers

Thomas Bourgeau and Timur Friedman

Mails: {thomas.bourgeau, timur.friedman}@lip6.fr

Introduction: Recent studies have shown that the traceroute tool does not provide reliable topological information when probing through load balancers [1]. Paris Traceroute was developed to correct this problem as it traces correct paths through per-flow load balancers (PFLBs) and per-destination load balancers (PDLDs). However it is unable to do so for per-packet load balancer (PPLBs).

Motivation: We propose to enhance Paris Traceroute with a new algorithm to resolve true link detection with PPLBs. When cross traffic occurs we apply statistical tests in our algorithm. Enough PPLBs are found in network paths: Augustin et al. found that PPLBs appears in 2% of the traces obtained by a list of 60000 destinations

Problem Description · Paris Traceroute with the MDA algorithm [2] obtains all the interfaces that (D) A (D)are present in the underlying topology (Fig 1.a) when L is a PPLB. E-•But any of the links in {A, B, C }x{D, E, F } is possible (Fig 1.b), meaning that (B) E the true links (A, D), (B, E), and (C, F) are not explicitly detected due to the (C)-(F) lack of an inference algorithm. (F) Fig 1.a: Simple diamond topology

Proposed Algorithm

Our algorithm determines the true links in a PPLB diamond in two main steps:

Step 1: Discovers the estimated round robin pattern at each multi interface hop in the diamond.			Step 2: Finds out how each	Finds out how each hops pattern aligns with that of its neighbor	
PatternProbe	PatternAnalysis		PairProbe	PatternAlignment	
Sends \mathbf{k}_{L} probes to each multi interface hops in the diamond.	Estimate the Round Robin pattern at each hop.	$G_2 = (A,B,C)$ $G_3 = (D,E,F)$	Sends k _F back-to-back probes successively to two adjacent hops.	Estimates the alignments between the inferred round robin patterns	
Fig 1.b: Pattern with no cross traffic. With no cross traffic, the discovered interfaces follow a periodical cycle at each hop, which indicates that PPLBs follow a round robin pattern (Fig 1.b).	Build the lateral count matrix T_i with PatternProbe results: B 0 0 17 0 B 0 0 17 results: C 16 0 0 0 Estimate the Round Robin pattern: Search the argument of the maximum value found in each row of T_i Build an ordered cycle G_i with the argument value found in T_i		With no cross traffic we know that our observation are not disrupted. Need to send k _F =1 back-to-back probe to find one corect forward transition.	Build the forward transition matrix M_i with PairProbe results: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Fig 1.c: Pattern with cross traffic With cross traffic, the observation are disrupted as the discovered interfaces don't follow the underlying periodic cycle (Fig 1.c). We need to use statistical tests to uncover the round robin pattern.	Build the lateral count matrix T _i with PatternProbe results: A 4 9 3 B 1 4 8 C 11 6 6 Estimate the Round Robin pattern: Use a Binomial distribution to model the transition of each individual interfaces as a result of randomness Reject each real transition that have a random behaviour by comparing them to the Binomial distribution results.		With cross traffic we know that our observation are disrupted. Need to send $k_{\rm F}$ backto-back probe in regard of the amount of cross traffic. (we plan to determine the correct number $k_{\rm F}$ in future work)	Build the forward transition matrix M_i with PairProbe results:	

Future work

- •Validate the algorithm in a controlled environment.
- •Determine the number of probes to be sent with cross traffic.
- •Study PPLBs on the Internet with our algorithm.

References

[1] Fabien Vigier, Brice Augustin, Xavier Cuveillier, Clémence Magnien, Matthieu Latapy, Timur Friedman, and Renata Teixeira. Detection, understanding, and prevention of traceroute measurement artifacts. Elsevier, 2007. [2] R. Teixeira D. Veitch, B. Augustin and T. Friedman. Failure control in multipath route tracing. In INFOCOM, 2009.

This work has been funded by the European Commission FP7 project OneLab 2 and was conducted at the Université Pierre et Marie Curie in LIP6

