N

N

Retouched Bloom Filters: Allowing Networked
Applications to Flexibly Trade Off Selected False
Positives Against False Negatives

Benoit Donnet, Bruno Baynat, Timur Friedman

» To cite this version:

Benoit Donnet, Bruno Baynat, Timur Friedman. Retouched Bloom Filters: Allowing Networked
Applications to Flexibly Trade Off Selected False Positives Against False Negatives. 2006. hal-
01500488

HAL Id: hal-01500488
https://hal.sorbonne-universite.fr /hal-01500488

Preprint submitted on 3 Apr 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.sorbonne-universite.fr/hal-01500488
https://hal.archives-ouvertes.fr

arXiv:cs/0607038v2 [cs.NI] 1 Dec 2006

Retouched Bloom Filters:
Allowing Networked Applications to Trade Off
Selected False Positives Against False Negatives

Benoit Donnet, Bruno Baynat, Timur Friedman
T Université Catholiqgue de Louvain, CSE Department
x Université Pierre et Marie Curie, Laboratoire LIP6-CNRS

Abstract— Where distributed agents must share voluminous membership information. The present paper also introdaces
set membership information, Bloom filters provide a compact variant on the Bloom filter: one that allows an application to
though lossy, way for them to do so. Numerous recent network remoye selected false positives from the filter, tradingrthe

papers have examined the trade-offs between the bandwidth f inst the introducti f d fal i
consumed by the transmission of Bloom filters, and the error Ol against the Introduction of random 1aise negatives.

rate, which takes the form of false positives, and which rise the This paper looks at Bloom filters in the context of a
more the filters are compressed. In this paper, we introducette network measurement application that must send informatio

retouched Bloom filter (RBF), an extension that makes the Blom concerning large sets of IP addresses between measurement
filter more flexible by permitting the removal of selected fake points. Sec. VI describes the application in detail. Buteher

positives at the expense of generating random false negatis. We . - . . .
analytically show that RBFs created through a random proces W€ Cité two key characteristics of this particular applizat

maintain an overall error rate, expressed as a combinationbthe ~ characteristics that many other networked applicatiosesh
false positive rate and the false negative rate, that is eqlito the and that make them candidates for use of the variant that we
false positive rate of the corresponding Bloom filters. We ftther propose.

provide some simple heuristics and improved algorithms the ~ pirst some false positives might be more troublesome than
decrease the false positive rate more than than the correspding . o .
increase in the false negative rate, when creating RBFs. Fatly, others, and these can be |den'_[|f|_ed after the B_Ioom filter has
we demonstrate the advantages of an RBF over a Bloom filter in been constructed, but before it is used. For instance, when
a distributed network topology measurement application, vmere |IP addresses arise in measurements, it is not uncommon for
information about large stop sets must be shared among route some addresses to be encountered with much greater frgquenc
tracing monitors. than others. If such an address triggers a false positiee, th
performance detriment is greater than if a rarely encoedter
address does the same. If there were a way to remove them
from the filter before use, the application would benefit.

The Bloom filter is a data structure that was introduced Second, the application can tolerate a low level of false
in 1970 [1] and that has been adopted by the networkimggatives. It would benefit from being able to trade off the
research community in the past decade thanks to the banbst troublesome false positives for some randomly intro-
width efficiencies that it offers for the transmission of seduced false negatives.
membership information between networked hosts. A sendefThe retouched Bloom filte(RBF) introduced in this paper
encodes the information into a bit vector, the Bloom filtepermits such a trade-off. It allows the removal of selectdsef
that is more compact than a conventional representatigrasitives at the cost of introducing random false negatized
Computation and space costs for construction are linedran with the benefit of eliminating some random false positives a
number of elements. The receiver uses the filter to test whetthe same time. An RBF is created from a Bloom filter by
various elements are members of the set. Though the filtér vgklectively changing individual bits from 1 to 0, while the
occasionally return a false positive, it will never returfatse size of the filter remains unchanged. As Sec. llI-B shows
negative. When creating the filter, the sender can choosedrslytically, an RBF created through a random process main-
desired point in a trade-off between the false positive aag tains an overall error rate, expressed as a combinationeof th
the size. Theeompressed Bloom filtean extension proposedfalse positive rate and the false negative rate, that is lequa
by Mitzenmacher [2], allows further bandwidth savings. to the false positive rate of the corresponding Bloom filter.

Broder and Mitzenmacher's survey of Bloom filters’ netWe further provide a number of simple algorithms that lower
working applications [3] attests to the considerable iegér the false positive rate by a greater degree, on average, than
in this data structure. Variants on the Bloom filter continoe the corresponding increase in the false negative rate.eThes
be introduced. For instance, Bonomi et al.'s féleft counting algorithms require at most a small constant multiple inasyer
Bloom filter is a more space-efficient version of Fan et ab}s [requirements. Any additional processing and storageeweliat
counting Bloom filter, which itself goes beyond the standattie creation of RBFs from Bloom filters are restricted to the
Bloom filter to allow dynamic insertions and deletions of seheasurement points that create the RBFs. There is striotly n

|I. INTRODUCTION

http://arXiv.org/abs/cs/0607038v2

ha(b) hi(a)
[ofo]1]oJo]1]o]o]1]0]

ha(a) h2(b)
Fig. 1. A Bloom filter with two hash functions

addition to the critical resource under consideration,clwhi [B]

is the bandwidth consumed by communication between the

measurement points.
Some existing Bloom filter variants do permit the suppres-

sion of selected false positives, or the removal of infoiamat

in general, or a trade-off between the false positive ratethe Fig. 2. The false positives set

false negative rate. However, as Sec. VIl describes, the iRBF

unigue in doing so while maintaining the size of the original

Bloom filter and lowering the overall error rate as compared We define thefalse positive proportionfp as the ratio of

to that filter. the number of elements i — A that give a positive answer,
The remainder of this paper is organized as follows: Sec.td the total number of elements i — A:

presents the standard Bloom filter; Sec. Ill presents the, RBF |Fpl

and shows analytically that the reduction in the false pasit fp = TT—4] @)

ra.te is equal, on average, to the increase _in the false NeYpve can alternately define thialse positive rate as the
ative rate even as random 1s in a Bloom filter are reset {o,hapility that, for a given element that does not belong to
Os; Sec. IV presents several simple methods for selectivghit set4, the Bloom filter erroneously claims that the element
clearing 1_s that_are associated with false posnwes_, _amzilsh is in the set. Note that if this probability exists (a hypatse
through simulations that they reduce the false positive gt o|ateq 1o the ergodicity of the system that we assume here),

more, on average, than they increa_lse the false negative ratg,5s the same value as the false positive proportipn
Sec. VI describes the use of RBFs in a network measuremgt 4 consequence, we will use the same notation for both

application; Sec. VII discusses _several Bloom filter Vaﬁ"?mparameters and also denote By the false positive rate. In
and compares RBFs to them; finally, Sec. VIl summarizeger 1o calculate the false positive rate, most papersnzssu
the conclusions and future directions for this work. that all hash functions map each item in the universe to a
random number uniformly over the randé,...,m}. As a
Il. BLOOM FILTERS consequence, the probability that a specific bit is set taer af
A Bloom filter [1] is a vectorv of m bits that codes the the application of one hash function to one elementla$ Ii"
membership of a subset = {a,as,...,a,} of n elements and the probability that this specific bit is left to Olis- .-.
of a universd/ consisting ofN elements. In most papers, theéAfter all elements ofA are coded in the Bloom filter, the
size of the universe is not specified. However, Bloom filtefgrobability that a specific bit is always equal to 0 is

are only useful if the size o/ is much bigger than the size 1\

of A. po = <1 — —> (2)
The idea is to initialize this vector to 0, and then take m

a sett = {hi,hs, ..., hi} of k independent hash functions As m becomes large;l is close to zero angy can be

hi,ha, ..., hk, €each with rangg1, ..., m}. For each element gpproximated by

a € A, the bits at positiong,(a), ha(a),. .., hi(a) in v are po ~ e A3)

set to 1. Note that a particular bit can be set to 1 severaktime

as illustrated in Fig. 1. The probability that a specific bit is set to 1 can thus be
In order to check if an elemetof the universd/ belongs expressed as

to the setA, all one has to do is check that thebits at p1 = 1—po 4)

positionshy(b), ha(b), ..., h(b) are all set to 1. Ifat least
one bit is set to 0, we are sure thatloes not belong tal. If
all bits are set to 1) possibly belongs tol. There is always a
probability thatb does not belong tal. In other words, there

The false positive rate can then be estimated by the proba-
bility that each of the: array positions computed by the hash
functions is 1.fp is then given by

is a risk offalse positivesLet us denote byp the set of false fp = Pk

positives, i.e., the elements that do not belongitéand thus 1\ kn

that belong to/ — A) and for which the Bloom filter gives - (1 -(1-5)) ()
a positive answer. The set$, A, and Fp are illustrated in ~ (1 _ e—%)k

Fig. 2. (B is a subset offp that will be introduced below.)

In Fig. 2, Fp is a circle surroundingl. (Note thatFp is not The false positive ratgp is thus a function of three param-
a superset ofd. It has been colored distinctly to indicate thaeters:n, the size of subset; m, the size of the filter; and,

it is disjoint from A.) the number of hash functions. Fig. 3 illustrates the vaati

/
0.8 0.8 0.8
0.6 0.6 0.6
% S <
0.4 0.4 0.4
0.2 0.2 0.2
YR N

0'00 5 10 11;;(20 25 30 0‘00 20000 40000m60000 80000 100000 0'00 20000 40000 n 60000 80000 100000
Fig. 3. fp as a function oft, m andn.
of fp with respect to the three parameters individually (when
the two others are held constant). Obviously, and as can be
seen on these graphfp is a decreasing function of: and
an increasing function of. Now, whenk varies (withn and
m constant),fp first decreases, reaches a minimum and then
increases. Indeed there are two contradicting factorsigusi
more hash functions gives us more chances to find kit
for an element that is not a member df but using fewer
hash functions increases the fractionOdbits in the array. As
stated, e.g., by Fan et al. [5fp is minimized when

mln2
k = (6)
n Fig. 4. False positive and false negative sets after thectsadeclearing

for fixed m andn. Indeed, the derivative ofp (estimated by Process
eqgn. 3) with respect t& is 0 whenk is given by eqgn. 6, and

it can further be shown that this is a global minimum. .)
Thus the minimum possible false positive rate for give“?rmS of mcreased memory usage. Bandwidth usage becomes
values ofm andn is given by egn. 7. In practice, of coursed constraint that must be minimized when Bloom filters are

k must be an integer. As a consequence, the value furnisiiEapsmitted in the network.
by eqgn. 6 is rounded to the nearest integer and the resulting
false positive rate will be somewhat higher than the optima|, Bit Clearing

value given in egn. 7. . . .
g a In this paper, we introduce an extension to the Bloom

m filter, referred to as theetouched Bloom filte(RBF). The

" (7) RBF makes standard Bloom filters more flexible by allowing

) L . selected false positives to be traded off against randose fal
Finally, it is important to emphasize that the abSOIUtf'afegatives. False negatives do not arise at all in the stdndar

number of false positives is relative to the sizelbf- A (and 556 The idea behind the RBF is to remove a certain number

not directly to the size oft). This result seems surprising 8¢ these selected false positives by resetting indiviguall

the expression ofp depends om, the size 0fA, and does not .\,qen bits in the vector. We call this process théit

depend onV, the size ofU. If we double the size o/ — A (jearing processResetting a given bit to 0 not only has the

(and keep the size ot constant) we also double the absolutget of removing a certain number of false positives, tso a

number of false positives (and obviously the false positate onerates false negatives. Indeed, any element! such that

m1n 2

fo = (%) T~ (0.6185)

is unchanged). (at least) one of thé bits at positionsy; (a), ha(a), . . ., hi(a)
has been reset to 0, now triggers a negative answer. Element
Ill. RETOUCHEDBLOOM FILTERS a thus becomes a false negative.

As shown in Sec. Il, there is a trade-off between the size To summarize, the bit clearing process has the effects of
of the Bloom filter and the probability of a false positive rFodecreasing the number of false positives and of generating a
a givenn, even by optimally choosing the number of hashumber of false negatives. Let us use the laldglsand FI’\l
functions, the only way to reduce the false positive rate o describe the sets of false positives and false negaties a
standard Bloom filters is to increase the sizeof the bit the bit clearing process. The seﬂ%, and F,’\l are illustrated
vector. Unfortunately, although this implies a gain in termin Fig. 4.
of a reduced false positive rate, it also implies a loss in After the bit clearing process, the false positive and false

negative proportions are given by of the £ positions have been resetremains a false positive.
The probability of this latter event is

|Fpl
fp = wia ®) 1
0 (-2 a3
/ m
o= N ©) " .
N [A] As a consequence, after the reset of one bitvjnthe

Obviously, the false positive proportion has decreased (fglgse positive rate decreases frofp (given by eqn. 5) to
Fp, is smaller thanFp) and the false negative proportion hajéF = fpr1. The proportion of false positives that have been
increased (as it was zero before the clearing). We can meagglfminated by the resetting of a randomly chosen bivifs
the benefit of the bit clearing process by introducifgp, thus equal tol —ry:

the proportion of false positiyes removed by t_he bit clegrin Afp = 1—m (14)
process, and\ f\;, the proportion of false negatives generated
by the bit clearing process: The second consequence of resetting a bitOtes the
, , generation of a certain number of false negatives. If we
Afp = |Fp| — | Fpl _ fp—Ip (10) consider a given element € A, after the reset it will result
P | Fpl Ip in a negative test if the bit that has been reset imelongs to
) one of thek positionsh;(a), ha(a), ..., hi(a). Conversely, if
Afy = [N _f (11) none of thek positions have been reset, the testaoremains
N = |lA| — ‘N positive. Obviously, the probability that a given element4

i i . _ becomes a false negative is givenlbyr, (the same reasoning
We, finally, definey as the ratio between the proportion Oiwolds):

false p05|t!ves removed and the proportion of false negativ Afy = 1—m (15)
generated:
_ Afp We have demonstrated that resetting one bi0 o v has
- AfN the effect of eliminating the same proportion of false poss
as the proportion of false negatives generated. As a result,
x is the main metric we introduce in this paper in orde{ — 1. |t ijs however important to note that the proportion
to evaluate the RBF. Ify is greater than 1, it means thaipf false positives that are eliminated is relative to thes st
the proportion of false positives removed is higher than thge set of false positives (which in turns is relative to tiee s
proportion of false negatives generated. of U — A, thanks to eqn. 5) whereas the proportion of false
negatives generated is relative to the sizedofAs we assume
that U — A is much bigger thamd (actually if [Fp| > |AJ),
resetting a bit t@ in v can eliminate many more false positives
In this section, we analytically study the effect of randgmlthan the number of false negatives generated.
resetting bits in the Bloom filter, whether these bits cqrogsd It is easy to extend the demonstration to the reset bits
to false positives or not. We call this process thadomized and see that it eliminates a proportiba- r, of false positives

bit clearing processin Sec. IV, we discuss more sophisticatednd generates the same proportion of false negatives, where
approaches to choosing the bits that should be cleared. How-s given by

ever, performing random clearing in the Bloom filter enables < s)k
1—

(12)

B. Randomized Bit Clearing

us to derive analytical results concerning the consequence Ts = (16)

of the clearing process. In addition to providing a formal pam) o
derivation of the benefit of RBFs, it also gives a lower bound AS & consequence, any random clearing of bits in the Bloom
on the performance of any smarter selective clearing appro€ctorv has the effect of maintaining the ratioequal tol.
(such as those developed in Sec. IV).
We again assume that all hash functions map each element IV. SELECTIVE CLEARING
of the universeU to a random number uniformly over the Sec. IIl introduced the idea of randomized bit clearing and
range{l,...,m}. Once then elements ofA have been coded analytically studied the effect of randomly resettindpits of
in the Bloom filter, there is a probability, for a given bit in 4, whether these bits correspond to false positives or not. We
v to be(and a probability; for it to be 1. As a consequence, showed that it has the effect of maintaining the ratiequal
there is an average number pfm bits set tol in v. Let us to 1. In this section, we refine the idea of randomized bit
study the effect of resetting t@ a randomly chosen bit in. clearing by focusing on bits corresponding to elements that
Each of thepym bits set tol in v has a probability=— of trigger false positives. We call this procesaective clearing
being reset and a probabilily— p%m of being left atl. As described in Sec. Il, in Bloom filters (and also in RBFs),
The first consequence of resetting a bittés to remove a some elements iV — A will trigger false positives, forming
certain number of false positives. If we consider a givesdalthe setFp. However, in practice, it is likely that not all false
positiver € Fp, after the reset it will not result in a positivepositives will be encountered. To illustrate this assextiet
test any more if the bit that has been reset belongs to oneusf assume that the univergé consists of the whole IPv4
the k& positionshy (x), ha(z), ..., hi(z). Conversely, if none addresses range. To build the Bloom filter or the RBF, we

Algorithm 1 Random Selection Algorithm 2 Minimum FN Selection

Require: v, the bit vector. Require: v, the bit vector and 4, the counting vector.
Ensure: v updated, if needed. Ensure: v andv 4 updated, if needed.

1: procedure RANDOMSELECTION(B) 1: procedure MINIMUM FNSELECTION(B)

2: for all b, € B do 2: CREATECV(A4)

3: if MEMBERSHIPTEST(b;, v) then 3 for all b; € B do

4: index — RANDOM(h1(b;), ..., hi(b;)) 4 if MEMBERSHIPTEST(b;, v) then

5: v[index] < 0 5: index < MININDEX(b;)

6 end if 6: v[index] < 0O

7 end for 7 valindex] «+ 0

8: end procedure 8 end if

9 end for

10: end procedure

definek hash functions based on a 32 bit string. The subsét:
A to record in the filter is a small portion of the IPv4 addres$2: procedure CREATECV(A)
range. Not all false positives will be encountered in pacti 13: for all a; € A do

because a significant portion of the IPv4 addressdgithave 14: for j =1 to k do
not been assigned. 15: valhj(a;)]++
We record the false positives encountered in practice it a 9é: end for

called B, with B C Fp (see Fig. 2). Elements i are false 17: end for
positives that we label asoublesome keysas they generate, 18: end procedure
when presented as keys to the Bloom filter's hash functions,
false positives that are liable to be encountered in praciie
would like to eliminate the elements @& from the filter. and returns a value randomly chosen amongst its uniformly
In the following sections, we explore several algorithms fdistributed arguments. The algorithm also assumes that the
performing selective clearing (Sec. IV-A). We then evatuafunction MEMBERSHIPFTEST is defined. It takes two argu-
and compare the performance of these algorithms using thewents: the key to be tested and the bit vector. This function
rical analysis (Sec. IV-B) and simulation analysis (SeeQ) returnstrue if the element is recorded in the bit vector (i.e.,
all the & positions corresponding to the hash functions are set
. to 1). It returnsfalse otherwise.
A. Algorithms The second algorithm we propose is calléhimum FN
In this section, we propose four different algorithms the8electionThe idea is to minimize the false negatives generated
allow one to remove the false positives belonging3toAll of by each selective clearing. For each troublesome key tovemo
these algorithms are simple to implement and deploy. We fitblat was not previously cleared, we choose amongst the
present an algorithm that does not require any intelligengebit positions the one that we estimate will generate the
in selective clearing. Next, we propose refined algorithnrmsinimum number of false negatives. This minimum is given
that take into account the risk of false negatives. With ¢hedy the MININDEX procedure in Algorithm 2. This can be
algorithms, we show how to trade-off false positives foséal achieved by maintaining locally a counting vectaeg, storing
negatives. in each vector position the quantity of elements recorded.
The first algorithm is calledkandom SelectiorniThe main This algorithm effectively takes into account the posgipibf
idea is, for each troublesome key to remove, to randomlyseleollisions in the bit vector between hashed keys of elements
a bit amongst the: available to reset. The main interest obelonging toA. Minimum FN Selection is formally defined
the Random Selection algorithm is its extreme computatioria Algorithm 2.
simplicity: no effort has to go into selecting a bit to clear. For purposes of algorithmic simplicity, we do not entirely
Random Selection differs from random clearing (see Sef. Ilipdate the counting vector with each iteration. The cost
by focusing on a set of troublesome keys to rema¥eand comes in terms of an over-estimation, for the heuristic, in
not by resetting randomly any bit i whether it corresponds assessing the number of false negatives that it introdncasyi
to a false positive or not. Random Selection is formally d=lin given iteration. This over-estimation grows as the aldonit
in Algorithm 1. progresses. We are currently studying ways to efficienfystd
Recall thatB is the set of troublesome keys to removefor this over-estimation. Sec. V will discuss more complex
This set can contain from only one element to the whole s&tlective clearing algorithms that update, at each step, th
of false positives. Before removing a false positive eletnertounting vector.
we make sure that this element is still falsely recorded & th The third selective clearing mechanism is calddximum
RBF, as it could have been removed previously. Indeed, dBB Selection In this case, we try to maximize the quantity
to collisions that may occur between hashed keys in the bit false positives to remove. For each troublesome key to
vector, as shown in Fig. 1, one of tlhehashed bit positions remove that was not previously deleted, we choose amongst
of the element to remove may have been previously restte k bit positions the one we estimate to allow removal of the
Algorithm 1 assumes that a functionARDOM is defined largest number of false positives, the position of whichiveg

Algorithm 3 Maximum FP Selection Algorithm 4 Ratio Selection

Require: v, the bit vector and s, the counting vector. Require: v, the bit vectorup andwv4, the counting vectors
Ensure: v andvp updated, if needed. andr, the ratio vector.
1: procedure MAXIMUM FP(B) Ensure: v, v4, vg andr updated, if needed.
2: CREATEFV(B) 1: procedure RATIO(B)
3: for all b, € B do 2 CREATECV(A)
4 if MEMBERSHIPTEST(b;, v) then 3 CREATEFV(B)
5: index < MAXINDEX(b;) 4 COMPUTERATIO()
6: v[index] — 0 5 for all b; € B do
7 vglindex] < 0 6: if MEMBERSHIPTEST(b;, v) then
8: end if 7 index < MINRATIO(b;)
9: end for 8 v[index] < 0
10: end procedure 9: valindex] « 0
11: 10: vglindex] < 0
12: procedure CREATEFV(B) 11: rlindex] < 0
13: for all b; € B do 12: end if
14: for j =1 to k do 13: end for
15: vp[h;(bi)]++ 14: end procedure
16: end for 15:
17: end for 16: procedure COMPUTERATIO
18: end procedure 17: for i =1 to m do
18: if v[i] A vg[i] > 0 then
19: rli] — ;}—H
by the MaxINDEX function in Algorithm 3. In the fashion 20: end if

of the Minimum FN Selection algorithm, this is achieveckl: end for

by maintaining a counting vectorz, storing in each vector 22: end procedure

position the quantity of false positive elements recordemt.

each false positive element, we choose the bit correspgrtdin

the largest number of false positives recorded. This algori belonging to B| andv, the bit vector. The MMBERSHIFTEST

considers as an opportunity the risk of collisions in the bjtrocedure aims at determining whether the elements

vector between hashed keys of elements generating falgeorded in the bit vectoo, or not. Therefore, as explained

positives. Maximum FP Selection is formally described im Sec. I, the MEMBERSHIFTEST procedure checks if the

Algorithm 3. bits at positionsh (b), ha(b), ..., hi(b) are all set to 1. As

Finally, we propose a selective clearing mechanism calledconsequence, the algorithmic complexity of theMBER-

Ratio SelectionThe idea is to combine Minimum FN Se-SHIPTESTis O(k).

lection and Maximum FP Selection into a single algorithm. Now, let us consider the Random Selection algorithm in

Ratio Selection provides an approach in which we try tiés entirety. Random Selection browses all elements béhong

minimize the false negatives generated while maximizireg tho B. And for each element i3, Random Selection calls

false positives removed. Ratio Selection therefore takés i the MEMBERSHIFTEST procedure. Therefore, the BMIBER-

account the risk of collision between hashed keys of elesnestHIPTEST procedure is calledB| times.

belonging toA and hashed keys of elements belongingsto Consequently, the algorithmic complexity of the Random

It is achieved by maintaining a ratio vectet,in which each Selection isO(k x |B]). [|

position is the ratio between, andvg. For each troublesome Lemma 2:The running time of the Minimum FN Selection

key that was not previously cleared, we choose the indexavh@lgorithm isO(k x (|A| + |BJ)).

the ratio is the minimum amongst thie ones. This index Proof: We first have a look at the &EATECV procedure.

is given by the MNRATIO function in Algorithm 4. Ratio CREATECV aims at creating the counting vectoy that

Selection is defined in Algorithm 4. This algorithm make#dicates, for each cell, the number of element recorded in

use of the REATECV and QREATEFV functions previously the corresponding cell of the bit vecter Therefore, this

defined for Algorithms 2 and 3. procedure browses all elements belongingit@nd, for each
element, incrementk counters, wheré gives the number of
hash functions used. Consequently, the algorithmic coxitgle

B. Theorical Analysis of the GREATECV procedure iO(k x |4]).
1) Algorithmic Complexity: After returning from the ®EATECV procedure call, the
Lemma 1:The algorithmic complexity of the Random Se-Minimum FN Selection algorithm browses all elements be-
lection algorithm isO(k x |B|). longing to B and, for each element, callsB&MiIBERSHIPTEST.

Proof: Before going into details of the Random Selectioff the membership test returns true, then thaNnMIDEX
algorithm, let us first have a look at theEMIBERSHIPTEST procedure is called. This procedure aims at determining the
procedure. This procedure takes two argumentsan element bit vector index that returns the minimum value amahg

available. The algorithmic complexity is thd¥(k). c bits needed by the counter. Therefore, the spatial contglexi

Until now, the complexity of Minimum FN Selection is of the Minimum FN Selection algorithm i©(cm + |B|). &
O(max(k x |A],2k x |B])). The term2k can be reduced to Lemma 7:The spatial complexity of the Maximum FP
k. Finally, it is easy to show tha®(k x max(|A4|,|B]|)) is Selection algorithm i$)(cm + | BJ).

equivalent toO(k x (|A| + |B])). | Proof: The Maximum FP Selection algorithm makes use
Lemma 3: The running time of the Maximum FP Selectiorof three data structures:, the m bit vector, B, the set of
algorithm isO(k x |B]). troublesome keys to remove from the Bloom filter amgl,

Proof: Let us first consider the REATEFV procedure. the counting vectorg is m cells long and each cell contains
This aims at creating the counting vectog that indicates, c bits needed by the counter. Therefore, the spatial contglexi
for each cell, the number of false positives recorded if the Maximum FP Selection algorithm @(cm + |B|). &
the corresponding cell of the bit vecter Therefore, this Lemma 8:The spatial complexity of the Ratio Selection
procedure browses all elements belongingst@nd, for each algorithm isO(cm + dm + | B|).
element, incrementg counters, wheré gives the number of Proof: The Ratio Selection algorithm makes use of four
hash functions used. Consequently, the algorithmic coxitple data structuress, them bit vector, B, the set of troublesome
of the GREATEFV procedure iO(k x | B]). keys to remove from the Bloom filtev,4, the counting vector

After returning from the ®EATEFV procedure call, the of elements truly recorded im, vp, the counting vector of
Maximum FP Selection algorithm browses all elements bealse positives recorded in and r, the ratio vectorr is m
longing to B and, for each element, callsBWBERSHIFTEST. cells long and each cell contaidsbits needed by the counter.
If the membership test returns true, then theMNDEX Note thatd is greater tham asr records ratios. Therefore, the
procedure is called. This procedure aims at determining thgatial complexity Ratio algorithm i©(cm + dm + |B|). &
bit vector index that returns the maximum value amdng
available. The algorithmic complexity is thd¥(k).

Until now, the complexity of Maximum FP Selection is
O(2 x (k x |B])). The multiplicative factor2 is negligible. ~ 1) Methodology:We conducted an experiment with a uni-
Consequently, the algorithmic complexity of the Maximunverse U of 2,000,000 elementsN(= 2,000,000). These

C. Simulation Analysis

FP Selection algorithm i®(k x |BJ). m elements, for the sake of simplicity, were integers beloggi
Lemma 4:The running time of the Ratio Selection algoto the range [0; 1,999,9999]. The subsétthat we wanted
rithm is O(k x (JA| + | B|) + m). to summarize in the Bloom filter contains 10,000 different

Proof: As explained above, the complexity ofR€- elements{ = 10,000) randomly chosen from the universe
ATECV is O(k x |A]) and QREATEFV is O(k x |B|). After U. Bloom’s paper [1] states thgt/| must be much greater
calling CREATECV and QREATEFV, the Ratio Selection al- than|A|, without specifying a precise scale.
gorithm calls the RTIO procedure that aims at creating the The bit vectorn we used for simulations is 100,000 bits long
ratio of vy to vg. The complexity of RTIO is O(m) as it (m = 100,000), ten times bigger thapd|. The RBF used five
must browses all vector cells. different and independent hash functiohs< 5). Hashing was

The rest of Ratio Selection behaves the same way as Migmulated with random numbers. We simulated randomness
mum FN Selection and Maximum FP Selection, i.e., it brows#gth the Mersenne Twister MT19937 pseudo-random number
all elements belonging td, performs the membership testgenerator [6]. Using five hash functions and a bit vector ten
and, if needed, selects the minimum value ambrayailable. times bigger tham is advised by Fan et al. [5]. This permits
Therefore, the complexity i©(k x (|A| + |B|)) to which we a good trade-off between membership query accuracy, i.e., a
add the cost associated to thei@UTERATIO procedure, i.e. low false positive rate of 0.0094 when estimated with eqn. 5,

O(m). memory usage and computation time. As mentioned earlier
Consequently, the algorithmic complexity @k x (|A| + in this paper (see Sec. lII), the false positive rate may be
|B|) + m). m decreased by increasing the bit vector size but it leads to a
2) Spatial Complexity: lower compression level.
Lemma 5:The spatial complexity of the Random Selection For our experiment, we defined the ratio of troublesome
algorithm isO(m + |B|) keys compared to the entire set of false positives as
Proof: The Random Selection algorithm makes use of B
two data structuress, the bit vector required by the Bloom 8 = ﬁ a7

filters, andB, the set of troublesome keys to remove from the
Bloom filter. The vectow is m bit long. Therefore, the spatial We considered the following values 6f 1%, 2%, 5%, 10%,
complexity of the Random Selection algorithmi$m +|B|). 25%, 50%, 75% and 100%. Wheh= 100%, it means that
B B = Fp and we want to remove all the false positives.

Lemma 6:The spatial complexity of the Minimum FN Each data point in the plots and tables represents the mean

Selection algorithm i€ (ecm + |B|) value over fifteen runs of the experiment, each run using a new
Proof: The Minimum FN Selection algorithm makes used, Fp, B, and RBF. We determined 95% confidence intervals

of three data structures:, the m bit vector, B, the set of for the mean based on the Studertistribution.
troublesome keys to remove from the Bloom filter amgl We performed the experiment as follows: we first created
the counting vector 4 is m cells long and each cell containsthe universé/ and randomly affected 10,000 of its elements to

A. We next builtFp by applying the following scheme. Rather 10
than using eqgn. 5 to compute the false positive rate and then :
creatingFp by randomly affecting positions in for the false
positive elements, we preferred to experimentally comfhee
false positives. We queried the RBF with a membership test
for each element belonging to — A. False positives were " »>> Minimum FN
the elements that belong to the Bloom filter but not4oWe 10 cooaia -
kept track of them in a set callep. This process seemed :
to us more realistic because we evaluated the real quaritity o
false positive elements in our data sBtwas then constructed
by randomly selecting a certain quantity of elementsFis ‘ ‘ ‘ ‘ ‘ ‘
the quantity corresponding to the desired cardinalityofwVe o 02 04 06 08 1.0
next removed all troublesome keys frasnby using one of the B
selective clearing algorithms, as explained in Sec. V-2 W
then built 7y, the false negative set, by testing all elements i)y 5. Number of bits reset
A and adding toF,’\l all elements that no longer belong tb
We also determined}, the false positive set after removing ‘ ‘ ‘ ‘
the set of troublesome keys. sesRatlo
2) Results:Table I to IV present performance results for the 26 et
selective clearing algorithms proposed in Sec. IV-A. Theame
over the fifteen run and the confidence intervals are showa. Th
column|B| gives the number of troublesome keys to remove.
The column|B’| gives an idea of the side effect of performing
selective clearing, in terms of additional false positivayk
removed. The columfB+ B’| shows the total number of false
positive removed. Finally, the last columr!’|, illustrates the
guantity of keys that become false negatives after sekectiv
clearing. B0 02 04 o8 08 10
Looking first at the side effects (i.e., columB’|), we see B
that removing troublesome keys & has the consequence of
removing other false positives. Maximum FP Selection (Ta-
ble I1) and Ratio Selection (Table 1V) have a larger side @ffeFi9- 8- Effect onx
compared to the two other selective clearing algorithms. We
further note that the total amount of false positives remdove
from the filter (column|B + B'|) is larger than the quantity ©" the plots). _
of false negative generated (colurpty|). This was expected, Fig. 6 evaluate_s the performance of the .four a!gorlthr_ns. It
as explained in Sec. I1I-B. plots 3 on the horizontal axis and on the vertical axis. Again,
Looking now at the quantity of false negative generatea?e confiden_C(_e intervals are plotted but they are generadly t
one can see that Minimum FN Selection (Table 11) and Ratfght to be visible.

Selection generates fewer false negatives than Maximum FR/Ve first note that, whatever the algorithm considered xthe
Selection and Random Selection. ratio is always above 1, meaning that the advantages of remov
Consequenﬂy’ from these pre"minary results, one Corﬁjudng false pOSitiVES overcome the drawbacks of generatillsg fa

that the Ratio Selection algorithm provides better perforoe. Negatives, if these errors are considered equally graves,Th
In the rest of this section, we will see if this conclusiontii s s expected, performing selective clearing provides bette
valid when comparing the four selective algorithms in ternf§sults than randomized bit clearing. Ratio Selection dhess,
of the number of reset bits required to remove troublesorfdlowed by Maximum FP, Minimum FN, and Ratio Selection.
keys in B and in terms of they metric. The x ratio for Random Selection does not vary much with
Fig. 5 compares the four algorithms in terms of the numb@r compared to the three other algorithms. For instance, the
s of reset bits required to remove troublesome key®iriThe x ratio for Ratio Selection is decreased by 31.3% between
horizontal axis giveg and the vertical axis, in log scale, gives?=1% and3=100%.
s. The confidence intervals are plotted but they are too tightTo summarize, one can say that, when using RBF, one can
to appear clearly. reliably get axy above 1.4, even when using a simple selective
We see that Random Selection and Minimum FN Selecti@tearing algorithm, such as Random Selection. Applying a
need to work more, in terms of number of bits to resemore efficient algorithm, such as Ratio Selection, allows on
when 3 grows, compared to Maximum FP Selection antb get ay above 1.8. Sucly values mean that the proportion
Ratio Selection. In addition, we note that the Ratio Sedecti of false positives removed is higher than the proportion of
algorithm needs to reset somewhat more bits than Maximudaise negatives generated.
FP Selection (the difference is too tight to be clearly \isib In this section, we provided and evaluated four simple se-

|B| |B'] |B| +|B| |A']
1% 188 +1.31 434 +13.74 622 +13.84 231 +3.01
2% 375 +1.84 842 t21.84 1217 +22.85 450 +7.75
5% 932 +9.94 1934 +37.83 2826 +46.21 1070 +10.05
10% 1872 +17.22 3306 +67.83 5178 +83.27 1954 +20.02
25% 4692 +26.11 5441 +e1.11 10133 +83.45 3858 +21.14
50% 9396 +78.88 5324 te7r.09 14720 +143.22 5684 +36.78
75% | 14063 +109.61 3151 436.92 17214 +ti44a.08 6715 +30.44
100% | 18806 +157.31 0 18806 +1s57.31 7367 +23.93

TABLE |
RANDOM SELECTION

|B] |B'| |B| + | B| |A']
1% 188 +1.09 431 +i1s.27 619 +16.11 183 +1.82
2% 377 +2.75 854 tis.14 1231 +19.39 362 +3.77
5% 939 +7.67 1942 tos.77 2881 +33.57 857 +9.82

10% 1877 +12.79 3303 +e65.26 5180 +76.46 1577 +14.92
25% 4667 +35.36 5338 +72.65 10045 +i105.28 3143 +19.83
50% 9365 +44.51 5330 +s52.00 14695 +92.01 4754 t24.27
75% | 14039 +85.94 3128 +37.98 17167 +119.53 5710 +21.64
100% | 18705 +i73.76 0 18705 +173.76 6407 +36.02

TABLE Il
MINIMUM FN SELECTION

|B] |B| |B| + |B'| |A]
1% 187 +0.93 769 +9.97 956 +10.28 226 +5.11
2% 375 +1.82 1458 +19.33 1833 +20.05 447 +8.96
5% 935 +6.36 3154 +52.89 4089 +58.78 1025 +12.08

10% 1882 +16.55 5188 +74.87 7070 +89.71 1838 +20.53
25% 4697 +34.52 (7466 +ss5.07 12163 +114.96 3420 +28.49
50% 9396 +86.71 6605 +9s.04 16001 +182.14 4870 +29.84
75% | 14032 +99.42 3670 42861 17702 +125.24 5674 +26.34
100% | 18664 +13s.13 0 18664 +i3s.13 6202 +22.09

TABLE Il
MAXIMUM FP SELECTION

|B] |B'] |B| +|B'| |A']
1% 188 +1.51 735 +13.89 923 +14.63 188 +1.58
2% 374 +3.25 1372 +20.05 1746 +30.58 363 +4.01
5% 939 +6.92 3035 +40.83 3974 +45.43 844 +5.73

10% 1863 +13.95 4860 +67.65 6723 +78.71 1498 +13.71
25% 4703 +28.72 7261 +es.39 11964 +oas9 2895 +i15.99
50% 9394 +80.17 6444 +tr7o.s6 15838 +149.01 4229 +25.95
75% | 14057 +i26.61 3625 +3s.28 17682 +i62.64 5021 +27.54
100% | 18683 +is1.08 0 18683 +is1.08 5581 +24.08

TABLE IV
RATIO SELECTION

lective algorithms. We showed that two algorithms, Maximuraach step, as well as a sub-estimation of the amount of false
FP Selection and Ratio Selection, are more efficient in termesitives removed at each step.
of number of bits to clear in the filter. Among these two

algorithms, we saw that Ratio Selection provides betterltes This section investigates improved selective clearing-alg
in terms of they ratio. rithms that keep up to date the quantity of false negatives

removed and false positives removed at each step of the

V. IMPROVING SELECTIVE CLEARING algorithms.

Sec. IV discussed four selective clearing algorithms. Most Sec. V-A discusses three improved selective algorithms;
of these algorithms simplifies the selective clearing pseceSec. V-B proposes a theorical analysis of the improved selec
by not updating the counting vectors when a particular trotive algorithms; finally, Sec. V-C compares the performance
blesome key is removed from the bit vector. This leads to af the improved selective algorithms with the standard algo
over-estimation of the quantity of false negatives gemerat rithms introduced in Sec. IV.

10

[{ull Algorithm 5 Improved Minimum FN Selection
z § Require: v, the bit vector and 4, the element vector.
" 2N Ensure: v andv, updated, if needed.
N 1: procedure MINIMUM FNSELECTION(B)
~ X 2. CREATECV(A)
W 3 for all b, € B do
§ 4 if MEMBERSHIFTEST(b;, v) then
5 index <— MININDEX(b;)
6: BITCLEARING(v4, index)
Fig. 7. Example of an ElementList vector 7 v[index] < 0
8 end if
9 end for
A. Algorithms 10: end procedure

Our improved selective clearing algorithms, instead ofigsi 11:
counting vectors, make use of a particular data structute: procedure CREATECV(A)
illustrated in Fig. 7. We call such a data struct@ementList 13: for all a; € A do

vector This is somewhat similar to the fast hash tablegs: for j=1to k do
developed by Song et al. [7]. 15: valh;(a;)].add@;)
The vector has the same length than the bit vector. 16: end for

contains thusn cells. Each cell is a pointer to a list of elementsL7: end for
recorded in that position in the bit vector. These elementsg: end procedure
depending on the selective clearing algorithm, can belong 19:
A or B. 20: procedure BITCLEARING(v, index)
The first algorithm is an improvement to the Minimum FN21: ElementList el =v.get(index)
Selection algorithm, calletmproved Minimum FN Selection 22: for all z; € el do
Recall that Minimum FN Selection aims, for each troublesomas: REMOVE(x;, V) > remove all occurrences of
key to remove, at selecting a bit amongst theavailable elementzr; from v
that will generate the minimum number of false negativeg4: end for
In the fashion of Minimum FN Selection, the minimum is25: end procedure
given by the MNINDEX procedure in Algorithm 5. Instead
of maintaining locally a counting vector, as done with thﬂlgorithm 6 Improved Maximum FP Selection
standard Minimum FN Selection algorithm, an ElementList——— .
vector,v 4, as illustrated in Fig. 7, is now used. Each celbaf ‘F?equm?. v, the bit vector ar_‘ij’ the element vector.
contains the list of elements belonging Aothat are recorded Ensure: v andvg updated, if needed.
in the corresponding cell af, the bit vector. When the min- 1 procedure MaxiMum FP(B)
imum index has been returned byiMNDEX, the Improved CREATEFV(B)
Minimum FN Selection algorithm call the IBCLEARING 3 for gll bi € B do
procedure that will remove from, all the elements recorded 4 if MEMBERSH'PTEST(I)“ v) then
in this minimum index. This was introduced in order to tackle> index — MAXINDEX(b;)
the over-estimation of the standard Minimum FN Selection® BITCLEARING(vz, index)
where the counting vector was not entirely updated at each vfindex] 0
step of the algorithm. Improved Minimum FN Selection is 8 end if
formally defined in Algorithm 5. % end for
Note that the MEMBERSHIPTEST procedure is identical to 10: end procedure
the one introduced in Sec. IV-A. 1L
The second improved selective clearing algorithm is aff procedure CREATEFV(E)
improvement to the Maximum FP Selection algorithm and™ for all bl € B do
is called Improved Maximum FP SelectioThe standard * for j =1to k do
Maximum FP Selection algorithm, defined in Algorithm 3,1° vs[h;(b)]-addp:)
aims at removing the maximum quantity of troublesome falst" end for
positives at each step of the algorithm. Improved Maximum FP end for
Selection behaves mainly in the same way, except it makes Jg; end procedure
of an element vector, g, instead of a counting vector. When
the maximum index is found by the AKINDEX procedure,
the BITCLEARING procedure is called in order to maintainRatio Selectioralgorithm aims at increasing the performances
vp up-to-date. Improved Maximum FP Selection is formallpf the standard Ratio Selection algorithm defined in Algo-
defined in Algorithm 6. rithm 4. Ratio Selection combines Minimum FN Selection and
Finally, our last improved selective algorithms, thgproved Maximum FP Selection into a single algorithm. It makes an

11

Algorithm 7 Improved Ratio Selection Improved Minimum FN Selection next browses all elements
Require: v, the bit vectorpp andvy4, the ElementList vectors belonging toB and, for each element, it performs the member-

andr, the ratio vector. ship test. If MEMBERSHIPTEST returns “true”, then NNIN-

Ensure: v, v4, vg andr updated, if needed. DEX (complexity O(k), as demonstrated in Sec. IV-B.1) is
1: procedure RATIO(B) called as well as B CLEARING. Note that the algorithmic

2: CREATECV(A) complexity of the cumulated calls off BCLEARING cannot be

3 CREATEFV(B) worst than the algorithmic complexity ofREATECV (clearing

4: CoMPUTERATIO() the ElementList vector is not harder, in a complexity sense,
5: for all b, € B do than creating it).

6: if MEMBERSHIPTEST(b;, v) then Using the same reasoning than in Sec. IV-B.1, the algo-
7 index < MINRATIO(b;) rithmic complexity of Improved Minimum FN Selection is
8: BITCLEARING(v4, index) O(max(k x |A|, 2k x| B|)), which leads ta@(k x (|A|+|B|)).

o: BITCLEARING(vg, index)]

10: v[index] — 0 Lemma 10:The running time of the Improved Maximum
1L rlindex] < O FP Selection algorithm is identical to the running time o th
12: COMPUTERATIO() standard Maximum FP Selection algorithm, i@(k x |B|).

13 end if Proof: Improved Maximum FP Selection starts by calling
14: end for the QREATEFV procedure whose complexity 8(k x |B).

15: end procedure

16:

17: procedure COMPUTERATIO
18: for i =1 tom do

Improved Maximum FP Selection next browses all ele-
ments belonging taB and, for each element, it performs the
membership test. If MMBERSHIPTEST returns “true”, then
MAXINDEX (complexity O(k), as demonstrated in Sec. V-

19: it-ofi] A va[i][;‘]S.iffe% > 0 then B.1) is called as well as BCLEARING. As stated earlier in
20: dT[;] T Uplilsize() this section, the BFCLEARING complexity cannot be worst
21: end i

than the ElementList vector creation.

As a consequence, and using the same reasoning than in
Sec. IV-B.1, the algorithmic complexity of Improved Maxi-
mum FP Selection i®)(k x |B|). [|
.) . Lemma 11:The running time of the Improved Ratio Selec-
attempt to minimize the false negatives generated wh|Ie|Jmaﬁ0n algorithm is identical to the running time of the startia
mizing the false positives removed. Improved Ratio Sedecti r44i Selection algorithm, i.eQ(k x (|A| + |B|) + m).

in the spirit of our improved selective clearing algorithms Proof: After calling CREATECV (complexityO(k x | A|))

behaves the same way as its standard counterpart but it USeS (REATEFV (complexity O(k x |B])), Improved Ratio

two ElementList vectors: 4 that stores the elements belongingselection called the Rrio procedure that aims at creating
to A andwvp that stores the false positives recorded.imhese the ratio of v o vs. The complexity of RTIO is O(m x

two ElementList vectors are maintained up—to—date thaoks Itnax(|A|, |BJ)) as it must browse all vector cells and, for each
the BTCLEARING procedure. Further, the ratio vector,

- . cell, count the number of elements recorded in the list.
containing the ratio of the number of elements recorded In . :
The rest of Improved Ratio Selection behaves the same way

a given cell ofv, to the number of elements recorded in a T . .
. : L o . s Improved Minimum FN Selection and Improved Maximum
given cell ofvp is also maintained up-to-date. This is achieve) . . :
P Selection, i.e., it browses all elements belongingBto

by calling the RTIO procedure each time a false positive is erforms the membership test and, if needed, selects the

removed from the bit vector. The Improved Ratio Algorithn? - . . L
. ' ; minimum value among available. Next, it maintains up-to-
is formally defined in Sec. 7.

datev, andvp by calling BTCLEARING. A new ratio is then

22: end for
23: end procedure

calculated.
B. Theorical Analysis As a consequence, using the same reasoning than earlier
1) Algorithmic Analysis: in this section, the algorithmic complexity of Improved Rat
Lemma 9: The running time of the Improved Minimum FN Selection isO(k x ([A| + |B|) +m). u

Selection algorithm is identical to the running time of the 2) Spatial Complexity:
standard Minimum FN Selection algorithm, i.&(k x (|A|+ Lemma 12:The spatial complexity of the Improved Mini-
|B])). mum FN Selection algorithm i®©(m + |B| + k x u x |4]).
Proof: Improved Minimum FN Selection starts by calling Proof: The Improved Minimum FN Selection algorithm
the QGREATECV procedure. This procedure aims at creatingiakes use of three data structures: the bit vectathe set
the ElementList vectory 4. To do so, it browses all elementsof troublesome keys to remove and the ElementList vector,
belonging toA and each element is addédtimesv,. As wvy4. v containsm bits andv 4 contains, at worst; times each
adding a cell to a list is an atomic operation (i.e., compiexielement belonging tcA. We finally consider that: defines
0O(1)), the algorithmic complexity of REATECV is O(k x the space needed to store an element of the univér&nd,
|A]). consequently, ofl). As a consequence, the spatial complexity

12

of the Improved Minimum FN Selection algorithm (m +
|B| + k x u x |A]). [

Lemma 13:The spatial complexity of the Improved Maxi-
mum FP Selection algorithm ©(m + k x u x |B|).

Proof: The Improved Maximum FP Selection algorithm
makes use of three data structures: the bit vectathe set
of troublesome keys to remove and the ElementList vector,
vg. v containsm bits andvg contains, at worst; times each
troublesome key belonging t®. Again, u gives the space
needed to store an element belongingtoConsequently, the
spatial complexity of the Improved Maximum FP Selection
algorithm isO(m + k x u x |B|). | 002 é(l)ter Sizefig(10 8 160

Lemma 14:The spatial complexity of the Improved Ratio
Selection algorithm i€ (m + k x u x (|A| + |B|) + dm).

Proof: The Improved Ratio Selection algorithm makes
use of five data structures: the bit vector the set of 10%> eows.
troublesome keys to remov@, two ElementList vectorsy 4 : :
andvp, and the ratio vector;. v contains m bitsp4 contains,
at worst, k times each element belonging th vz contains,
at worst, k£ times each troublesome key belonging Boand
r is a vector ofm floats (we consider thad indicates the
number of bits needed to store a float). Consequently, the
spatial complexity of the Improved Ratio Selection aldguonit
is O(m +k x u x (|A| +|B|) + dm). [

occupancy rate

(a) Filled proportion of the ElementList vector

nb elements recorded

C. Simulation Analysis

-

80 100

We conducted our simulations using the methodology ex- » fli(l)ter sizec(ox103)
plained in Sec. IV-C.1.
Fig. V-C to Fig. V-C compare the performances of our im- (b) Average ElementList size

proved selective clearing algorithms to the standard teéec
clearing algorithms. The horizontal axis shows the ratio Fig. 11. ElementList vector evaluation
of the quantity of troublesome keys to remove to the whole
false positive set (see eqn. 17). The vertical axis givethe
ratio between the proportion of false positives removed andFig. 11(b) shows, on the vertical axis, the average size of
the proportion of false negatives generated (see egn. 12). an ElementList item in the vector. The minimum size is 1

We see that our improved selective clearing algorithnfgtherwise, the list is empty). The maximum value is either
perform better than those described in Sec. IV. In particuldd|, for v4, either |B|, for vp. For our experiments, we
Improved Minimum FN Selection provides the strongest irfonsider thal3 equalsF' P. Looking first at thevp vector, one
crease compared to the standard algorithm: between 66.048%8 see that the average ElementList size decreases quickly
(8 = 0.01) and 84.129% § = 0.75). Improved Maximum Wwhen the vector size increase. It decreases by two order of
FN Selection and Improved Ratio Selection provides bettgragnitude while the vector size increases only by one order.
results, compared to the standard version of the algorithrh@oking now at thev, vector, we see that in the worst case,
when 3 is high. Finally, Improved Ratio Selection provides cell contains, on average, less than ten elements. It lguick
the best results, as expected from standard selectiveirdeadecreases until having, at worst, one element per filled cell
algorithms.

Fig. 11 evaluates the ElementList vector data structure. Th VI. CASE STUDY
horizontal axis, for both plots, gives the vector size, We . ,
vary it between 10 and 10, with an increment of 10 A. Tracing Paths with a Red Stop Set

Fig. 11(a) shows, on the vertical axis, the proportion of the Retouched Bloom filters can be applied across a wide range
vector that is used. If it is equal to 1, it means that all cellsf applications that would otherwise use Bloom filters. For
in the vector contain, at least, one element. Otherwise, ifRBFs to be suitable for an application, two criteria must be
is equal to 0O, it means that all the vector cells are emptatisfied. First, the application must be capable of idpimif
We see from Fig. 11(a) that the occupancy rate of the veciostances of false positives. Second, the application must
decreases nearly linearly with the vector size. We alsacaotiaccept the generation of false negatives, and in particiiar
that the occupancy rate of both vectog, andvg, is the same marginal benefit of removing the false positives must exceed
for most of the vector sizes. When the vector is larger, i.¢he marginal cost of introducing the false negatives.
above 90,000 cells, the occupancy rateypfbecomes smaller This section describes the application that motivated our
thanvy. introduction of RBFs: a network measurement system that

13

| | | | | |
®®® improved ®®e® improved ®®® improved
XX standard X standard %X standard

Lgy, | | " B - 1.0+ | | | - Lgy, | ") -
).0 0.2 04 5 0.6 0.8 1.0).0 0.2 0.4 3 0.6 0.8 1.0).0 0.2 04 5 0.6 0.8 1.0
(3 £

Fig. 8. Minimum FN Selection comparison Fig. 9. Maximum FP Selection comparison Fig. 10. Ratio Selection comparison

end-host end-host

traces routes, and must communicate information conogrnin I
IP addresses at which to stop tracing. Sec. VII-B will inirest ’
gate others applications that can benefit from RBFs instéad o
Bloom filters. Sec. VI-B evaluates the impact of using RBFs
in this application.
Maps of the internet at the IP level are constructed by
tracing routes from measurement points distributed thinoug
the internet. Theskitter system [8], which has provided data
for many network topology papers, launches probes from 24
monitors towards almost a million destinations. However, a
more accurate picture can potentially be built by using a end-host end-host
larger number of vantage points.INES [9] heralds a new
generation of large-scale systems, counting, at pres@008, Fig. 12. Red stop set
agents distributed over five continents. As Donnet et al] [10
(including authors on the present paper) have pointed oet, o
of the dangers posed by a large number of monitors probiﬂ'@t is revealed is supposed to be the one that sends the probe
towards a common set of destinations is that the traffic mé&gply. The application that we study in this paper conducts
easily be mistaken for a distributed denial of service (DpoStandard route traces with an RSS. We do not use Doubletree,
attack. so as to avoid having to disentangle the effects of using two
One way to avoid such a risk would be to avoid hittinglifferent stopping rules at the same time.
destinations. This can be done through smart route trading a How does one build the red stop set? The penultimate
gorithms, such as Donnet et aD®ubletree With Doubletree, nodes cannot be determined a priori. However, the RSS can
monitors communicate amongst themselves regarding roulesconstructed during a learning round in which each monitor
that they have already traced, in order to avoid duplicatinggrforms a full set of standard traceroutes, i.e., unttirfgta
work. Since one monitor will stop tracing a route when igdestination. Monitors then share their RSSes. For sintplici
reaches a point that another monitor has already tracedl] it we consider that they all send their RSSes to a central server
not continue through to hit the destination. which combines them to form a global RSS, that is then
Doubletree considerably reduces, but does not entirgBdispatched to the monitors. The monitors then apply the
eliminate, DDoS risk. Some monitors will continue to higlobal RSS in a stopping rule over multiple rounds of probing
destinations, and will do so repeatedly. One way to further Destinations are only hit during the learning round and as a
scale back the impact on destinations would be to introdurssult of errors in the probing rounds. DDoS risk diminishes
an additional stopping rule that requires any monitor tgstavith an increase in the ratio of probing rounds to learning
tracing when it reaches a node that is one hop before thaunds, and with a decrease in errors during the probing
destination. We call such a node thenultimate nodeand we rounds. DDoS risk would be further reduced were we to apply
call the set of penultimate nodes tleal stop sefRSS).Fig. 12 Doubletree in the learning round, as the number of probes tha
illustrates the RSS concept, showing penultimate nodesegs greach destinations during the learning round would thefesca
discs. less then linearly in the number of monitors. However, our
A monitor is typically not blocked by its own first-hop nodefocus here is on the probing rounds, which use the global
as it will normally see a different IP address from the adskges RSS, and not on improving the efficiency of the learning
that appear as penultimate nodes on incoming traces. Thisdand, which generates the RSS, and for which we already
because a router has multiple interfaces, and the IP addriease known techniques.

14

The communication cost for sharing the RSS among mon- 1.0-
itors is linear in the number of monitors and in the size of
the RSS representation. It is this latter size that we would 0.8

like to reduce by a constant compression factor. If the RSS e
. , g EO.B'
is implemented as a list of 32-bit vectors, skitter's mitiio -
destinations would consume 4 MB. We therefore propose 3
encoding the RSS information in Bloom filters. Note that the 30

central server can combine similarly constructed Bloorerfit
from multiple monitors, through bitwise logicalr operations,
to form the filter that encodes the global RSS.

0.2

0.07

The cost of using Bloom filters is that the application will 20 ﬁ?ter siZeG& 109 80 100
encounter false positives. A false positive, in our caseystu 256 128 85 64 51 42 36 32 28 25
corresponds to an early stop in the probing, i.e., before the filter compression ratio

penultimate node. We call such an erstopping shortand it

means that part of the path that should have been discoveggdia success rate

will go unexplored. Stopping short can also arise through

network dynamics, when additional nodes are introduced,

by routing changes or IP address reassignment, between tif positive and negative aspects of each implementation.
previously penultimate node and the destination. In cehtra
a trace that stops at a penultimate node is deematteess
A trace that hits a destination is calleccallision. Collisions
might occur because of a false negative for the penultimateln this section, we evaluate the use of RBFs in a tracerouting
node, or simply because routing dynamics have introduce@ystem based on an RSS. We first present our methodology
new path to the destination, and the penultimate node on t&d then, discuss our results.

path was previously unknown. 1) Methodology: Our study was based on skitter data [8]

As we show in Sec. VI-B, the cost of stopping short i§rlom January 2006. This data set was generated by 24 monitors
far from negligible. If a node that has a high betweennelgcated in the United States of America, Canada, the United
centrality (Dall’Asta et al. [11] point out the importancé o Kingdom, France, Sweden, the Netherlands, Japan, and New
this parameter for topology exploration) generates a falgealand. The monitors share a common destination set of
positive, then the topology information loss might be higi71,080 IPv4 addresses. Each monitor cycles through the
Consequently, our idea is to encode the RSS in an RBF. destination set at its own rate, taking typically three deys

There are two criteria for being able to profitably emplogomplete a cycle.

RBFs, and they are both met by this application. First, false For the purpose of our study, in order to reduce computing
positives can be identified and removed. Once the topolotiyne to a manageable level, we worked from a limited set of
has been revealed, each node can be tested against the Bld0rskitter monitors, all the monitors sharing a list of 1@00
filter, and those that register positive but are not penaltén destinations, randomly chosen from the original set. In our
nodes are false positives. The application has the posgibil data set, the RSS contains 8,006 different IPv4 addresses.
removing the most troublesome false positives by using dne o We will compare the three RSS implementations discussed
the selective algorithms discussed in Sec. IV. Second, a Ilalove: list, Bloom filter and RBF. The list would not return
rate of false negatives is acceptable and the marginal benafiy errors if the network were static, however, as discussed
of removing the most troublesome false positives exceegls #bove, network dynamics lead to a certain error rate of both
marginal cost of introducing those false negatives. Ourigimcollisions and instances of stopping short.

not to eliminate collisions; if they are considerably regidic ~ For the RBF implementation, we considergdralues (see
the DDoS risk has been diminished and the RSS applicatiegn. 17) of 1%, 5%, 10% and 25%. We further applied
can be deemed a success. On the other hand, systematidhityRatio Selection algorithm, as defined in Sec. IV-A. For
stopping short at central nodes can severely restrict ogyol the Bloom filter and RBF implementations, the hashing was
exploration, and so we are willing to accept a low rate afmulated with random numbers. We simulate randomness
random collisions in order to trace more effectively. Thessith the Mersenne Twister MT19937 pseudo-random number
trade-offs are explored in the Sec. VI-B. generator [6].

Table V summarizes the positive and negative aspects offo obtain our results, we simulated one learning round on
each RSS implementation we propose. Positive aspects aie #rst cycle of traceroutes from each monitor, to generate
success, stopping at the majority of penultimate nodesltopthe RSS. We then simulated one probing round, using a
ogy information discovered, the eventual compressiom m@iti second cycle of traceroutes. In this simulation, we repdiie
the implementation and a minimum number of collisions wittraceroutes, but applied the stopping rule based on the RSS,
destinations. Negative aspects of an implementation can riging instances of stopping short, successes, and ocolisi
the topology information missed due to stopping short, the2) Results:Fig. 13 compares the success rate, i.e., stopping
load on the network when exchanging the RSS and the riskaif a penultimate node, of the three RSS implementations.
hitting destinations too much times. Sec. VI-B will measur&€he horizontal axis gives different filters size, from 10a0

B. Evaluation

15

Implementation Positive Negative
Success Topo. discovery Compression No Collisjoffopo. missed Load Collision

List X X X X

Bloom filter X X X

RBF X X X X
TABLE V

POSITIVE AND NEGATIVE ASPECTS OF EACHRSSIMPLEMENTATION

1.0

o
@

10%:

o
@

nb key
o
-

stopping short rate

10! —
E : E O'QM
: C____] - . -

1()05 _ 0.0 2‘0 4‘0 6‘0 8‘0 1(‘)0
: filter size (x 10°)

256 12.8 85 64 51 42 36 32 28 25
filter compression ratio

10° 10! 102 10° 10*
troublesomeness

Fig. 14. Troublesomeness distribution Fig. 15. Stopping short rate

100,000, with an increment of 10,000. Below the horizontéd the maximum, 0.7564. Whefi = 0.25, for compression
axis sits another axis that indicates the compression ddtioratios of 4.2 and lower, the success rate approaches that of
the filter, compared to the list implementation of the RSSe Thhe list implementation. Even for compression ratios a$ hig
vertical axis gives the success rate. A value of 0 would meas 25.6, it is possible to have a success rate over a quarter of
that using a particular implementation precludes stopping that offered by the list implementation.
the penultimate node. On the other hand, a value of 1 meang-ig. 15 gives the stopping short rate of the three RSS imple-
that the implementation succeeds in stopping each timeeat thentations. A value of 0 means that the RSS implementation
penultimate node. does not generate any instances of stopping short. On tke oth
Looking first at the list implementation (the horizontald)p hand, a value of 1 means that every stop was short.
we see that the list implementation success rate is not 1lLooking first at the list implementation, one can see that
but, rather, 0.7812. As explained in Sec. VI-B, this can tbe stopping short rate is 0.0936. Again, network dynamics
explained by the network dynamics such as routing changemply that some nodes that were considered as penultimate
and dynamic IP address allocation. nodes during the learning phase are no longer located one
With regards to the Bloom filter implementation, we sekop before a destination.
that the results are poor. The maximum success rate, 0.2446, Regarding the Bloom filter implementation, one can see that
obtained when the filter size is 100,000 (a compression adtiothe stopping short rate is significant. Between 0.9981 (filte
2.5 compared to the list). Such poor results can be expldipedsize of 1¢) and 0.7668 (filter size of). The cost of these
the troublesomeness of false positives. Fig. 14 shows,gn Ichigh levels of stopping short can be evaluated in terms of
log scale, the troublesomeness distribution of false jpesit topology information missed. Fig. 16 compares the RBF and
The horizontal axis gives theoublesomeness degredefined the Bloom filter implementation in terms of nodes (Fig. 1§(a)
as the number of traceroutes that stop short for a given kend links (Fig. 16(b)) missed due to stopping short. A value
The maximum value iS04, i.e., the number of traceroutesof 1 means that the filter implementation missed all nodes and
performed by a monitor. The vertical axis gives the numbénks when compared to the list implementation. On the other
of false positive elements having a specific troublesomendsnd, a value of 0 mean that there is no loss, and all nodes and
degree. The most troublesome keys are indicated by an arfdovks discovered by the list implementation are discovergd
towards the lower right of the graph: nine false positives arthe filter implementation. One can see that the loss, whemgusi
each one, encountered 10,000 times. a Bloom filter, is above 80% for filter sizes below 70,000.
Looking now, in Fig. 13, at the success rate of the RBF, we Implementing the RSS as an RBF allows one to decrease
see that the maximum success rate is reached Wwhe®.25. the stopping short rate. When removing 25% of the most
We also note a significant increase in the success rate for RB&ublesome false positives, one is able to reduce the stgpp
sizes from 10,000 to 60,000. After that point, except for short between 76.17% (filter size of ®)0and 84,35% (filter
1%, the increase is less marked and the success rate casivesge of 10). Fig. 15 shows the advantage of using an RBF

16

0.8-

10-1- % —9 9 9o o o o
T o s
[- -
$0.6- o :
c c
s 01072 :
(] 0 :
50.4- % :
2 8 ,

. 4 — list H
02 mrll:fn;ﬂo% :
e S S S S S—{ <tarbf-p=5%
444 1bf - 3=1% -
0.0 5 40 60 80 100 20 40 60 0 100
‘ . filter size (x 10%) ‘ ‘ . filter size (x 10%) ‘
256 128 85 64 51 42 36 32 28 25 256 128 85 64 51 42 36 32 28 25
filter compression ratio filter compression ratio
(a) nodes
1 Om Fig. 17. Collision cost
0.8 ° 1.0° — succéss
--- stopping short
ko) collision
20, 08
0
£
2o
c 0.6- -
= 2
g
O-Z\M 04
00 5 40 60 80 100 0.2-
‘ . filter size (x 10°) ‘
256 128 85 64 51 42 36 32 28 25 B
filter compression ratio 0.0~ :) T
¥o 0.2 0.4 0.6 0.8 1.0
(b) links B

Fig. 18. Metrics for an RBF with m=60,000
Fig. 16. Topology information missed

collision rate increases witf, varying from 0.0081 § = 0)

instead of a Bloom filter. Fig. 16 shows this advantage in ernio 0.5387 (3 = 1).
of topology information. We miss a much smaller quantity of The shaded area in Fig. 18 delimits a rangefofalues
nodes and links with RBFs than Bloom filters and we are abler which success rates are highest, and collision rates are
to nearly reach the same level of coverage as with the ligfatively low. This implementation gives a compressiotiora
implementation. of 4.2 compared to the list implementation. The rangesof

Fig. 17 shows the cost in terms of collisions. Collisions wilvalues (between 0.1 and 0.3) gives a success rate between
arise under Bloom filter and list implementations only due ©.7015 and 0.7218 while the list provides a success rate of
network dynamics. Collisions can be reduced under all R®57812. The collision rate is between 0.1073 and 0.1987,
implementations due to a high rate of stopping short (thougheaning that in less than 20% of the cases a probe will hit a
this is, of course, not desired). The effect of stopping steor destination. On the other hand, a probe hits a destination in
most pronounced for RBFs whehis low, as shown by the 12.51% of the cases with the list implementation. Finalg t
curve 8 = 0.01. One startling revelation of this figure is thatstopping short rate is between 0.2355 and 0.1168 while the
even for fairly high values of, such as3 = 0.10, the effect list implementation gives a stopping short rate of 0.0936.
of stopping short keeps the RBF collision cost lower than the Fig. 19 illustrates the behavior of the RSS during ten tracer
collision cost for the list implementation, over a wide rangoute cycle. We consider the list and the RBF implementations
of compression ratios. Even @t = 0.25, the RBF collision The RBF is tuned as followed: the vector is 60,000 bits long
cost is only slightly higher. andg is 0.25. These values are suggested by previous studies

Fig. 18 compares the success, stopping short, and collisianthis section. The horizontal axis, in Fig. 19, gives the
rates for the RBF implementation with a fixed filter size ofen cycles, the cycle labeled; is equivalent to the results
60,000 bits. We varys from 0.01 to 1 with an increment discussed below. The vertical axis gives the metric rage, (i.
of 0.01. We see that the success rate increases fvitimtii success, stopping short and collision).
reaching a peak at 0.642 & 0.24), after which it decreases In Fig. 19, one can see the degradation of the RSS per-
until the minimum success rate, 0.4575, is reached atl. formances. The success rate decreases with time while the
As expected, the stopping short rate decreasesyitlarying stopping short and the collision rates increases with time.
from 0.6842 (3 = 0) to 0 (3 = 1). On the other hand, the However, both implementation behaves in the same way. The

17

1.05 -
0.8- - 0.8~ -
M 5
© AkA std - 5=1%
b :
M — XX improv - =1%
s 0.6- @®e@ improv - 3=25% -
0.6-) < »>» std - 3=25%
X—>—X success - list [7] — st
2 ®—8—® success - rbf o))
© ® @ collision - rbf £04-
®--#- @ stopping short - rbf &
0.4- XX collision - list []
X--X stopping short - list k7
0.2- -
0.2- o ® .
....é """ ;ll ————— .- 8 0.0- | | | | +
e d - S S 20 0 o s 100
‘ ~ filter size (x 10%) ‘
00 & A A a A d A A e 256 12.8 85 64 51 42 36 32 28 25
C G G C G G C G G Cy z :
cycles compression ratio
Fig. 19. Metrics for 10 traceroute cycles Fig. 21. Stopping short comparison
1.0- v

|

5 o
0.6- ©
»n
a — list S -2
8 @®e improv - 3=25% % 10 -§
904~ »>pstd - 3=25% =
[} XX improv - 3=1% 8
Ackd std - =1% , »>p std - 3=25%
0.2 - 107 ®e®e@ improv - 7=25% -
- — list -
Aok std - 5=1%
»x¢x improv - 3=1%
00 20 10 ! 80 100 107" ‘ [‘ ‘]
20 10 60 80 100

60
filter size (x 10°)

: : i > : | : : filter size (x 10%)
256 128 85 6.4 51 42 36 32 28 25 | ‘ [‘ ‘ ‘ ‘ ‘
. { 256 128 85 6.4 51 42 3.6 32 28 25
compression ratio compression ratio

Fig. 20. Success comparison Fig. 22. Collision comparison

decrease of the success rate for the RBF is somewhat simi{@farant filters size. from 10.000 to 100.000. with an incre
to the list one. The same conclusion holds for the stoppifgant of 10,000. Below the horizontal axis sits another axis
short and collision rates. Fig. 19 shows thus the robustoessy, ot indicates the compression ratio of the filter, compaced

the RBF‘,)) the list implementation of the RSS. The vertical axis gives t
In closing, we emphasize that the constructiorBoand the g,ccess rate. A value of 0 would mean that using a particular

choice of3 in this case study are application specific. We dﬁ’nplementation precludes stopping at the penultimate node

not provide guidelines for a universal means of determiningy, the other hand, a value of 1 means that the implementation
which false positives should be considered particulaytr ¢ ,~ceeds in stopping each time at the penultimate node.

blesome, and thus subject to removal, across all applitatio We see, from Fig. 20, that Improved Ratio Selection per-

However, it should be possible for other applications tR)rins better than standard Ratio Selection. Bet 0.01, the

measure, in a S|m|I<_’;\r manner as was done here, the PoteNfialease is more important for larger vector size while this
benefits of introducing RBFs. contrary for3 — 0.25

Fig. 21 compares both selective clearing techniques regard
C. Comparing Selective Clearing Algorithms ing the stopping short metric. Recall that a stopping short
In this section, we compare the performances of the Ragerresponds to an early stop in the probing, i.e., before the
Selection algorithm and the Improved Ratio Selection algenultimate node.
rithm for our case study. The methodology applied was theAgain, we see from Fig. 21 that the improved selective
same than the one described in Sec. VI-B.1, except that wlearing algorithms performs better than standard algorst
did not consider the Bloom filter implementation of the RS his is more explicit whers = 0.01 and the vector is large.
In order to make the plots readable, we only took into accoudpwever, for 5 = 0.25, we notice a small increase in the
£ =0.01 and 3 = 0.25. stopping short rate for some vector sizes (between 20,000 an
Fig. 20 compares both selective clearing techniques rega8®,000).
ing the success metric. Recall that a success occurs when Big. 22 compares both selective clearing techniques regard
trace stops at a penultimate node. The horizontal axis givag the collision metric. Recall that a collision occurs wuhe

18

trace hits a destination. filter allows one to determine if an incoming packet belongs
We note, from Fig. 22, that Improved Ratio Selectioto an active flow or it is the first packet of a new flow. When
can decrease the collision rate compared to standard Raipacket with a timestamparrives, it is compared with the
Selection. We further see that the collision rate, for Inwe timestampsplhy (¢)], v[h2(t)], ..., v[h(t)]. If at least one of
Ratio Selection, is very close to the list one when the vecttite k timestamps recorded in the filter follows v[h; (¢)] > to
size is higher than 70,000 bits. There is a very tight difieee (i.e., the bucket is time-out), the packet is sampled. Qifser,
between Improved Ratio Selection and the list that is nitis discarded. After the comparison, all thepositions in the
visible on Fig. 22. vector are updated with even if the packet is not sampled
In this section, we showed that using our improved selectiamd all other buckets in the vector are set to 0. In a time-
clearing algorithms can improve the performances of the R88t Bloom filter, a bucket getting time-out is equivalent to a
application. Further, this performance increase allows ttin standard Bloom filter having a bit to 0, while a non time-
more reduce the size of the bit vector, leading to a betteut is the same as a bit to 1 in a Bloom filter. Due to false

compression ratio. positives, an time-out Bloom filter does not guarantee that a
first packets can be sampled.
VIl. RELATED WORK Kirsch and Mitzenmacher show that only two hash functions

re needed to effectively implement a Bloom filter withoug an
ss in the false positive probability [21]. It also leadsléss
E mputation. The idea is to use two hash functibp&e) and
o(z) for simulation additional hash functions of the form
) = hl(x) + lhg(l‘)

Early suggestions of applications for Bloom filters wer
for dictionaries and databases. Bloom’s original paper [
describes their use for hyphenation. Another dictionary a
plication is for spell-checkers [12], [13]. For databasbey

have been suggested to speed up semi-join operations [f&ﬁg .
[15] and for differential files [16], [17]. pace-code Bloom filtefsy Kumar et al. [22] angpectral

In this section, we discuss related work. Our approach %oom fllttetr_s by fCohe?[_ artld lx_a'ﬂas" [23] fare app_roxmate
double: first, we discuss Bloom filters variations and depeldPrésentation ot a (r)nfu |set,hw Ich & oﬂvy[i”orAquerl)t/_mgt vio
those that allow false negatives to arise (Sec. VII-A). $eco many occurrences at are there in setil 7. A mUlliset 1S

we discuss networking applications of Bloom filters and shoftySet I which each member has a multiplicity, i.e., a natural

that RBFs can find a suitable usage for some of them (Sec. \/'I]IL-”‘nber indicating the occurrence .Of a member_m t.he set.
B) Based on the observation that, in many applications, some

popular elements are queried much frequently than the sither
] o Bruck et al. propose theveighted Bloom filter§WBF) [24].
A. Bloom Filters Variations If the query frequency or the membership likelihood is not
1) Extensions: Time-Decaying Bloom filtef§BF), pro- uniform over all the keys in the universe, the traditional
posed by Cheng et al. [18], are somewhat similar to countikegnfiguration of the Bloom filter does not give the optimal
Bloom filters [5] (CBF) as the standard bit vector is replacegerformance, as we demonstrated in Sec. VI-B. In a WBF,
by an array of counters. TBF differs from CBF as values i@ach keye € U is assignedk. hash functions, wheré,
the array decay periodically with time elapsing. TBF areduselepends on the query frequency ofand its likelihood of
for maintaining time sensitive profiles of the web. As only heing a member ofA. Each non-member element has a
small proportion of web content are frequently visited, @ne different false positive probability. The average falsesitioe
et al. propose that only heavy hitters are monitored by largeobability of a WBF is given by the weighted sum over the
counters, in order to avoid allocation larger counters talsmqueries frequencies of the elements in the universe. A key is
values. assigned more hash functions if its query frequency is high
Chang et al.’s extension aims at supporting multiple binagnd its chance of being a member is low. When the query
predicates as opposed to single binary predicate (thexzkeyfrequencies and the membership likelihoods are the same for
belongs or not tad) of a traditional Bloom filter [19]. Such all keys inU, a WBF behaves like a traditional Bloom filter.
an extension is needed in packet classification, for instanc The WBF differs from our RBF as it tries to build the
where a packet can be classified into many, possibly disjoiBloom filter in such a way that it reflects the key distribution
sets. If the considered application requirédlifferent sets, However, it is not clear how a WBF can be used has a message
each cell of the bit vector will contained bits where the shared between distributed entities as each key is, palignti
i*" bit in a cell corresponds to thé" set. When the filter is assigned a different number of hash functions. There is an
queried for a key membership, thebit strings returned by additional storage information associated to a WBF while an
the hash functions are AND. In the resulting bit string, & thRBF modifies the traditional Bloom filter without adding any
it" bit is set to 1, it means that the key might belongi%® information.
set. The case where more than one bit is set to 1 after theéStandard Bloom filters and most of their extensions are
AND is not addressed by Chang et al. approaches to represent a static set, i.e., the siZedafes not
Thetime-out Bloom filter$20], developed by Kong et al. in evolve with time. However, for many applications, for imste
the context of packet sampling, is an extension to standdadge-scale and distributed systems, it is difficult to fere
Bloom filters where the bit vector is replaced by a buckehe threshold size for the set. It is possible that the size of
vector, each bucket containing a timestamp. A bucket tinne-o4 will exceed its initial sizeng, during the execution of the
to is associated to the time-out Bloom filter. A time-out Bloonapplication. It is thus difficult, even impossible, to maiintthe

19

false positive rate and the false positive probability witteed there is a chance of generating false negatives. They cem ari
its threshold. Consequently, the Bloom filter can beconiecounters overflow. Fan et al. suggest that the counters be
unusable under such a scenario. sized to keep the probability of false negatives to such a low
Two extensions of the standard Bloom filters have bedhreshold that they are not a factor for the application (fou
proposed in order to support dynamic sets. The first eplt, bits being adequate in their case). The possibility of trgdi
Bloom filters[25], uses a constartx m bit matrix to represent off false positives for false negatives is not entertained.
a set, where is a constant and must be pre-defined accordingThird, Bonani et al’sd-left CBF is an improvement on
to the estimation of the maximum value of set size. The secotiee CBF. As with the CBF, it can produce false negatives.
one,dynamic Bloom filter§26] (DBF) proposed by Guo et al., It can also produce another type of error called “don’t know”
also makes use of ax m bit matrix but each of the rows Bonani et al. conduct experiments in which they measure the
is a standard Bloom filter. The creation process of a DBF fates for the different kinds of errors, but here too there is
iterative. At the starting, the DBF is hx m bit matrix, i.e., no examination of the possibility of trading off false pogit
it is composed of a single standard Bloom filter. It supposedjainst false negatives. Thdeft CBF is more space-efficient
that n,. elements are recorded in the initial bit vector, wherthan the CBF. But CBFs themselves require a constant mailtipl
n, < n. As the size ofA grows during the execution of themore space than standard Bloom filters, and the question does
application, several keys must be inserted in the DBF. Whewot arise of comparing the space efficiencyldéft CBFs with
inserting a key into the DBF, one must first get an actihat of standard Bloom filters, as they serve different fiomst.
Bloom filter in the matrix. A Bloom filter is active when the Four, Song et al. [7] propose an extension to the CBF, called
number of recorded keys,., is strictly less than the currentthe extended Bloom filte(EBF), in order to support exact
cardinality of A, n. If an active Bloom filter is found, the key address prefix matching for routing. An array is associated t
is inserted anch,. is incremented by one. On the other handhe CBF. Each cell of this array contains the list of keys that
if there is no active Bloom filter, a new one is created (i.e.,@e recorded in the corresponding cell in the CBF. Song et
new row is added to the matrix) according to the current siz¢. propose several techniques to reduce the memory cost of
of A and the element is added in this new Bloom filter and ththe EBFs. The EBFs are designed to achieved higher lookup
n,. value of this new Bloom filter is set to one. A given key igperformance within high-speed routers.
said to belong to the DBF if thé positions are set to one in With the EBFs, the false positives are removed by adding
one of the matrix rows. Guo et al. also extend standard Bloanformation to the CBFs. With the RBFs, by contrast, no
filters and DBF for supporting set consisted of multi-atitéd information is added to remove the false positives. The cost
keys. of these removals is expressed in terms of false negatives
2) Bloom Filters and False Negativesias nobody thought generated for the RBFs and in terms of increased memory
of the RBF before? There is a considerable literature onmBloaisage for the EBFs.
filters, and their applications in networking, that we dsin Five, Laufer et al. [29] an extension to the standard Bloom
Sec. VII-B. In a few instances, suggested variants on Blodiilter called thegeneralized Bloom filtefGBF). With the GBF,
filters do allow false negatives to arise. However, thesmugs one moves beyond the notion that elements must be encoded
do not preserve the size of the standard Bloom filter, as RB®#h 1s, and that Os represent the absence of information. A
do. Nor have the false negatives been the subject of aBBF starts out as an arbitrary vector of both 1s and 0Os, and
analytic or simulation studies. In particular, the podgibiof information is encoded by setting chosen bits to either 0 or
explicitly trading off false positives for false negativieas not 1. As a result, the GBF is a more general binary classifier
been studied prior to the current work, and efficient means fthan the standard Bloom filter. One consequence is that it can
performing such a trade-off have not been proposed. produce either false positives or false negatives. Laufel.e
First is the anti-Bloom filtey which was suggested inprovide a careful analysis [30] of the trade-offs betwedsefa
non-peer reviewed work [27], [28]. An anti-Bloom filter ispositives and false negatives.
composed of a standard Bloom filter plus a separate smalleA GBF employs two sets of hash functiong,,. .., gk,
filter that can be used to override selected positive refats and h4, ..., h;, to set and reset bits. To add an element
the main filter. When queried, a negative result is generatiedthe GBF, the bits at positiong (z), . .., gx, (z) are set to
if either the main filter does not recognize a key or the anf) and the bits at positions,; (z), ..., hx, (z) are set to 1. In
filter does. The anti-Bloom filter requires more space than tthe case of a collision between two hash valygs:) and
standard filter, but the space efficiency has not been studiég(x), the bit is set to 0. The membership of an elemgnt
Nor have studies been made of the impact of the anti-filter @ verified by checking if all bits ag; (y), . .., gr, (y) are set
the false positive rate, or on the false negatives that wbeld to 0 and all bits ath,(y), ..., h, (y) are set to 1. If at least
generated. one bit is invertedy does not belong to the GBF with a high
Second, Fan et al’'s CBF replaces each cell of a Bloopnobability. A false negative arises when at least one bit of
filter's bit vector with a four-bit counter, so that insteall og:(y), ..., gx,(y) is set to 1 or one bit ohq(y),. .., ki, (v)
storing a simple 0 or a 1, the cell stores a value betweerniset to 0 by another element inserted afterwards. The rates
and 15 [5]. This additional space allows CBFs to not onlgf false positives and false negatives in a GBF can be traded
encode set membership information, as standard Bloonsfilt&ff by varying the numbers of hash functiorg, and k1, as
do, but to also permit dynamic additions and deletions td thaell as other parameters such as the size of the filter.
information. One consequence of this new flexibility is that RBFs differ from GBFs in that they allow the explicit

20

removal of selected false positives. RBFs also do so in a wasoblems. The idea is to allow a peer A to send to a peer B
that allows the overall error rate, expressed as a combimafi objects that B does not have. Encoding the sets of objects as
false positives and false negatives, to be lowered as cadpaBloom filters allows for data compression. B will send A its
to a standard Bloom filter of the same size. We note that tBéoom filter. Testing its own set, element by element, agains
techniques used to remove false positives from standamhBlothis Bloom filter allows A to know the set of objects B does
filters could be extended to remove false positives from GBH®ot have, and send them to B. Because of false positives, not
For a false positive key;, either one would set one of the bitsall objects that B needs will be sent, but most will.
g1(x), ..., gk, (x) to 1 or one of the bitd; (z),..., hx, (z) to Approximate set reconciliation clearly meets the second
. criterion for using RBFs. A low rate of false negatives in the
Finally, Distance-sensitive Bloom filtersntroduced by RBF furnished by peer B would result in peer A sending a
Kirsch and Mitzenmacher [31], consider the notion of asmall number of elements that B already possesses. It is easy
“approximate Bloom filter”, that allows approximate insdeato imagine that the system designers would be willing to pay
of exact matches under a distance metric. In other wordsthés communications overhead price in order to ensure that B
distance-sensitive Bloom filter tries to answer the follogvi gets more of the elements that it is missing.
question: “Isz, wherex € U, close to an element belonging to A question arises, however, for the first criterion. How does
A?". In a distance-sensitive Bloom filter, classic hash fiomst peer B identify the false positives in the Bloom filter that it
are replaced by distance-sensitive hash functions. A Bista sends out? For this, it would need to know the keys for the
sensitive Bloom filter allow false positives and false nagst objects that it is missing. For some applications, this \waudt
One might think that there would be general binary clasdde possible. But we could easily imagine many applications
fiers similar to RBFs in the domain of machine learning. It iwhere the keys are known. For instance, B might know the
usual in artificial intelligence to make use of classifietgsas contents of a music catalog, but not have many of the songs
neural networks, Bayesian classifiers (naive or not), opsttp in that catalog. It could identify the false positives in RBF
vector machines (SVMs) [32], [33]. However, these clagssifieby testing the keys in the catalog one by one.
differ from RBFs in that they classify based on feature or Rhea et al. [36] describe a probabilistic algorithm for rout
attribute vectors. RBFs classify elements purely on thésba#g peer-to-peer resource location queries. Each nodeen th
of their unique keys. network keeps an array of Bloom filters, called attenuated
Bloom filter, for each adjacent edge in the overlay topology.
In the array for each edge, there is a Bloom filter for each
distanced, up to a maximum value, so that th&" Bloom
Bloom filters have been widely used in networking applifilter in the array keeps track of resources availabledieops
cations, as stated by Broder and Mitzenmacher [3]. Brodgirough the overlay network along that edge. If it is deemed
and Mitzenmacher consider four types of networking applicprobable that the resource that is being searched for igptes
tions: overlays and peer-to-peer networks, resource psig, the query is routed to the nearest neighbor. This schemedwoul
packet routing and measurement. All these fours categorieguire the addition of feedback to identify false poskive
are developed below. For each of them, we discuss the usdaée positives could be identified, they could be removéis T
RBFs instead of traditional Bloom filters. might be worthwhile, as false negatives do not invalidate th
1) Overlays and Peer-to-PeeFor a node in a peer-to-peersystem. The array of Bloom filters could be replaced by an
file sharing system, keeping a list of objects stored at &kot array of RBFs, bringing about a decrease in the false pesitiv
nodes might be costly in terms of memory, but keeping Bloorate at the cost of a comparatively small increase in the fals
filters for all other nodes might be an attractive alterrativnegative rate.
This was proposed by Cuenca-Acuna et al. for tidanetP 2) Resource RoutingCzerwinski et al. [37] describe a
system [34]. resource discovery architecture callBiéhja, that makes use
PlanetP meets the two criteria for the use of RBFs. Firgif Bloom filters. In our judgment, Ninja would not be tolerant
the application can identify false positives. A node, tlgiou of false negatives, and is thus not a candidate for using RBFs
is own experience with the inability to locate certain filés a However, another resource routing application could benefi
the expected nodes, can determine that the keys corresgpndithea et al. [36] describe a probabilistic algorithm for nogt
to those files yield false positives. Second, false negative peer-to-peer resource location queries. Each node in the ne
tolerated because not every node that stores a given objgotk keeps an array of Bloom filters, called attenuated
need be identified. In a file sharing system, the same objecBi®om filter, for each adjacent edge in the overlay topology.
typically stored in multiple locations, and so the failufeone In the array for each edge, there is a Bloom filter for each
node to recognize some of the locations for some of the abjedistanced, up to a maximum value, so that th&* Bloom
should not pose a great problem, provided the rate of sufilter in the array keeps track of resources availabled/iops
errors remains within reasonable bounds. The communitatishrough the overlay network along that edge. If it is deemed
savings that come from eliminating some false positiveshinigprobable that the resource that is being searched for iepres
well outweigh the costs of missing some locations. the query is routed to the nearest neighbor. This schemedwoul
Byers et al. [35] propose an application for distributingequire the addition of feedback to identify false poswivé
large files to many peers in overlay networks. They suggédatse positives could be identified, they could be removéiis T
that peers may want to sohagpproximate set reconciliation might be worthwhile, as false negatives do not invalidate th

B. Networking Bloom Filters Applications

system. The array of Bloom filters could be replaced by ars]
array of RBFs, bringing about a decrease in the false pesitiv
rate at the cost of a comparatively small increase in th@fal%]
negative rate.

3) Network Packet Processing®harmapurikar et al. [38]
propose the use of Bloom filters for detecting predefine?n
signatures in packet payloads. They propose an architectur
of W parallel Bloom filters each Bloom filter focusing on
strings of a specified length. If a string is found to be &
member of any Bloom filter, it is then declared as a possible
matching signature. To avoid the risk of false positiveghea [9]
matching signature is tested in analyzerwhich determines
if the signature is truly a member of the sétor not. In other
words, the analyzer contains all elements4fBloom filters
are only used to discard elements not belonginglto

At least one of the two criteria for using the RBFs it
met in the process described by Dharmapurikar et al. The
analyzer offers the opportunity to identify false positive
The application should obtain a gain in terms of processitﬁ’gf]
time by removing from the filters those false positives. Thgg
second criterion is application-specific. If a small ratdad$e
negatives may be tolerated, then RBFs are suitable. (14]

4) MeasurementBloom filters are also used in topology
discovery. Some authors of this paper propDeebletreg10], [15]
an efficient and cooperative algorithm that aims to reduce
redundancy, i.e., duplication of effort, in traceroutingtems [16]
by taking into account the tree-like structure of routesimin-
ternet. Reducing the redundancy implies coordination betw [17]
Doubletree monitors by sharing information about what was
previously discovered. To summarize this information sbar (18]
Donnet et al. propose to implement it using Bloom filters [39]
Though it is difficult for Doubletree monitors to meet thdl®]
first criterion by detecting false positives, we proposadhis 20]
paper (see Sec. VI), a variant of the problem for which RBlés
are well adapted.

[10]

[21]
VIII. CONCLUSION
ACKNOWLEDGEMENTS

Mr. Donnet’s work was partially supported by a SATIN
grant provided by the E-NEXT doctoral school, by an ink23]
ternship at @iDA, and by the European Commission-funde&‘ﬂ
OnelLab project. Mark Crovella introduced us to Bloom fil-
ters and encouraged our work. Rafael P. Laufer suggestes]
useful references regarding Bloom filter variants. Ottol&zar
M. B. Duarte helped us clarify the relationship of RBFs &
such variants. We thank k claffy and her team atx for [27]
allowing us to use the skitter data.

[22]

[28]

REFERENCES [29]
[1] B. H. Bloom, “Space/time trade-offs in hash coding withowable

errors,”Communications of the ACMol. 13, no. 7, pp. 422-426, 1970.
[2] M. Mitzenmacher, “Compressed Bloom filter$EEE/ACM Transactions

on Networking vol. 10, no. 5, pp. 604—-612, 2002.
[3] A. Broder and M. Mitzenmacher, “Network applications 8loom
filters: A survey,” Internet Mathematicsvol. 1, no. 4, pp. 485-509,
2002. [31]
F. Bonomi, M. Mitzenmacher, R. Panigraphy, S. Singh, &dvargh-
ese, “Beyond Bloom filters: From approximate membershipckdido [32]

approximate state machines,”froc. ACM SIGCOMM Sept. 2006, pp. [33]
315-326.

(4]

21

L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary @ch scal-
able wide-area Web cache sharing protoctEEE/ACM Transactions
on Networking vol. 8, no. 3, pp. 281-293, 2000.

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom nemgenera-
tor,” ACM Trans. on Modeling and Computer Simulatimol. 8, no. 1,
pp. 3-30, Jan. 1998.

H. Song, S. Dharmapurikar, J. Turner, and J. Lockwoodstmhash table
lookup using extended Bloom filter: An aid to network prodegs in
Proc. ACM SIGCOMM Aug. 2005, pp. 181-192.

B. Huffaker, D. Plummer, D. Moore, and k. claffy, “Top@y discovery
by active probing,” inProc. Symposium on Applications and the Internet
(SAINT) Jan. 2002, pp. 90-96.

Y. Shavitt and E. Shir, “DIMES: Let the internet measutself,” ACM
SIGCOMM Computer Communication Revjewl. 35, no. 5, pp. 71-74,
2005.

B. Donnet, P. Raoult, T. Friedman, and M. Crovella, “Gi#fnt algo-
rithms for large-scale topology discovery,” Broc. ACM SIGMETRICS
Jun. 2005, pp. 327-338.

L. Dall'Asta, I. Alvarez-Hamelin, A. Barrat, A. Vazaz, and A. Vespig-
nani, “A statistical approach to the traceroute-like exgiion of net-
works: theory and simulations,” iRroc. CAAN WorkshqpAug. 2004,
pp. 140-153.

M. D. Mcliroy, “Development of a spelling list”IEEE Trans. on
Communicationsvol. 30, no. 1, pp. 91-99, 1982.

J. K. Mullin and D. J. Margoliash, “A tale of three spellj checkers,”
Software — Practice and Experienosl. 20, no. 6, pp. 625-630, 1990.
K. Bratbergsengen, “Hashing methods and relationgelala opera-
tions,” in Proc. 10th International Conference on Very Large Datalsase
Aug. 1984, pp. 323-333.

P. Valdurez and G. Gardarin, “Join and semijoin aldons for a
multiprocessor database machinddCM Transactions on Database
Systemsvol. 9, no. 1, pp. 133-161, 1984.

L. L. Gremilion, “Designing a Bloom filter for differerdl file access,”
Communications of the ACMol. 25, pp. 600-604, 1982.

J. K. Mullin, “A second look at Bloom filters,Communications of the
ACM, vol. 26, no. 8, pp. 570-571, 1983.

K. Cheng, M. lwaihara, L. Xiang, and K. Ushijima, “Effemt web
profiling by time-decaying Bloom filters DBSJ Lettersvol. 4, no. 1,
pp. 137-140, Jun. 2005.

F. Chang, W.-C. Feng, and K. Li, “Approximate caches fiacket
classification,” inProc. IEEE INFOCOM Mar. 2004, pp. 2196-2207.
S. Kong, X. Shao, and X. Li, “Time-out Bloom filter: A nevaspling
method for recording more flows,” iRroc. Internation Conference on
Information Networking (ICOIN)Jan. 2006.

A. Kirsch and M. Mitzenmacher, “Less hashing, same qrenfince:
Building a better Bloom filter,” inProc. 14th Annual European Sympo-
sium on Algorithms (ESABept. 2006, pp. 456—-467.

A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Spaode Bloom
filter for efficient per-flow traffic measurement,” Proc. ACM Internet
Measurement Conference (IMG)ct. 2003, pp. 167-172.

S. Cohen and Y. Matias, “Spectral Bloom filters,” Broc. ACM
SIGMOD Jun. 2003, pp. 241-252.

J. Bruck, J. Gao, and A. Jiang, “Weighted bloom filten"Rroc. IEEE
Internationl Symposium on Information Theory (ISIJyl. 2006.

M. Xiao, Y. Dai, and X. Li, “Split Bloom filters,”Chinese Journal of
Electronig vol. 32, no. 2, pp. 241-245, 2004.

D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and network laggions
of dynamic Bloom filters,” inProc. IEEE INFOCOM Apr. 2006.

T. Lavian, “Bloom filters,” 2004, CS 270-Class NoteseS#tp://www.
cs.berkeley.edu/kamalika/cs270/notes/lecture30b.pdf.

N. Hardy, “A little Bloom filter theory (and a bag of filtdricks),” 1999,
see http://www.cap-lore.com/code/BloomTheory.html.

R. P. Laufer, P. B. Velloso, D. de O. Cunha, I. M. Moraes, M D.
Bicudo, and O. C. M. B. Duarte, “A new IP traceback system ragjai
distributed denial-of-service attacks,” Proc. 12th International Con-
ference on Telecommunications (ICMay 2005.

] R. P. Laufer, P. B. Velloso, and O. C. M. B. Duarte, “Gealzed

Bloom filters,” Electrical Engineering Program, COPPE/UFRech.
Rep., 2005.

A. Kirsch and M. Mitzenmacher, “Distance-sensitiveoBin filters,” in
Proc. Algorithm Engineering and Experiments (ALENEXgn. 2006.
T. Mitchell, Machine Learning McGraw Hill, 1997.

S. J. Russell and P. Norvidyrtificial Intelligence: A Modern Approagh
2nd ed. Prentice Hall, 2003.

[34]

[35]

[36]

[37]

(38]

[39]

F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. NgyyPlanetP:
Using gossiping to build content addressable peer-to-pgermation
sharing communities,” ifProc. 12th IEEE International Symposium on
High Performance Distributed Computing (HPDQun. 2003, pp. 236—
246.

J. Byers, J. Considine, M. Mitzenmacher, and S. Rosfpfimed content
delivery over adaptive overlay networks,” ifroc. ACM SIGCOMM
Oct. 2002, pp. 47-60.

S. C. Rhea and J. Kubiatowicz, “Probabilistic locatiand routing,” in
Proc. IEEE INFOCOM Jun. 2002, pp. 1248-1257.

S. Czerwinski, B. Y. Zhao, T. Hodes, and A. D. Joseph, &ahitecture
for a secure service discovery service,Hroc. ACM/IEEE international
conference on Mobile computing and networking (MOBICOMNg.
1999, pp. 24-35.

S. Dharmapurikar, P. Krishnamurthy, T. Sproull, andL&ckwood,
“Deep packet inspection using parallel Bloom filter$£EE Micro,
vol. 24, no. 1, pp. 52-61, 2003.

B. Donnet, T. Friedman, and M. Crovella, “Improved aigfums for
network topology discovery,” ifProc. PAM WorkshopMar. 2005, pp.
149-162.

22

