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Abstract— Where distributed agents must share voluminous
set membership information, Bloom filters provide a compact,
though lossy, way for them to do so. Numerous recent networking
papers have examined the trade-offs between the bandwidth
consumed by the transmission of Bloom filters, and the error
rate, which takes the form of false positives, and which rises the
more the filters are compressed. In this paper, we introduce the
retouched Bloom filter (RBF), an extension that makes the Bloom
filter more flexible by permitting the removal of selected false
positives at the expense of generating random false negatives. We
analytically show that RBFs created through a random process
maintain an overall error rate, expressed as a combination of the
false positive rate and the false negative rate, that is equal to the
false positive rate of the corresponding Bloom filters. We further
provide some simple heuristics and improved algorithms that
decrease the false positive rate more than than the corresponding
increase in the false negative rate, when creating RBFs. Finally,
we demonstrate the advantages of an RBF over a Bloom filter in
a distributed network topology measurement application, where
information about large stop sets must be shared among route
tracing monitors.

I. I NTRODUCTION

The Bloom filter is a data structure that was introduced
in 1970 [1] and that has been adopted by the networking
research community in the past decade thanks to the band-
width efficiencies that it offers for the transmission of set
membership information between networked hosts. A sender
encodes the information into a bit vector, the Bloom filter,
that is more compact than a conventional representation.
Computation and space costs for construction are linear in the
number of elements. The receiver uses the filter to test whether
various elements are members of the set. Though the filter will
occasionally return a false positive, it will never return afalse
negative. When creating the filter, the sender can choose its
desired point in a trade-off between the false positive rateand
the size. Thecompressed Bloom filter, an extension proposed
by Mitzenmacher [2], allows further bandwidth savings.

Broder and Mitzenmacher’s survey of Bloom filters’ net-
working applications [3] attests to the considerable interest
in this data structure. Variants on the Bloom filter continueto
be introduced. For instance, Bonomi et al.’s [4]d-left counting
Bloom filter is a more space-efficient version of Fan et al.’s [5]
counting Bloom filter, which itself goes beyond the standard
Bloom filter to allow dynamic insertions and deletions of set

membership information. The present paper also introducesa
variant on the Bloom filter: one that allows an application to
remove selected false positives from the filter, trading them
off against the introduction of random false negatives.

This paper looks at Bloom filters in the context of a
network measurement application that must send information
concerning large sets of IP addresses between measurement
points. Sec. VI describes the application in detail. But here,
we cite two key characteristics of this particular application;
characteristics that many other networked applications share,
and that make them candidates for use of the variant that we
propose.

First, some false positives might be more troublesome than
others, and these can be identified after the Bloom filter has
been constructed, but before it is used. For instance, when
IP addresses arise in measurements, it is not uncommon for
some addresses to be encountered with much greater frequency
than others. If such an address triggers a false positive, the
performance detriment is greater than if a rarely encountered
address does the same. If there were a way to remove them
from the filter before use, the application would benefit.

Second, the application can tolerate a low level of false
negatives. It would benefit from being able to trade off the
most troublesome false positives for some randomly intro-
duced false negatives.

The retouched Bloom filter(RBF) introduced in this paper
permits such a trade-off. It allows the removal of selected false
positives at the cost of introducing random false negatives, and
with the benefit of eliminating some random false positives at
the same time. An RBF is created from a Bloom filter by
selectively changing individual bits from 1 to 0, while the
size of the filter remains unchanged. As Sec. III-B shows
analytically, an RBF created through a random process main-
tains an overall error rate, expressed as a combination of the
false positive rate and the false negative rate, that is equal
to the false positive rate of the corresponding Bloom filter.
We further provide a number of simple algorithms that lower
the false positive rate by a greater degree, on average, than
the corresponding increase in the false negative rate. These
algorithms require at most a small constant multiple in storage
requirements. Any additional processing and storage related to
the creation of RBFs from Bloom filters are restricted to the
measurement points that create the RBFs. There is strictly no
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Fig. 1. A Bloom filter with two hash functions

addition to the critical resource under consideration, which
is the bandwidth consumed by communication between the
measurement points.

Some existing Bloom filter variants do permit the suppres-
sion of selected false positives, or the removal of information
in general, or a trade-off between the false positive rate and the
false negative rate. However, as Sec. VII describes, the RBFis
unique in doing so while maintaining the size of the original
Bloom filter and lowering the overall error rate as compared
to that filter.

The remainder of this paper is organized as follows: Sec. II
presents the standard Bloom filter; Sec. III presents the RBF,
and shows analytically that the reduction in the false positive
rate is equal, on average, to the increase in the false neg-
ative rate even as random 1s in a Bloom filter are reset to
0s; Sec. IV presents several simple methods for selectively
clearing 1s that are associated with false positives, and shows
through simulations that they reduce the false positive rate by
more, on average, than they increase the false negative rate;
Sec. VI describes the use of RBFs in a network measurement
application; Sec. VII discusses several Bloom filter variants
and compares RBFs to them; finally, Sec. VIII summarizes
the conclusions and future directions for this work.

II. B LOOM FILTERS

A Bloom filter [1] is a vectorv of m bits that codes the
membership of a subsetA = {a1, a2, . . . , an} of n elements
of a universeU consisting ofN elements. In most papers, the
size of the universe is not specified. However, Bloom filters
are only useful if the size ofU is much bigger than the size
of A.

The idea is to initialize this vectorv to 0, and then take
a setH = {h1, h2, . . . , hk} of k independent hash functions
h1, h2, . . . , hk, each with range{1, . . . , m}. For each element
a ∈ A, the bits at positionsh1(a), h2(a), . . . , hk(a) in v are
set to 1. Note that a particular bit can be set to 1 several times,
as illustrated in Fig. 1.

In order to check if an elementb of the universeU belongs
to the setA, all one has to do is check that thek bits at
positionsh1(b), h2(b), . . . , hk(b) are all set to 1. Ifat least
one bit is set to 0, we are sure thatb does not belong toA. If
all bits are set to 1,b possibly belongs toA. There is always a
probability thatb does not belong toA. In other words, there
is a risk offalse positives. Let us denote byFP the set of false
positives, i.e., the elements that do not belong toA (and thus
that belong toU − A) and for which the Bloom filter gives
a positive answer. The setsU , A, and FP are illustrated in
Fig. 2. (B is a subset ofFP that will be introduced below.)
In Fig. 2, FP is a circle surroundingA. (Note thatFP is not
a superset ofA. It has been colored distinctly to indicate that
it is disjoint from A.)

U

A

B

FP

Fig. 2. The false positives set

We define thefalse positive proportionfP as the ratio of
the number of elements inU −A that give a positive answer,
to the total number of elements inU −A:

fP =
|FP|

|U−A|
(1)

We can alternately define thefalse positive rate, as the
probability that, for a given element that does not belong to
the setA, the Bloom filter erroneously claims that the element
is in the set. Note that if this probability exists (a hypothesis
related to the ergodicity of the system that we assume here),
it has the same value as the false positive proportionfP.
As a consequence, we will use the same notation for both
parameters and also denote byfP the false positive rate. In
order to calculate the false positive rate, most papers assume
that all hash functions map each item in the universe to a
random number uniformly over the range{1, . . . , m}. As a
consequence, the probability that a specific bit is set to 1 after
the application of one hash function to one element ofA is 1

m

and the probability that this specific bit is left to 0 is1− 1
m

.
After all elements ofA are coded in the Bloom filter, the
probability that a specific bit is always equal to 0 is

p0 =

(

1−
1

m

)kn

(2)

As m becomes large,1
m

is close to zero andp0 can be
approximated by

p0 ≈ e−
kn

m (3)

The probability that a specific bit is set to 1 can thus be
expressed as

p1 = 1− p0 (4)

The false positive rate can then be estimated by the proba-
bility that each of thek array positions computed by the hash
functions is 1.fP is then given by

fP = pk
1

=
(

1−
(

1− 1
m

)kn
)k

≈
(

1 − e−
kn

m

)k

(5)

The false positive ratefP is thus a function of three param-
eters:n, the size of subsetA; m, the size of the filter; andk,
the number of hash functions. Fig. 3 illustrates the variation
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Fig. 3. fP as a function ofk, m andn.

of fP with respect to the three parameters individually (when
the two others are held constant). Obviously, and as can be
seen on these graphs,fP is a decreasing function ofm and
an increasing function ofn. Now, whenk varies (withn and
m constant),fP first decreases, reaches a minimum and then
increases. Indeed there are two contradicting factors: using
more hash functions gives us more chances to find a0 bit
for an element that is not a member ofA, but using fewer
hash functions increases the fraction of0 bits in the array. As
stated, e.g., by Fan et al. [5],fP is minimized when

k =
m ln 2

n
(6)

for fixed m andn. Indeed, the derivative offP (estimated by
eqn. 3) with respect tok is 0 whenk is given by eqn. 6, and
it can further be shown that this is a global minimum.

Thus the minimum possible false positive rate for given
values ofm andn is given by eqn. 7. In practice, of course,
k must be an integer. As a consequence, the value furnished
by eqn. 6 is rounded to the nearest integer and the resulting
false positive rate will be somewhat higher than the optimal
value given in eqn. 7.

f̂P =

(

1

2

)
m ln 2

n

≈ (0.6185)
m

n (7)

Finally, it is important to emphasize that the absolute
number of false positives is relative to the size ofU −A (and
not directly to the size ofA). This result seems surprising as
the expression offP depends onn, the size ofA, and does not
depend onN , the size ofU . If we double the size ofU −A

(and keep the size ofA constant) we also double the absolute
number of false positives (and obviously the false positiverate
is unchanged).

III. R ETOUCHEDBLOOM FILTERS

As shown in Sec. II, there is a trade-off between the size
of the Bloom filter and the probability of a false positive. For
a given n, even by optimally choosing the number of hash
functions, the only way to reduce the false positive rate in
standard Bloom filters is to increase the sizem of the bit
vector. Unfortunately, although this implies a gain in terms
of a reduced false positive rate, it also implies a loss in

F
′

P

F
′

N

U

A

Fig. 4. False positive and false negative sets after the selective clearing
process

terms of increased memory usage. Bandwidth usage becomes
a constraint that must be minimized when Bloom filters are
transmitted in the network.

A. Bit Clearing

In this paper, we introduce an extension to the Bloom
filter, referred to as theretouched Bloom filter(RBF). The
RBF makes standard Bloom filters more flexible by allowing
selected false positives to be traded off against random false
negatives. False negatives do not arise at all in the standard
case. The idea behind the RBF is to remove a certain number
of these selected false positives by resetting individually
chosen bits in the vectorv. We call this process thebit
clearing process. Resetting a given bit to 0 not only has the
effect of removing a certain number of false positives, but also
generates false negatives. Indeed, any elementa ∈ A such that
(at least) one of thek bits at positionsh1(a), h2(a), . . . , hk(a)
has been reset to 0, now triggers a negative answer. Element
a thus becomes a false negative.

To summarize, the bit clearing process has the effects of
decreasing the number of false positives and of generating a
number of false negatives. Let us use the labelsF ′

P and F ′
N

to describe the sets of false positives and false negatives after
the bit clearing process. The setsF ′

P and F ′
N are illustrated

in Fig. 4.
After the bit clearing process, the false positive and false
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negative proportions are given by

f ′
P =

|F ′

P|

|U−A|
(8)

f ′
N =

|F ′

N|

|A|
(9)

Obviously, the false positive proportion has decreased (as
F ′

P is smaller thanFP) and the false negative proportion has
increased (as it was zero before the clearing). We can measure
the benefit of the bit clearing process by introducing∆fP,
the proportion of false positives removed by the bit clearing
process, and∆fN, the proportion of false negatives generated
by the bit clearing process:

∆fP =
|FP| − |F

′
P|

|FP|
=

fP− f ′
P

fP
(10)

∆fN =
|F ′

N|

|A|
= f ′

N (11)

We, finally, defineχ as the ratio between the proportion of
false positives removed and the proportion of false negatives
generated:

χ =
∆fP
∆fN

(12)

χ is the main metric we introduce in this paper in order
to evaluate the RBF. Ifχ is greater than 1, it means that
the proportion of false positives removed is higher than the
proportion of false negatives generated.

B. Randomized Bit Clearing

In this section, we analytically study the effect of randomly
resetting bits in the Bloom filter, whether these bits correspond
to false positives or not. We call this process therandomized
bit clearing process. In Sec. IV, we discuss more sophisticated
approaches to choosing the bits that should be cleared. How-
ever, performing random clearing in the Bloom filter enables
us to derive analytical results concerning the consequences
of the clearing process. In addition to providing a formal
derivation of the benefit of RBFs, it also gives a lower bound
on the performance of any smarter selective clearing approach
(such as those developed in Sec. IV).

We again assume that all hash functions map each element
of the universeU to a random number uniformly over the
range{1, . . . , m}. Once then elements ofA have been coded
in the Bloom filter, there is a probabilityp0 for a given bit in
v to be0 and a probabilityp1 for it to be1. As a consequence,
there is an average number ofp1m bits set to1 in v. Let us
study the effect of resetting to0 a randomly chosen bit inv.
Each of thep1m bits set to1 in v has a probability 1

p1m
of

being reset and a probability1− 1
p1m

of being left at1.
The first consequence of resetting a bit to0 is to remove a

certain number of false positives. If we consider a given false
positivex ∈ FP, after the reset it will not result in a positive
test any more if the bit that has been reset belongs to one of
the k positionsh1(x), h2(x), . . . , hk(x). Conversely, if none

of the k positions have been reset,x remains a false positive.
The probability of this latter event is

r1 =

(

1−
1

p1m

)k

(13)

As a consequence, after the reset of one bit inv, the
false positive rate decreases fromfP (given by eqn. 5) to
f ′
P = fPr1. The proportion of false positives that have been

eliminated by the resetting of a randomly chosen bit inv is
thus equal to1− r1:

∆fP = 1− r1 (14)

The second consequence of resetting a bit to0 is the
generation of a certain number of false negatives. If we
consider a given elementa ∈ A, after the reset it will result
in a negative test if the bit that has been reset inv belongs to
one of thek positionsh1(a), h2(a), . . . , hk(a). Conversely, if
none of thek positions have been reset, the test ona remains
positive. Obviously, the probability that a given element in A

becomes a false negative is given by1−r1 (the same reasoning
holds):

∆fN = 1− r1 (15)

We have demonstrated that resetting one bit to0 in v has
the effect of eliminating the same proportion of false positives
as the proportion of false negatives generated. As a result,
χ = 1. It is however important to note that the proportion
of false positives that are eliminated is relative to the size of
the set of false positives (which in turns is relative to the size
of U − A, thanks to eqn. 5) whereas the proportion of false
negatives generated is relative to the size ofA. As we assume
that U − A is much bigger thanA (actually if |FP| > |A|),
resetting a bit to0 in v can eliminate many more false positives
than the number of false negatives generated.

It is easy to extend the demonstration to the reset ofs bits
and see that it eliminates a proportion1− rs of false positives
and generates the same proportion of false negatives, where
rs is given by

rs =

(

1−
s

p1m

)k

(16)

As a consequence, any random clearing of bits in the Bloom
vectorv has the effect of maintaining the ratioχ equal to1.

IV. SELECTIVE CLEARING

Sec. III introduced the idea of randomized bit clearing and
analytically studied the effect of randomly resettings bits of
v, whether these bits correspond to false positives or not. We
showed that it has the effect of maintaining the ratioχ equal
to 1. In this section, we refine the idea of randomized bit
clearing by focusing on bits corresponding to elements that
trigger false positives. We call this processselective clearing.

As described in Sec. II, in Bloom filters (and also in RBFs),
some elements inU −A will trigger false positives, forming
the setFP. However, in practice, it is likely that not all false
positives will be encountered. To illustrate this assertion, let
us assume that the universeU consists of the whole IPv4
addresses range. To build the Bloom filter or the RBF, we
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Algorithm 1 Random Selection
Require: v, the bit vector.
Ensure: v updated, if needed.

1: procedure RANDOMSELECTION(B)
2: for all bi ∈ B do
3: if MEMBERSHIPTEST(bi, v) then
4: index← RANDOM(h1(bi), . . . , hk(bi))
5: v[index]← 0
6: end if
7: end for
8: end procedure

definek hash functions based on a 32 bit string. The subset
A to record in the filter is a small portion of the IPv4 address
range. Not all false positives will be encountered in practice
because a significant portion of the IPv4 addresses inFP have
not been assigned.

We record the false positives encountered in practice in a set
calledB, with B ⊆ FP (see Fig. 2). Elements inB are false
positives that we label astroublesome keys, as they generate,
when presented as keys to the Bloom filter’s hash functions,
false positives that are liable to be encountered in practice. We
would like to eliminate the elements ofB from the filter.

In the following sections, we explore several algorithms for
performing selective clearing (Sec. IV-A). We then evaluate
and compare the performance of these algorithms using theo-
rical analysis (Sec. IV-B) and simulation analysis (Sec. IV-C).

A. Algorithms

In this section, we propose four different algorithms that
allow one to remove the false positives belonging toB. All of
these algorithms are simple to implement and deploy. We first
present an algorithm that does not require any intelligence
in selective clearing. Next, we propose refined algorithms
that take into account the risk of false negatives. With these
algorithms, we show how to trade-off false positives for false
negatives.

The first algorithm is calledRandom Selection. The main
idea is, for each troublesome key to remove, to randomly select
a bit amongst thek available to reset. The main interest of
the Random Selection algorithm is its extreme computational
simplicity: no effort has to go into selecting a bit to clear.
Random Selection differs from random clearing (see Sec. III)
by focusing on a set of troublesome keys to remove,B, and
not by resetting randomly any bit inv, whether it corresponds
to a false positive or not. Random Selection is formally defined
in Algorithm 1.

Recall thatB is the set of troublesome keys to remove.
This set can contain from only one element to the whole set
of false positives. Before removing a false positive element,
we make sure that this element is still falsely recorded in the
RBF, as it could have been removed previously. Indeed, due
to collisions that may occur between hashed keys in the bit
vector, as shown in Fig. 1, one of thek hashed bit positions
of the element to remove may have been previously reset.
Algorithm 1 assumes that a function RANDOM is defined

Algorithm 2 Minimum FN Selection
Require: v, the bit vector andvA, the counting vector.
Ensure: v andvA updated, if needed.

1: procedure M INIMUM FNSELECTION(B)
2: CREATECV(A)
3: for all bi ∈ B do
4: if MEMBERSHIPTEST(bi, v) then
5: index← M IN INDEX(bi)
6: v[index]← 0
7: vA[index]← 0
8: end if
9: end for

10: end procedure
11:

12: procedure CREATECV(A)
13: for all ai ∈ A do
14: for j = 1 to k do
15: vA[hj(ai)]++
16: end for
17: end for
18: end procedure

and returns a value randomly chosen amongst its uniformly
distributed arguments. The algorithm also assumes that the
function MEMBERSHIPTEST is defined. It takes two argu-
ments: the key to be tested and the bit vector. This function
returnstrue if the element is recorded in the bit vector (i.e.,
all thek positions corresponding to the hash functions are set
to 1). It returnsfalseotherwise.

The second algorithm we propose is calledMinimum FN
Selection. The idea is to minimize the false negatives generated
by each selective clearing. For each troublesome key to remove
that was not previously cleared, we choose amongst the
k bit positions the one that we estimate will generate the
minimum number of false negatives. This minimum is given
by the MIN INDEX procedure in Algorithm 2. This can be
achieved by maintaining locally a counting vector,vA, storing
in each vector position the quantity of elements recorded.
This algorithm effectively takes into account the possibility of
collisions in the bit vector between hashed keys of elements
belonging toA. Minimum FN Selection is formally defined
in Algorithm 2.

For purposes of algorithmic simplicity, we do not entirely
update the counting vector with each iteration. The cost
comes in terms of an over-estimation, for the heuristic, in
assessing the number of false negatives that it introduces in any
given iteration. This over-estimation grows as the algorithm
progresses. We are currently studying ways to efficiently adjust
for this over-estimation. Sec. V will discuss more complex
selective clearing algorithms that update, at each step, the
counting vector.

The third selective clearing mechanism is calledMaximum
FP Selection. In this case, we try to maximize the quantity
of false positives to remove. For each troublesome key to
remove that was not previously deleted, we choose amongst
thek bit positions the one we estimate to allow removal of the
largest number of false positives, the position of which is given
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Algorithm 3 Maximum FP Selection
Require: v, the bit vector andvB, the counting vector.
Ensure: v andvB updated, if needed.

1: procedure MAXIMUM FP(B)
2: CREATEFV(B)
3: for all bi ∈ B do
4: if MEMBERSHIPTEST(bi, v) then
5: index← MAX INDEX(bi)
6: v[index]← 0
7: vB[index]← 0
8: end if
9: end for

10: end procedure
11:

12: procedure CREATEFV(B)
13: for all bi ∈ B do
14: for j = 1 to k do
15: vB[hj(bi)]++
16: end for
17: end for
18: end procedure

by the MAX INDEX function in Algorithm 3. In the fashion
of the Minimum FN Selection algorithm, this is achieved
by maintaining a counting vector,vB, storing in each vector
position the quantity of false positive elements recorded.For
each false positive element, we choose the bit corresponding to
the largest number of false positives recorded. This algorithm
considers as an opportunity the risk of collisions in the bit
vector between hashed keys of elements generating false
positives. Maximum FP Selection is formally described in
Algorithm 3.

Finally, we propose a selective clearing mechanism called
Ratio Selection. The idea is to combine Minimum FN Se-
lection and Maximum FP Selection into a single algorithm.
Ratio Selection provides an approach in which we try to
minimize the false negatives generated while maximizing the
false positives removed. Ratio Selection therefore takes into
account the risk of collision between hashed keys of elements
belonging toA and hashed keys of elements belonging toB.
It is achieved by maintaining a ratio vector,r, in which each
position is the ratio betweenvA andvB . For each troublesome
key that was not previously cleared, we choose the index where
the ratio is the minimum amongst thek ones. This index
is given by the MINRATIO function in Algorithm 4. Ratio
Selection is defined in Algorithm 4. This algorithm makes
use of the CREATECV and CREATEFV functions previously
defined for Algorithms 2 and 3.

B. Theorical Analysis

1) Algorithmic Complexity:
Lemma 1:The algorithmic complexity of the Random Se-

lection algorithm isO(k × |B|).
Proof: Before going into details of the Random Selection

algorithm, let us first have a look at the MEMBERSHIPTEST

procedure. This procedure takes two arguments:xi, an element

Algorithm 4 Ratio Selection
Require: v, the bit vector,vB and vA, the counting vectors

andr, the ratio vector.
Ensure: v, vA, vB andr updated, if needed.

1: procedure RATIO(B)
2: CREATECV(A)
3: CREATEFV(B)
4: COMPUTERATIO()
5: for all bi ∈ B do
6: if MEMBERSHIPTEST(bi, v) then
7: index← M INRATIO(bi)
8: v[index]← 0
9: vA[index]← 0

10: vB[index]← 0
11: r[index]← 0
12: end if
13: end for
14: end procedure
15:

16: procedure COMPUTERATIO

17: for i = 1 to m do
18: if v[i] ∧ vB[i] > 0 then
19: r[i] ← vA[i]

vB [i]
20: end if
21: end for
22: end procedure

belonging to|B| andv, the bit vector. The MEMBERSHIPTEST

procedure aims at determining whether the elementxi is
recorded in the bit vectorv, or not. Therefore, as explained
in Sec. II, the MEMBERSHIPTEST procedure checks if thek
bits at positionsh1(b), h2(b), . . . , hk(b) are all set to 1. As
a consequence, the algorithmic complexity of the MEMBER-
SHIPTEST is O(k).

Now, let us consider the Random Selection algorithm in
its entirety. Random Selection browses all elements belonging
to B. And for each element inB, Random Selection calls
the MEMBERSHIPTEST procedure. Therefore, the MEMBER-
SHIPTEST procedure is called|B| times.

Consequently, the algorithmic complexity of the Random
Selection isO(k × |B|).

Lemma 2:The running time of the Minimum FN Selection
algorithm isO(k × (|A|+ |B|)).

Proof: We first have a look at the CREATECV procedure.
CREATECV aims at creating the counting vectorvA that
indicates, for each cell, the number of element recorded in
the corresponding cell of the bit vectorv. Therefore, this
procedure browses all elements belonging toA and, for each
element, incrementsk counters, wherek gives the number of
hash functions used. Consequently, the algorithmic complexity
of the CREATECV procedure isO(k × |A|).

After returning from the CREATECV procedure call, the
Minimum FN Selection algorithm browses all elements be-
longing toB and, for each element, calls MEMBERSHIPTEST.
If the membership test returns true, then the MIN INDEX

procedure is called. This procedure aims at determining the
bit vector index that returns the minimum value amongk
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available. The algorithmic complexity is thusO(k).
Until now, the complexity of Minimum FN Selection is

O(max(k × |A|, 2k × |B|)). The term2k can be reduced to
k. Finally, it is easy to show thatO(k × max(|A|, |B|)) is
equivalent toO(k × (|A|+ |B|)).

Lemma 3:The running time of the Maximum FP Selection
algorithm isO(k × |B|).

Proof: Let us first consider the CREATEFV procedure.
This aims at creating the counting vectorvB that indicates,
for each cell, the number of false positives recorded in
the corresponding cell of the bit vectorv. Therefore, this
procedure browses all elements belonging toB and, for each
element, incrementsk counters, wherek gives the number of
hash functions used. Consequently, the algorithmic complexity
of the CREATEFV procedure isO(k × |B|).

After returning from the CREATEFV procedure call, the
Maximum FP Selection algorithm browses all elements be-
longing toB and, for each element, calls MEMBERSHIPTEST.
If the membership test returns true, then the MAX INDEX

procedure is called. This procedure aims at determining the
bit vector index that returns the maximum value amongk

available. The algorithmic complexity is thusO(k).
Until now, the complexity of Maximum FP Selection is

O(2 × (k × |B|)). The multiplicative factor2 is negligible.
Consequently, the algorithmic complexity of the Maximum
FP Selection algorithm isO(k × |B|).

Lemma 4:The running time of the Ratio Selection algo-
rithm is O(k × (|A|+ |B|) + m).

Proof: As explained above, the complexity of CRE-
ATECV is O(k × |A|) and CREATEFV is O(k × |B|). After
calling CREATECV and CREATEFV, the Ratio Selection al-
gorithm calls the RATIO procedure that aims at creating the
ratio of vA to vB. The complexity of RATIO is O(m) as it
must browses all vector cells.

The rest of Ratio Selection behaves the same way as Mini-
mum FN Selection and Maximum FP Selection, i.e., it browses
all elements belonging toB, performs the membership test
and, if needed, selects the minimum value amongk available.
Therefore, the complexity isO(k × (|A|+ |B|)) to which we
add the cost associated to the COMPUTERATIO procedure, i.e.
O(m).

Consequently, the algorithmic complexity isO(k × (|A| +
|B|) + m).

2) Spatial Complexity:
Lemma 5:The spatial complexity of the Random Selection

algorithm isO(m + |B|)
Proof: The Random Selection algorithm makes use of

two data structures:v, the bit vector required by the Bloom
filters, andB, the set of troublesome keys to remove from the
Bloom filter. The vectorv is m bit long. Therefore, the spatial
complexity of the Random Selection algorithm isO(m+ |B|).

Lemma 6:The spatial complexity of the Minimum FN
Selection algorithm isO(cm + |B|)

Proof: The Minimum FN Selection algorithm makes use
of three data structures:v, the m bit vector, B, the set of
troublesome keys to remove from the Bloom filter andvA,
the counting vector.vA is m cells long and each cell contains

c bits needed by the counter. Therefore, the spatial complexity
of the Minimum FN Selection algorithm isO(cm + |B|).

Lemma 7:The spatial complexity of the Maximum FP
Selection algorithm isO(cm + |B|).

Proof: The Maximum FP Selection algorithm makes use
of three data structures:v, the m bit vector, B, the set of
troublesome keys to remove from the Bloom filter andvB,
the counting vector.vB is m cells long and each cell contains
c bits needed by the counter. Therefore, the spatial complexity
of the Maximum FP Selection algorithm isO(cm + |B|).

Lemma 8:The spatial complexity of the Ratio Selection
algorithm isO(cm + dm + |B|).

Proof: The Ratio Selection algorithm makes use of four
data structures:v, them bit vector,B, the set of troublesome
keys to remove from the Bloom filter,vA, the counting vector
of elements truly recorded inv, vB, the counting vector of
false positives recorded inv and r, the ratio vector.r is m

cells long and each cell containsd bits needed by the counter.
Note thatd is greater thanc asr records ratios. Therefore, the
spatial complexity Ratio algorithm isO(cm + dm + |B|).

C. Simulation Analysis

1) Methodology:We conducted an experiment with a uni-
verse U of 2,000,000 elements (N = 2, 000, 000). These
elements, for the sake of simplicity, were integers belonging
to the range [0; 1,999,9999]. The subsetA that we wanted
to summarize in the Bloom filter contains 10,000 different
elements (n = 10, 000) randomly chosen from the universe
U . Bloom’s paper [1] states that|U | must be much greater
than |A|, without specifying a precise scale.

The bit vectorv we used for simulations is 100,000 bits long
(m = 100, 000), ten times bigger than|A|. The RBF used five
different and independent hash functions (k = 5). Hashing was
emulated with random numbers. We simulated randomness
with the Mersenne Twister MT19937 pseudo-random number
generator [6]. Using five hash functions and a bit vector ten
times bigger thann is advised by Fan et al. [5]. This permits
a good trade-off between membership query accuracy, i.e., a
low false positive rate of 0.0094 when estimated with eqn. 5,
memory usage and computation time. As mentioned earlier
in this paper (see Sec. II), the false positive rate may be
decreased by increasing the bit vector size but it leads to a
lower compression level.

For our experiment, we defined the ratio of troublesome
keys compared to the entire set of false positives as

β =
|B|

|FP |
(17)

We considered the following values ofβ: 1%, 2%, 5%, 10%,
25%, 50%, 75% and 100%. Whenβ = 100%, it means that
B = FP and we want to remove all the false positives.

Each data point in the plots and tables represents the mean
value over fifteen runs of the experiment, each run using a new
A, FP, B, and RBF. We determined 95% confidence intervals
for the mean based on the Studentt distribution.

We performed the experiment as follows: we first created
the universeU and randomly affected 10,000 of its elements to
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A. We next builtFP by applying the following scheme. Rather
than using eqn. 5 to compute the false positive rate and then
creatingFP by randomly affecting positions inv for the false
positive elements, we preferred to experimentally computethe
false positives. We queried the RBF with a membership test
for each element belonging toU − A. False positives were
the elements that belong to the Bloom filter but not toA. We
kept track of them in a set calledFP. This process seemed
to us more realistic because we evaluated the real quantity of
false positive elements in our data set.B was then constructed
by randomly selecting a certain quantity of elements inFP,
the quantity corresponding to the desired cardinality ofB. We
next removed all troublesome keys fromB by using one of the
selective clearing algorithms, as explained in Sec. IV-A. We
then builtF ′

N, the false negative set, by testing all elements in
A and adding toF ′

N all elements that no longer belong toA.
We also determinedF ′

P, the false positive set after removing
the set of troublesome keysB.

2) Results:Table I to IV present performance results for the
selective clearing algorithms proposed in Sec. IV-A. The mean
over the fifteen run and the confidence intervals are shown. The
column|B| gives the number of troublesome keys to remove.
The column|B′| gives an idea of the side effect of performing
selective clearing, in terms of additional false positive keys
removed. The column|B+B′| shows the total number of false
positive removed. Finally, the last column,|A′|, illustrates the
quantity of keys that become false negatives after selective
clearing.

Looking first at the side effects (i.e., column|B′|), we see
that removing troublesome keys inB has the consequence of
removing other false positives. Maximum FP Selection (Ta-
ble II) and Ratio Selection (Table IV) have a larger side effect
compared to the two other selective clearing algorithms. We
further note that the total amount of false positives removed
from the filter (column|B + B′|) is larger than the quantity
of false negative generated (column|A′|). This was expected,
as explained in Sec. III-B.

Looking now at the quantity of false negative generated,
one can see that Minimum FN Selection (Table II) and Ratio
Selection generates fewer false negatives than Maximum FP
Selection and Random Selection.

Consequently, from these preliminary results, one concludes
that the Ratio Selection algorithm provides better performance.
In the rest of this section, we will see if this conclusion is still
valid when comparing the four selective algorithms in terms
of the number of reset bits required to remove troublesome
keys inB and in terms of theχ metric.

Fig. 5 compares the four algorithms in terms of the number
s of reset bits required to remove troublesome keys inB. The
horizontal axis givesβ and the vertical axis, in log scale, gives
s. The confidence intervals are plotted but they are too tight
to appear clearly.

We see that Random Selection and Minimum FN Selection
need to work more, in terms of number of bits to reset,
when β grows, compared to Maximum FP Selection and
Ratio Selection. In addition, we note that the Ratio Selection
algorithm needs to reset somewhat more bits than Maximum
FP Selection (the difference is too tight to be clearly visible

Fig. 5. Number of bits reset

Fig. 6. Effect onχ

on the plots).
Fig. 6 evaluates the performance of the four algorithms. It

plotsβ on the horizontal axis andχ on the vertical axis. Again,
the confidence intervals are plotted but they are generally too
tight to be visible.

We first note that, whatever the algorithm considered, theχ

ratio is always above 1, meaning that the advantages of remov-
ing false positives overcome the drawbacks of generating false
negatives, if these errors are considered equally grave. Thus,
as expected, performing selective clearing provides better
results than randomized bit clearing. Ratio Selection doesbest,
followed by Maximum FP, Minimum FN, and Ratio Selection.

Theχ ratio for Random Selection does not vary much with
β compared to the three other algorithms. For instance, the
χ ratio for Ratio Selection is decreased by 31.3% between
β=1% andβ=100%.

To summarize, one can say that, when using RBF, one can
reliably get aχ above 1.4, even when using a simple selective
clearing algorithm, such as Random Selection. Applying a
more efficient algorithm, such as Ratio Selection, allows one
to get aχ above 1.8. Suchχ values mean that the proportion
of false positives removed is higher than the proportion of
false negatives generated.

In this section, we provided and evaluated four simple se-
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|B| |B′| |B| + |B′| |A′|
1% 188 ±1.31 434 ±13.74 622 ±13.84 231 ±3.01

2% 375 ±1.84 842 ±21.84 1217 ±22.85 450 ±7.75

5% 932 ±9.94 1934 ±37.83 2826 ±46.21 1070 ±10.05

10% 1872 ±17.22 3306 ±67.83 5178 ±83.27 1954 ±20.02

25% 4692 ±26.11 5441 ±61.11 10133 ±83.45 3858 ±21.14

50% 9396 ±78.88 5324 ±67.09 14720 ±143.22 5684 ±36.78

75% 14063 ±109.61 3151 ±36.92 17214 ±144.08 6715 ±30.44

100% 18806 ±157.31 0 18806 ±157.31 7367 ±23.93

TABLE I

RANDOM SELECTION

|B| |B′| |B| + |B′| |A′|
1% 188 ±1.09 431 ±15.27 619 ±16.11 183 ±1.82

2% 377 ±2.75 854 ±18.14 1231 ±19.39 362 ±3.77

5% 939 ±7.67 1942 ±28.77 2881 ±33.57 857 ±9.82

10% 1877 ±12.79 3303 ±65.26 5180 ±76.46 1577 ±14.92

25% 4667 ±35.36 5338 ±72.65 10045 ±105.28 3143 ±19.83

50% 9365 ±44.51 5330 ±52.09 14695 ±92.01 4754 ±24.27

75% 14039 ±85.94 3128 ±37.98 17167 ±119.53 5710 ±21.64

100% 18705 ±173.76 0 18705 ±173.76 6407 ±36.02

TABLE II

M INIMUM FN SELECTION

|B| |B′| |B| + |B′| |A′|
1% 187 ±0.93 769 ±9.97 956 ±10.28 226 ±5.11

2% 375 ±1.82 1458 ±19.33 1833 ±20.05 447 ±8.96

5% 935 ±6.36 3154 ±52.89 4089 ±58.78 1025 ±12.08

10% 1882 ±16.55 5188 ±74.87 7070 ±89.71 1838 ±20.53

25% 4697 ±34.52 7466 ±85.07 12163 ±114.96 3420 ±28.49

50% 9396 ±86.71 6605 ±98.04 16001 ±182.14 4870 ±29.84

75% 14032 ±99.42 3670 ±28.61 17702 ±125.24 5674 ±26.34

100% 18664 ±138.13 0 18664 ±138.13 6202 ±22.09

TABLE III

MAXIMUM FP SELECTION

|B| |B′| |B| + |B′| |A′|
1% 188 ±1.51 735 ±13.89 923 ±14.63 188 ±1.58

2% 374 ±3.25 1372 ±20.05 1746 ±30.58 363 ±4.01

5% 939 ±6.92 3035 ±40.83 3974 ±45.43 844 ±5.73

10% 1863 ±13.95 4860 ±67.65 6723 ±78.71 1498 ±13.71

25% 4703 ±28.72 7261 ±68.39 11964 ±94.59 2895 ±15.99

50% 9394 ±80.17 6444 ±70.86 15838 ±149.01 4229 ±25.95

75% 14057 ±126.61 3625 ±38.28 17682 ±162.64 5021 ±27.54

100% 18683 ±151.08 0 18683 ±151.08 5581 ±24.08

TABLE IV

RATIO SELECTION

lective algorithms. We showed that two algorithms, Maximum
FP Selection and Ratio Selection, are more efficient in terms
of number of bits to clear in the filter. Among these two
algorithms, we saw that Ratio Selection provides better results,
in terms of theχ ratio.

V. I MPROVING SELECTIVE CLEARING

Sec. IV discussed four selective clearing algorithms. Most
of these algorithms simplifies the selective clearing process
by not updating the counting vectors when a particular trou-
blesome key is removed from the bit vector. This leads to an
over-estimation of the quantity of false negatives generated at

each step, as well as a sub-estimation of the amount of false
positives removed at each step.

This section investigates improved selective clearing algo-
rithms that keep up to date the quantity of false negatives
removed and false positives removed at each step of the
algorithms.

Sec. V-A discusses three improved selective algorithms;
Sec. V-B proposes a theorical analysis of the improved selec-
tive algorithms; finally, Sec. V-C compares the performances
of the improved selective algorithms with the standard algo-
rithms introduced in Sec. IV.



10

x

y

z

w

x

x y

y

z

z

w

w

Fig. 7. Example of an ElementList vector

A. Algorithms

Our improved selective clearing algorithms, instead of using
counting vectors, make use of a particular data structure
illustrated in Fig. 7. We call such a data structureElementList
vector. This is somewhat similar to the fast hash tables
developed by Song et al. [7].

The vector has the same length than the bit vector. It
contains thusm cells. Each cell is a pointer to a list of elements
recorded in that position in the bit vector. These elements,
depending on the selective clearing algorithm, can belong to
A or B.

The first algorithm is an improvement to the Minimum FN
Selection algorithm, calledImproved Minimum FN Selection.
Recall that Minimum FN Selection aims, for each troublesome
key to remove, at selecting a bit amongst thek available
that will generate the minimum number of false negatives.
In the fashion of Minimum FN Selection, the minimum is
given by the MIN INDEX procedure in Algorithm 5. Instead
of maintaining locally a counting vector, as done with the
standard Minimum FN Selection algorithm, an ElementList
vector,vA, as illustrated in Fig. 7, is now used. Each cell ofvA

contains the list of elements belonging toA that are recorded
in the corresponding cell ofv, the bit vector. When the min-
imum index has been returned by MIN INDEX, the Improved
Minimum FN Selection algorithm call the BITCLEARING

procedure that will remove fromvA all the elements recorded
in this minimum index. This was introduced in order to tackle
the over-estimation of the standard Minimum FN Selection
where the counting vector was not entirely updated at each
step of the algorithm. Improved Minimum FN Selection is
formally defined in Algorithm 5.

Note that the MEMBERSHIPTEST procedure is identical to
the one introduced in Sec. IV-A.

The second improved selective clearing algorithm is an
improvement to the Maximum FP Selection algorithm and
is called Improved Maximum FP Selection. The standard
Maximum FP Selection algorithm, defined in Algorithm 3,
aims at removing the maximum quantity of troublesome false
positives at each step of the algorithm. Improved Maximum FP
Selection behaves mainly in the same way, except it makes use
of an element vector,vB, instead of a counting vector. When
the maximum index is found by the MAX INDEX procedure,
the BITCLEARING procedure is called in order to maintain
vB up-to-date. Improved Maximum FP Selection is formally
defined in Algorithm 6.

Finally, our last improved selective algorithms, theImproved

Algorithm 5 Improved Minimum FN Selection
Require: v, the bit vector andvA, the element vector.
Ensure: v andvA updated, if needed.

1: procedure M INIMUM FNSELECTION(B)
2: CREATECV(A)
3: for all bi ∈ B do
4: if MEMBERSHIPTEST(bi, v) then
5: index← M IN INDEX(bi)
6: BITCLEARING(vA, index)
7: v[index]← 0
8: end if
9: end for

10: end procedure
11:

12: procedure CREATECV(A)
13: for all ai ∈ A do
14: for j = 1 to k do
15: vA[hj(ai)].add(ai)
16: end for
17: end for
18: end procedure
19:

20: procedure BITCLEARING(ν, index)
21: ElementList el =ν.get(index)
22: for all xi ∈ el do
23: REMOVE(xi, ν) ⊲ remove all occurrences of

elementxi from ν

24: end for
25: end procedure

Algorithm 6 Improved Maximum FP Selection
Require: v, the bit vector andvB, the element vector.
Ensure: v andvB updated, if needed.

1: procedure MAXIMUM FP(B)
2: CREATEFV(B)
3: for all bi ∈ B do
4: if MEMBERSHIPTEST(bi, v) then
5: index← MAX INDEX(bi)
6: BITCLEARING(vB , index)
7: v[index]← 0
8: end if
9: end for

10: end procedure
11:

12: procedure CREATEFV(B)
13: for all bi ∈ B do
14: for j = 1 to k do
15: vB[hj(bi)].add(bi)
16: end for
17: end for
18: end procedure

Ratio Selectionalgorithm aims at increasing the performances
of the standard Ratio Selection algorithm defined in Algo-
rithm 4. Ratio Selection combines Minimum FN Selection and
Maximum FP Selection into a single algorithm. It makes an
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Algorithm 7 Improved Ratio Selection
Require: v, the bit vector,vB andvA, the ElementList vectors

andr, the ratio vector.
Ensure: v, vA, vB andr updated, if needed.

1: procedure RATIO(B)
2: CREATECV(A)
3: CREATEFV(B)
4: COMPUTERATIO()
5: for all bi ∈ B do
6: if MEMBERSHIPTEST(bi, v) then
7: index← M INRATIO(bi)
8: BITCLEARING(vA, index)
9: BITCLEARING(vB , index)

10: v[index]← 0
11: r[index]← 0
12: COMPUTERATIO()
13: end if
14: end for
15: end procedure
16:

17: procedure COMPUTERATIO

18: for i = 1 to m do
19: if v[i] ∧ vB[i].size() > 0 then
20: r[i] ← vA[i].size()

vB [i].size()
21: end if
22: end for
23: end procedure

attempt to minimize the false negatives generated while maxi-
mizing the false positives removed. Improved Ratio Selection,
in the spirit of our improved selective clearing algorithms,
behaves the same way as its standard counterpart but it uses
two ElementList vectors:vA that stores the elements belonging
to A andvB that stores the false positives recorded inv. These
two ElementList vectors are maintained up-to-date thanks to
the BITCLEARING procedure. Further, the ratio vector,r,
containing the ratio of the number of elements recorded in
a given cell ofvA to the number of elements recorded in a
given cell ofvB is also maintained up-to-date. This is achieved
by calling the RATIO procedure each time a false positive is
removed from the bit vector. The Improved Ratio Algorithm
is formally defined in Sec. 7.

B. Theorical Analysis

1) Algorithmic Analysis:
Lemma 9:The running time of the Improved Minimum FN

Selection algorithm is identical to the running time of the
standard Minimum FN Selection algorithm, i.e.,O(k× (|A|+
|B|)).

Proof: Improved Minimum FN Selection starts by calling
the CREATECV procedure. This procedure aims at creating
the ElementList vector,vA. To do so, it browses all elements
belonging toA and each element is addedk times vA. As
adding a cell to a list is an atomic operation (i.e., complexity
O(1)), the algorithmic complexity of CREATECV is O(k ×
|A|).

Improved Minimum FN Selection next browses all elements
belonging toB and, for each element, it performs the member-
ship test. If MEMBERSHIPTEST returns “true”, then MIN IN-
DEX (complexity O(k), as demonstrated in Sec. IV-B.1) is
called as well as BITCLEARING. Note that the algorithmic
complexity of the cumulated calls of BITCLEARING cannot be
worst than the algorithmic complexity of CREATECV (clearing
the ElementList vector is not harder, in a complexity sense,
than creating it).

Using the same reasoning than in Sec. IV-B.1, the algo-
rithmic complexity of Improved Minimum FN Selection is
O(max(k×|A|, 2k×|B|)), which leads toO(k×(|A|+ |B|)).

Lemma 10:The running time of the Improved Maximum
FP Selection algorithm is identical to the running time of the
standard Maximum FP Selection algorithm, i.e.,O(k × |B|).

Proof: Improved Maximum FP Selection starts by calling
the CREATEFV procedure whose complexity isO(k × |B|).

Improved Maximum FP Selection next browses all ele-
ments belonging toB and, for each element, it performs the
membership test. If MEMBERSHIPTEST returns “true”, then
MAX INDEX (complexity O(k), as demonstrated in Sec. IV-
B.1) is called as well as BITCLEARING. As stated earlier in
this section, the BITCLEARING complexity cannot be worst
than the ElementList vector creation.

As a consequence, and using the same reasoning than in
Sec. IV-B.1, the algorithmic complexity of Improved Maxi-
mum FP Selection isO(k × |B|).

Lemma 11:The running time of the Improved Ratio Selec-
tion algorithm is identical to the running time of the standard
Ratio Selection algorithm, i.e.,O(k × (|A|+ |B|) + m).

Proof: After calling CREATECV (complexityO(k×|A|))
and CREATEFV (complexity O(k × |B|)), Improved Ratio
Selection called the RATIO procedure that aims at creating
the ratio ofvA to vB. The complexity of RATIO is O(m ×
max(|A|, |B|)) as it must browse all vector cells and, for each
cell, count the number of elements recorded in the list.

The rest of Improved Ratio Selection behaves the same way
as Improved Minimum FN Selection and Improved Maximum
FP Selection, i.e., it browses all elements belonging toB,
performs the membership test and, if needed, selects the
minimum value amongk available. Next, it maintains up-to-
datevA andvB by calling BITCLEARING. A new ratio is then
calculated.

As a consequence, using the same reasoning than earlier
in this section, the algorithmic complexity of Improved Ratio
Selection isO(k × (|A| + |B|) + m).

2) Spatial Complexity:
Lemma 12:The spatial complexity of the Improved Mini-

mum FN Selection algorithm isO(m + |B|+ k × u× |A|).
Proof: The Improved Minimum FN Selection algorithm

makes use of three data structures: the bit vectorv, the set
of troublesome keys to removeB and the ElementList vector,
vA. v containsm bits andvA contains, at worst,k times each
element belonging toA. We finally consider thatu defines
the space needed to store an element of the universeU (and,
consequently, ofA). As a consequence, the spatial complexity
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of the Improved Minimum FN Selection algorithm isO(m +
|B|+ k × u× |A|).

Lemma 13:The spatial complexity of the Improved Maxi-
mum FP Selection algorithm isO(m + k × u× |B|).

Proof: The Improved Maximum FP Selection algorithm
makes use of three data structures: the bit vectorv, the set
of troublesome keys to removeB and the ElementList vector,
vB. v containsm bits andvB contains, at worst,k times each
troublesome key belonging toB. Again, u gives the space
needed to store an element belonging toU . Consequently, the
spatial complexity of the Improved Maximum FP Selection
algorithm isO(m + k × u× |B|).

Lemma 14:The spatial complexity of the Improved Ratio
Selection algorithm isO(m + k × u× (|A|+ |B|) + dm).

Proof: The Improved Ratio Selection algorithm makes
use of five data structures: the bit vectorv, the set of
troublesome keys to removeB, two ElementList vectors,vA

andvB , and the ratio vector,r. v contains m bits,vA contains,
at worst,k times each element belonging toA, vB contains,
at worst,k times each troublesome key belonging toB and
r is a vector ofm floats (we consider thatd indicates the
number of bits needed to store a float). Consequently, the
spatial complexity of the Improved Ratio Selection algorithm
is O(m + k × u× (|A|+ |B|) + dm).

C. Simulation Analysis

We conducted our simulations using the methodology ex-
plained in Sec. IV-C.1.

Fig. V-C to Fig. V-C compare the performances of our im-
proved selective clearing algorithms to the standard selective
clearing algorithms. The horizontal axis showsβ, the ratio
of the quantity of troublesome keys to remove to the whole
false positive set (see eqn. 17). The vertical axis givesχ, the
ratio between the proportion of false positives removed and
the proportion of false negatives generated (see eqn. 12).

We see that our improved selective clearing algorithms
perform better than those described in Sec. IV. In particular,
Improved Minimum FN Selection provides the strongest in-
crease compared to the standard algorithm: between 66.048%
(β = 0.01) and 84.129% (β = 0.75). Improved Maximum
FN Selection and Improved Ratio Selection provides better
results, compared to the standard version of the algorithms,
when β is high. Finally, Improved Ratio Selection provides
the best results, as expected from standard selective clearing
algorithms.

Fig. 11 evaluates the ElementList vector data structure. The
horizontal axis, for both plots, gives the vector size,m. We
vary it between 104 and 105, with an increment of 104.

Fig. 11(a) shows, on the vertical axis, the proportion of the
vector that is used. If it is equal to 1, it means that all cells
in the vector contain, at least, one element. Otherwise, if it
is equal to 0, it means that all the vector cells are empty.
We see from Fig. 11(a) that the occupancy rate of the vector
decreases nearly linearly with the vector size. We also notice
that the occupancy rate of both vector,vA andvB, is the same
for most of the vector sizes. When the vector is larger, i.e.,
above 90,000 cells, the occupancy rate ofvB becomes smaller
thanvA.

(a) Filled proportion of the ElementList vector

(b) Average ElementList size

Fig. 11. ElementList vector evaluation

Fig. 11(b) shows, on the vertical axis, the average size of
an ElementList item in the vector. The minimum size is 1
(otherwise, the list is empty). The maximum value is either
|A|, for vA, either |B|, for vB . For our experiments, we
consider thatB equalsFP . Looking first at thevB vector, one
can see that the average ElementList size decreases quickly
when the vector size increase. It decreases by two order of
magnitude while the vector size increases only by one order.
Looking now at thevA vector, we see that in the worst case,
a cell contains, on average, less than ten elements. It quickly
decreases until having, at worst, one element per filled cell.

VI. CASE STUDY

A. Tracing Paths with a Red Stop Set

Retouched Bloom filters can be applied across a wide range
of applications that would otherwise use Bloom filters. For
RBFs to be suitable for an application, two criteria must be
satisfied. First, the application must be capable of identifying
instances of false positives. Second, the application must
accept the generation of false negatives, and in particular, the
marginal benefit of removing the false positives must exceed
the marginal cost of introducing the false negatives.

This section describes the application that motivated our
introduction of RBFs: a network measurement system that
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Fig. 8. Minimum FN Selection comparison Fig. 9. Maximum FP Selection comparison Fig. 10. Ratio Selection comparison

traces routes, and must communicate information concerning
IP addresses at which to stop tracing. Sec. VII-B will investi-
gate others applications that can benefit from RBFs instead of
Bloom filters. Sec. VI-B evaluates the impact of using RBFs
in this application.

Maps of the internet at the IP level are constructed by
tracing routes from measurement points distributed throughout
the internet. Theskitter system [8], which has provided data
for many network topology papers, launches probes from 24
monitors towards almost a million destinations. However, a
more accurate picture can potentially be built by using a
larger number of vantage points. DIMES [9] heralds a new
generation of large-scale systems, counting, at present 8,700
agents distributed over five continents. As Donnet et al. [10]
(including authors on the present paper) have pointed out, one
of the dangers posed by a large number of monitors probing
towards a common set of destinations is that the traffic may
easily be mistaken for a distributed denial of service (DDoS)
attack.

One way to avoid such a risk would be to avoid hitting
destinations. This can be done through smart route tracing al-
gorithms, such as Donnet et al.’sDoubletree. With Doubletree,
monitors communicate amongst themselves regarding routes
that they have already traced, in order to avoid duplicating
work. Since one monitor will stop tracing a route when it
reaches a point that another monitor has already traced, it will
not continue through to hit the destination.

Doubletree considerably reduces, but does not entirely
eliminate, DDoS risk. Some monitors will continue to hit
destinations, and will do so repeatedly. One way to further
scale back the impact on destinations would be to introduce
an additional stopping rule that requires any monitor to stop
tracing when it reaches a node that is one hop before that
destination. We call such a node thepenultimate node, and we
call the set of penultimate nodes thered stop set(RSS).Fig. 12
illustrates the RSS concept, showing penultimate nodes as grey
discs.

A monitor is typically not blocked by its own first-hop node,
as it will normally see a different IP address from the addresses
that appear as penultimate nodes on incoming traces. This is
because a router has multiple interfaces, and the IP address
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Fig. 12. Red stop set

that is revealed is supposed to be the one that sends the probe
reply. The application that we study in this paper conducts
standard route traces with an RSS. We do not use Doubletree,
so as to avoid having to disentangle the effects of using two
different stopping rules at the same time.

How does one build the red stop set? The penultimate
nodes cannot be determined a priori. However, the RSS can
be constructed during a learning round in which each monitor
performs a full set of standard traceroutes, i.e., until hitting a
destination. Monitors then share their RSSes. For simplicity,
we consider that they all send their RSSes to a central server,
which combines them to form a global RSS, that is then
redispatched to the monitors. The monitors then apply the
global RSS in a stopping rule over multiple rounds of probing.

Destinations are only hit during the learning round and as a
result of errors in the probing rounds. DDoS risk diminishes
with an increase in the ratio of probing rounds to learning
rounds, and with a decrease in errors during the probing
rounds. DDoS risk would be further reduced were we to apply
Doubletree in the learning round, as the number of probes that
reach destinations during the learning round would then scale
less then linearly in the number of monitors. However, our
focus here is on the probing rounds, which use the global
RSS, and not on improving the efficiency of the learning
round, which generates the RSS, and for which we already
have known techniques.
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The communication cost for sharing the RSS among mon-
itors is linear in the number of monitors and in the size of
the RSS representation. It is this latter size that we would
like to reduce by a constant compression factor. If the RSS
is implemented as a list of 32-bit vectors, skitter’s million
destinations would consume 4 MB. We therefore propose
encoding the RSS information in Bloom filters. Note that the
central server can combine similarly constructed Bloom filters
from multiple monitors, through bitwise logicalOR operations,
to form the filter that encodes the global RSS.

The cost of using Bloom filters is that the application will
encounter false positives. A false positive, in our case study,
corresponds to an early stop in the probing, i.e., before the
penultimate node. We call such an errorstopping short, and it
means that part of the path that should have been discovered
will go unexplored. Stopping short can also arise through
network dynamics, when additional nodes are introduced,
by routing changes or IP address reassignment, between the
previously penultimate node and the destination. In contrast,
a trace that stops at a penultimate node is deemed asuccess.
A trace that hits a destination is called acollision. Collisions
might occur because of a false negative for the penultimate
node, or simply because routing dynamics have introduced a
new path to the destination, and the penultimate node on that
path was previously unknown.

As we show in Sec. VI-B, the cost of stopping short is
far from negligible. If a node that has a high betweenness
centrality (Dall’Asta et al. [11] point out the importance of
this parameter for topology exploration) generates a false
positive, then the topology information loss might be high.
Consequently, our idea is to encode the RSS in an RBF.

There are two criteria for being able to profitably employ
RBFs, and they are both met by this application. First, false
positives can be identified and removed. Once the topology
has been revealed, each node can be tested against the Bloom
filter, and those that register positive but are not penultimate
nodes are false positives. The application has the possibility of
removing the most troublesome false positives by using one of
the selective algorithms discussed in Sec. IV. Second, a low
rate of false negatives is acceptable and the marginal benefit
of removing the most troublesome false positives exceeds the
marginal cost of introducing those false negatives. Our aimis
not to eliminate collisions; if they are considerably reduced,
the DDoS risk has been diminished and the RSS application
can be deemed a success. On the other hand, systematically
stopping short at central nodes can severely restrict topology
exploration, and so we are willing to accept a low rate of
random collisions in order to trace more effectively. These
trade-offs are explored in the Sec. VI-B.

Table V summarizes the positive and negative aspects of
each RSS implementation we propose. Positive aspects are a
success, stopping at the majority of penultimate nodes, topol-
ogy information discovered, the eventual compression ratio of
the implementation and a minimum number of collisions with
destinations. Negative aspects of an implementation can be
the topology information missed due to stopping short, the
load on the network when exchanging the RSS and the risk of
hitting destinations too much times. Sec. VI-B will measure

Fig. 13. Success rate

the positive and negative aspects of each implementation.

B. Evaluation

In this section, we evaluate the use of RBFs in a tracerouting
system based on an RSS. We first present our methodology
and then, discuss our results.

1) Methodology:Our study was based on skitter data [8]
from January 2006. This data set was generated by 24 monitors
located in the United States of America, Canada, the United
Kingdom, France, Sweden, the Netherlands, Japan, and New
Zealand. The monitors share a common destination set of
971,080 IPv4 addresses. Each monitor cycles through the
destination set at its own rate, taking typically three daysto
complete a cycle.

For the purpose of our study, in order to reduce computing
time to a manageable level, we worked from a limited set of
10 skitter monitors, all the monitors sharing a list of 10,000
destinations, randomly chosen from the original set. In our
data set, the RSS contains 8,006 different IPv4 addresses.

We will compare the three RSS implementations discussed
above: list, Bloom filter and RBF. The list would not return
any errors if the network were static, however, as discussed
above, network dynamics lead to a certain error rate of both
collisions and instances of stopping short.

For the RBF implementation, we consideredβ values (see
eqn. 17) of 1%, 5%, 10% and 25%. We further applied
the Ratio Selection algorithm, as defined in Sec. IV-A. For
the Bloom filter and RBF implementations, the hashing was
emulated with random numbers. We simulate randomness
with the Mersenne Twister MT19937 pseudo-random number
generator [6].

To obtain our results, we simulated one learning round on
a first cycle of traceroutes from each monitor, to generate
the RSS. We then simulated one probing round, using a
second cycle of traceroutes. In this simulation, we replayed the
traceroutes, but applied the stopping rule based on the RSS,
noting instances of stopping short, successes, and collisions.

2) Results:Fig. 13 compares the success rate, i.e., stopping
at a penultimate node, of the three RSS implementations.
The horizontal axis gives different filters size, from 10,000 to
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Implementation Positive Negative
Success Topo. discovery Compression No CollisionTopo. missed Load Collision

List X X X X
Bloom filter X X X
RBF X X X X

TABLE V

POSITIVE AND NEGATIVE ASPECTS OF EACHRSSIMPLEMENTATION

Fig. 14. Troublesomeness distribution

100,000, with an increment of 10,000. Below the horizontal
axis sits another axis that indicates the compression ratioof
the filter, compared to the list implementation of the RSS. The
vertical axis gives the success rate. A value of 0 would mean
that using a particular implementation precludes stoppingat
the penultimate node. On the other hand, a value of 1 means
that the implementation succeeds in stopping each time at the
penultimate node.

Looking first at the list implementation (the horizontal line),
we see that the list implementation success rate is not 1
but, rather, 0.7812. As explained in Sec. VI-B, this can be
explained by the network dynamics such as routing changes
and dynamic IP address allocation.

With regards to the Bloom filter implementation, we see
that the results are poor. The maximum success rate, 0.2446,is
obtained when the filter size is 100,000 (a compression ratioof
2.5 compared to the list). Such poor results can be explainedby
the troublesomeness of false positives. Fig. 14 shows, in log-
log scale, the troublesomeness distribution of false positives.
The horizontal axis gives thetroublesomeness degree, defined
as the number of traceroutes that stop short for a given key.
The maximum value is104, i.e., the number of traceroutes
performed by a monitor. The vertical axis gives the number
of false positive elements having a specific troublesomeness
degree. The most troublesome keys are indicated by an arrow
towards the lower right of the graph: nine false positives are,
each one, encountered 10,000 times.

Looking now, in Fig. 13, at the success rate of the RBF, we
see that the maximum success rate is reached whenβ = 0.25.
We also note a significant increase in the success rate for RBF
sizes from 10,000 to 60,000. After that point, except forβ =
1%, the increase is less marked and the success rate converges

Fig. 15. Stopping short rate

to the maximum, 0.7564. Whenβ = 0.25, for compression
ratios of 4.2 and lower, the success rate approaches that of
the list implementation. Even for compression ratios as high
as 25.6, it is possible to have a success rate over a quarter of
that offered by the list implementation.

Fig. 15 gives the stopping short rate of the three RSS imple-
mentations. A value of 0 means that the RSS implementation
does not generate any instances of stopping short. On the other
hand, a value of 1 means that every stop was short.

Looking first at the list implementation, one can see that
the stopping short rate is 0.0936. Again, network dynamics
imply that some nodes that were considered as penultimate
nodes during the learning phase are no longer located one
hop before a destination.

Regarding the Bloom filter implementation, one can see that
the stopping short rate is significant. Between 0.9981 (filter
size of 103) and 0.7668 (filter size of 104). The cost of these
high levels of stopping short can be evaluated in terms of
topology information missed. Fig. 16 compares the RBF and
the Bloom filter implementation in terms of nodes (Fig. 16(a))
and links (Fig. 16(b)) missed due to stopping short. A value
of 1 means that the filter implementation missed all nodes and
links when compared to the list implementation. On the other
hand, a value of 0 mean that there is no loss, and all nodes and
links discovered by the list implementation are discoveredby
the filter implementation. One can see that the loss, when using
a Bloom filter, is above 80% for filter sizes below 70,000.

Implementing the RSS as an RBF allows one to decrease
the stopping short rate. When removing 25% of the most
troublesome false positives, one is able to reduce the stopping
short between 76.17% (filter size of 103) and 84,35% (filter
size of 104). Fig. 15 shows the advantage of using an RBF
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(a) nodes

(b) links

Fig. 16. Topology information missed

instead of a Bloom filter. Fig. 16 shows this advantage in terms
of topology information. We miss a much smaller quantity of
nodes and links with RBFs than Bloom filters and we are able
to nearly reach the same level of coverage as with the list
implementation.

Fig. 17 shows the cost in terms of collisions. Collisions will
arise under Bloom filter and list implementations only due to
network dynamics. Collisions can be reduced under all RSS
implementations due to a high rate of stopping short (though
this is, of course, not desired). The effect of stopping short is
most pronounced for RBFs whenβ is low, as shown by the
curveβ = 0.01. One startling revelation of this figure is that
even for fairly high values ofβ, such asβ = 0.10, the effect
of stopping short keeps the RBF collision cost lower than the
collision cost for the list implementation, over a wide range
of compression ratios. Even atβ = 0.25, the RBF collision
cost is only slightly higher.

Fig. 18 compares the success, stopping short, and collision
rates for the RBF implementation with a fixed filter size of
60,000 bits. We varyβ from 0.01 to 1 with an increment
of 0.01. We see that the success rate increases withβ until
reaching a peak at 0.642 (β = 0.24), after which it decreases
until the minimum success rate, 0.4575, is reached atβ = 1.
As expected, the stopping short rate decreases withβ, varying
from 0.6842 (β = 0) to 0 (β = 1). On the other hand, the

Fig. 17. Collision cost

Fig. 18. Metrics for an RBF with m=60,000

collision rate increases withβ, varying from 0.0081 (β = 0)
to 0.5387 (β = 1).

The shaded area in Fig. 18 delimits a range ofβ values
for which success rates are highest, and collision rates are
relatively low. This implementation gives a compression ratio
of 4.2 compared to the list implementation. The range ofβ

values (between 0.1 and 0.3) gives a success rate between
0.7015 and 0.7218 while the list provides a success rate of
0.7812. The collision rate is between 0.1073 and 0.1987,
meaning that in less than 20% of the cases a probe will hit a
destination. On the other hand, a probe hits a destination in
12.51% of the cases with the list implementation. Finally, the
stopping short rate is between 0.2355 and 0.1168 while the
list implementation gives a stopping short rate of 0.0936.

Fig. 19 illustrates the behavior of the RSS during ten tracer-
oute cycle. We consider the list and the RBF implementations.
The RBF is tuned as followed: the vector is 60,000 bits long
andβ is 0.25. These values are suggested by previous studies
in this section. The horizontal axis, in Fig. 19, gives the
ten cycles, the cycle labeledC1 is equivalent to the results
discussed below. The vertical axis gives the metric rate (i.e.,
success, stopping short and collision).

In Fig. 19, one can see the degradation of the RSS per-
formances. The success rate decreases with time while the
stopping short and the collision rates increases with time.
However, both implementation behaves in the same way. The
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Fig. 19. Metrics for 10 traceroute cycles

Fig. 20. Success comparison

decrease of the success rate for the RBF is somewhat similar
to the list one. The same conclusion holds for the stopping
short and collision rates. Fig. 19 shows thus the robustnessof
the RBF.

In closing, we emphasize that the construction ofB and the
choice ofβ in this case study are application specific. We do
not provide guidelines for a universal means of determining
which false positives should be considered particularly trou-
blesome, and thus subject to removal, across all applications.
However, it should be possible for other applications to
measure, in a similar manner as was done here, the potential
benefits of introducing RBFs.

C. Comparing Selective Clearing Algorithms

In this section, we compare the performances of the Ratio
Selection algorithm and the Improved Ratio Selection algo-
rithm for our case study. The methodology applied was the
same than the one described in Sec. VI-B.1, except that we
did not consider the Bloom filter implementation of the RSS.
In order to make the plots readable, we only took into account
β = 0.01 andβ = 0.25.

Fig. 20 compares both selective clearing techniques regard-
ing the success metric. Recall that a success occurs when a
trace stops at a penultimate node. The horizontal axis gives

Fig. 21. Stopping short comparison

Fig. 22. Collision comparison

different filters size, from 10,000 to 100,000, with an incre-
ment of 10,000. Below the horizontal axis sits another axis
that indicates the compression ratio of the filter, comparedto
the list implementation of the RSS. The vertical axis gives the
success rate. A value of 0 would mean that using a particular
implementation precludes stopping at the penultimate node.
On the other hand, a value of 1 means that the implementation
succeeds in stopping each time at the penultimate node.

We see, from Fig. 20, that Improved Ratio Selection per-
forms better than standard Ratio Selection. Forβ = 0.01, the
increase is more important for larger vector size while it isthe
contrary forβ = 0.25.

Fig. 21 compares both selective clearing techniques regard-
ing the stopping short metric. Recall that a stopping short
corresponds to an early stop in the probing, i.e., before the
penultimate node.

Again, we see from Fig. 21 that the improved selective
clearing algorithms performs better than standard algorithms.
This is more explicit whenβ = 0.01 and the vector is large.
However, forβ = 0.25, we notice a small increase in the
stopping short rate for some vector sizes (between 20,000 and
30,000).

Fig. 22 compares both selective clearing techniques regard-
ing the collision metric. Recall that a collision occurs when a
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trace hits a destination.
We note, from Fig. 22, that Improved Ratio Selection

can decrease the collision rate compared to standard Ratio
Selection. We further see that the collision rate, for Improved
Ratio Selection, is very close to the list one when the vector
size is higher than 70,000 bits. There is a very tight difference
between Improved Ratio Selection and the list that is not
visible on Fig. 22.

In this section, we showed that using our improved selective
clearing algorithms can improve the performances of the RSS
application. Further, this performance increase allows one to
more reduce the size of the bit vector, leading to a better
compression ratio.

VII. R ELATED WORK

Early suggestions of applications for Bloom filters were
for dictionaries and databases. Bloom’s original paper [1]
describes their use for hyphenation. Another dictionary ap-
plication is for spell-checkers [12], [13]. For databases,they
have been suggested to speed up semi-join operations [14],
[15] and for differential files [16], [17].

In this section, we discuss related work. Our approach is
double: first, we discuss Bloom filters variations and develop
those that allow false negatives to arise (Sec. VII-A). Second,
we discuss networking applications of Bloom filters and show
that RBFs can find a suitable usage for some of them (Sec. VII-
B)

A. Bloom Filters Variations

1) Extensions: Time-Decaying Bloom filters(TBF), pro-
posed by Cheng et al. [18], are somewhat similar to counting
Bloom filters [5] (CBF) as the standard bit vector is replaced
by an array of counters. TBF differs from CBF as values in
the array decay periodically with time elapsing. TBF are used
for maintaining time sensitive profiles of the web. As only a
small proportion of web content are frequently visited, Cheng
et al. propose that only heavy hitters are monitored by large
counters, in order to avoid allocation larger counters to small
values.

Chang et al.’s extension aims at supporting multiple binary
predicates as opposed to single binary predicate (the keyx

belongs or not toA) of a traditional Bloom filter [19]. Such
an extension is needed in packet classification, for instance,
where a packet can be classified into many, possibly disjoint,
sets. If the considered application requiredI different sets,
each cell of the bit vector will containedI bits where the
ith bit in a cell corresponds to theith set. When the filter is
queried for a key membership, thek bit strings returned by
the hash functions are AND. In the resulting bit string, if the
ith bit is set to 1, it means that the key might belong toith

set. The case where more than one bit is set to 1 after the
AND is not addressed by Chang et al.

The time-out Bloom filters[20], developed by Kong et al. in
the context of packet sampling, is an extension to standard
Bloom filters where the bit vector is replaced by a bucket
vector, each bucket containing a timestamp. A bucket time-out
t0 is associated to the time-out Bloom filter. A time-out Bloom

filter allows one to determine if an incoming packet belongs
to an active flow or it is the first packet of a new flow. When
a packet with a timestampt arrives, it is compared with thek
timestamps,v[h1(t)], v[h2(t)], . . . , v[hk(t)]. If at least one of
thek timestamps recorded in the filter followst−v[hi(t)] > t0
(i.e., the bucket is time-out), the packet is sampled. Otherwise,
it is discarded. After the comparison, all thek positions in the
vector are updated witht even if the packet is not sampled
and all other buckets in the vector are set to 0. In a time-
out Bloom filter, a bucket getting time-out is equivalent to a
standard Bloom filter having a bit to 0, while a non time-
out is the same as a bit to 1 in a Bloom filter. Due to false
positives, an time-out Bloom filter does not guarantee that all
first packets can be sampled.

Kirsch and Mitzenmacher show that only two hash functions
are needed to effectively implement a Bloom filter without any
loss in the false positive probability [21]. It also leads toless
computation. The idea is to use two hash functionsh1(x) and
h2(x) for simulation additional hash functions of the form
gi(x) = h1(x) + ih2(x).

Space-code Bloom filtersby Kumar et al. [22] andspectral
Bloom filters by Cohen and Matias [23] are approximate
representation of a multiset, which allows for querying “How
many occurrences ofx are there in setM?”. A multiset is
a set in which each member has a multiplicity, i.e., a natural
number indicating the occurrence of a member in the set.

Based on the observation that, in many applications, some
popular elements are queried much frequently than the others,
Bruck et al. propose theweighted Bloom filters(WBF) [24].
If the query frequency or the membership likelihood is not
uniform over all the keys in the universe, the traditional
configuration of the Bloom filter does not give the optimal
performance, as we demonstrated in Sec. VI-B. In a WBF,
each keye ∈ U is assignedke hash functions, whereke

depends on the query frequency ofe and its likelihood of
being a member ofA. Each non-member element has a
different false positive probability. The average false positive
probability of a WBF is given by the weighted sum over the
queries frequencies of the elements in the universe. A key is
assigned more hash functions if its query frequency is high
and its chance of being a member is low. When the query
frequencies and the membership likelihoods are the same for
all keys inU , a WBF behaves like a traditional Bloom filter.

The WBF differs from our RBF as it tries to build the
Bloom filter in such a way that it reflects the key distribution.
However, it is not clear how a WBF can be used has a message
shared between distributed entities as each key is, potentially,
assigned a different number of hash functions. There is an
additional storage information associated to a WBF while an
RBF modifies the traditional Bloom filter without adding any
information.

Standard Bloom filters and most of their extensions are
approaches to represent a static set, i.e., the size ofA does not
evolve with time. However, for many applications, for instance
large-scale and distributed systems, it is difficult to foresee
the threshold size for the setA. It is possible that the size of
A will exceed its initial size,n0, during the execution of the
application. It is thus difficult, even impossible, to maintain the
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false positive rate and the false positive probability willexceed
its threshold. Consequently, the Bloom filter can become
unusable under such a scenario.

Two extensions of the standard Bloom filters have been
proposed in order to support dynamic sets. The first one,split
Bloom filters[25], uses a constants×m bit matrix to represent
a set, wheres is a constant and must be pre-defined according
to the estimation of the maximum value of set size. The second
one,dynamic Bloom filters[26] (DBF) proposed by Guo et al.,
also makes use of as×m bit matrix but each of thes rows
is a standard Bloom filter. The creation process of a DBF is
iterative. At the starting, the DBF is a1 ×m bit matrix, i.e.,
it is composed of a single standard Bloom filter. It supposed
that nr elements are recorded in the initial bit vector, where
nr ≤ n. As the size ofA grows during the execution of the
application, several keys must be inserted in the DBF. When
inserting a key into the DBF, one must first get an active
Bloom filter in the matrix. A Bloom filter is active when the
number of recorded keys,nr, is strictly less than the current
cardinality ofA, n. If an active Bloom filter is found, the key
is inserted andnr is incremented by one. On the other hand,
if there is no active Bloom filter, a new one is created (i.e., a
new row is added to the matrix) according to the current size
of A and the element is added in this new Bloom filter and the
nr value of this new Bloom filter is set to one. A given key is
said to belong to the DBF if thek positions are set to one in
one of the matrix rows. Guo et al. also extend standard Bloom
filters and DBF for supporting set consisted of multi-attribute
keys.

2) Bloom Filters and False Negatives:Has nobody thought
of the RBF before? There is a considerable literature on Bloom
filters, and their applications in networking, that we discuss in
Sec. VII-B. In a few instances, suggested variants on Bloom
filters do allow false negatives to arise. However, these variants
do not preserve the size of the standard Bloom filter, as RBFs
do. Nor have the false negatives been the subject of any
analytic or simulation studies. In particular, the possibility of
explicitly trading off false positives for false negativeshas not
been studied prior to the current work, and efficient means for
performing such a trade-off have not been proposed.

First is the anti-Bloom filter, which was suggested in
non-peer reviewed work [27], [28]. An anti-Bloom filter is
composed of a standard Bloom filter plus a separate smaller
filter that can be used to override selected positive resultsfrom
the main filter. When queried, a negative result is generated
if either the main filter does not recognize a key or the anti-
filter does. The anti-Bloom filter requires more space than the
standard filter, but the space efficiency has not been studied.
Nor have studies been made of the impact of the anti-filter on
the false positive rate, or on the false negatives that wouldbe
generated.

Second, Fan et al.’s CBF replaces each cell of a Bloom
filter’s bit vector with a four-bit counter, so that instead of
storing a simple 0 or a 1, the cell stores a value between 0
and 15 [5]. This additional space allows CBFs to not only
encode set membership information, as standard Bloom filters
do, but to also permit dynamic additions and deletions to that
information. One consequence of this new flexibility is that

there is a chance of generating false negatives. They can arise
if counters overflow. Fan et al. suggest that the counters be
sized to keep the probability of false negatives to such a low
threshold that they are not a factor for the application (four
bits being adequate in their case). The possibility of trading
off false positives for false negatives is not entertained.

Third, Bonani et al.’sd-left CBF is an improvement on
the CBF. As with the CBF, it can produce false negatives.
It can also produce another type of error called “don’t know”.
Bonani et al. conduct experiments in which they measure the
rates for the different kinds of errors, but here too there is
no examination of the possibility of trading off false positives
against false negatives. Thed-left CBF is more space-efficient
than the CBF. But CBFs themselves require a constant multiple
more space than standard Bloom filters, and the question does
not arise of comparing the space efficiency ofd-left CBFs with
that of standard Bloom filters, as they serve different functions.

Four, Song et al. [7] propose an extension to the CBF, called
the extended Bloom filter(EBF), in order to support exact
address prefix matching for routing. An array is associated to
the CBF. Each cell of this array contains the list of keys that
are recorded in the corresponding cell in the CBF. Song et
al. propose several techniques to reduce the memory cost of
the EBFs. The EBFs are designed to achieved higher lookup
performance within high-speed routers.

With the EBFs, the false positives are removed by adding
information to the CBFs. With the RBFs, by contrast, no
information is added to remove the false positives. The cost
of these removals is expressed in terms of false negatives
generated for the RBFs and in terms of increased memory
usage for the EBFs.

Five, Laufer et al. [29] an extension to the standard Bloom
filter called thegeneralized Bloom filter(GBF). With the GBF,
one moves beyond the notion that elements must be encoded
with 1s, and that 0s represent the absence of information. A
GBF starts out as an arbitrary vector of both 1s and 0s, and
information is encoded by setting chosen bits to either 0 or
1. As a result, the GBF is a more general binary classifier
than the standard Bloom filter. One consequence is that it can
produce either false positives or false negatives. Laufer et al.
provide a careful analysis [30] of the trade-offs between false
positives and false negatives.

A GBF employs two sets of hash functions,g1, . . . , gk0

and h1, . . . , hk1
to set and reset bits. To add an elementx

to the GBF, the bits at positionsg1(x), . . . , gk0
(x) are set to

0 and the bits at positionsh1(x), . . . , hk1
(x) are set to 1. In

the case of a collision between two hash valuesgi(x) and
hj(x), the bit is set to 0. The membership of an elementy

is verified by checking if all bits atg1(y), . . . , gk0
(y) are set

to 0 and all bits ath1(y), . . . , hk1
(y) are set to 1. If at least

one bit is inverted,y does not belong to the GBF with a high
probability. A false negative arises when at least one bit of
g1(y), . . . , gk0

(y) is set to 1 or one bit ofh1(y), . . . , hk1
(y)

is set to 0 by another element inserted afterwards. The rates
of false positives and false negatives in a GBF can be traded
off by varying the numbers of hash functions,k0 and k1, as
well as other parameters such as the size of the filter.

RBFs differ from GBFs in that they allow the explicit
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removal of selected false positives. RBFs also do so in a way
that allows the overall error rate, expressed as a combination of
false positives and false negatives, to be lowered as compared
to a standard Bloom filter of the same size. We note that the
techniques used to remove false positives from standard Bloom
filters could be extended to remove false positives from GBFs.
For a false positive key,x, either one would set one of the bits
g1(x), . . . , gk0

(x) to 1 or one of the bitsh1(x), . . . , hk1
(x) to

0.
Finally, Distance-sensitive Bloom filters, introduced by

Kirsch and Mitzenmacher [31], consider the notion of an
“approximate Bloom filter”, that allows approximate instead
of exact matches under a distance metric. In other words, a
distance-sensitive Bloom filter tries to answer the following
question: “Isx, wherex ∈ U , close to an element belonging to
A?”. In a distance-sensitive Bloom filter, classic hash functions
are replaced by distance-sensitive hash functions. A Distance-
sensitive Bloom filter allow false positives and false negatives.

One might think that there would be general binary classi-
fiers similar to RBFs in the domain of machine learning. It is
usual in artificial intelligence to make use of classifiers, such as
neural networks, Bayesian classifiers (naive or not), or support
vector machines (SVMs) [32], [33]. However, these classifiers
differ from RBFs in that they classify based on feature or
attribute vectors. RBFs classify elements purely on the basis
of their unique keys.

B. Networking Bloom Filters Applications

Bloom filters have been widely used in networking appli-
cations, as stated by Broder and Mitzenmacher [3]. Broder
and Mitzenmacher consider four types of networking applica-
tions: overlays and peer-to-peer networks, resource processing,
packet routing and measurement. All these fours categories
are developed below. For each of them, we discuss the use of
RBFs instead of traditional Bloom filters.

1) Overlays and Peer-to-Peer:For a node in a peer-to-peer
file sharing system, keeping a list of objects stored at all other
nodes might be costly in terms of memory, but keeping Bloom
filters for all other nodes might be an attractive alternative.
This was proposed by Cuenca-Acuna et al. for theirPlanetP
system [34].

PlanetP meets the two criteria for the use of RBFs. First,
the application can identify false positives. A node, through
is own experience with the inability to locate certain files at
the expected nodes, can determine that the keys corresponding
to those files yield false positives. Second, false negatives are
tolerated because not every node that stores a given object
need be identified. In a file sharing system, the same object is
typically stored in multiple locations, and so the failure of one
node to recognize some of the locations for some of the objects
should not pose a great problem, provided the rate of such
errors remains within reasonable bounds. The communications
savings that come from eliminating some false positives might
well outweigh the costs of missing some locations.

Byers et al. [35] propose an application for distributing
large files to many peers in overlay networks. They suggest
that peers may want to solveapproximate set reconciliation

problems. The idea is to allow a peer A to send to a peer B
objects that B does not have. Encoding the sets of objects as
Bloom filters allows for data compression. B will send A its
Bloom filter. Testing its own set, element by element, against
this Bloom filter allows A to know the set of objects B does
not have, and send them to B. Because of false positives, not
all objects that B needs will be sent, but most will.

Approximate set reconciliation clearly meets the second
criterion for using RBFs. A low rate of false negatives in the
RBF furnished by peer B would result in peer A sending a
small number of elements that B already possesses. It is easy
to imagine that the system designers would be willing to pay
this communications overhead price in order to ensure that B
gets more of the elements that it is missing.

A question arises, however, for the first criterion. How does
peer B identify the false positives in the Bloom filter that it
sends out? For this, it would need to know the keys for the
objects that it is missing. For some applications, this would not
be possible. But we could easily imagine many applications
where the keys are known. For instance, B might know the
contents of a music catalog, but not have many of the songs
in that catalog. It could identify the false positives in itsRBF
by testing the keys in the catalog one by one.

Rhea et al. [36] describe a probabilistic algorithm for rout-
ing peer-to-peer resource location queries. Each node in the
network keeps an array of Bloom filters, called anattenuated
Bloom filter, for each adjacent edge in the overlay topology.
In the array for each edge, there is a Bloom filter for each
distanced, up to a maximum value, so that thedth Bloom
filter in the array keeps track of resources available viad hops
through the overlay network along that edge. If it is deemed
probable that the resource that is being searched for is present,
the query is routed to the nearest neighbor. This scheme would
require the addition of feedback to identify false positives. If
false positives could be identified, they could be removed. This
might be worthwhile, as false negatives do not invalidate the
system. The array of Bloom filters could be replaced by an
array of RBFs, bringing about a decrease in the false positive
rate at the cost of a comparatively small increase in the false
negative rate.

2) Resource Routing:Czerwinski et al. [37] describe a
resource discovery architecture calledNinja, that makes use
of Bloom filters. In our judgment, Ninja would not be tolerant
of false negatives, and is thus not a candidate for using RBFs.

However, another resource routing application could benefit.
Rhea et al. [36] describe a probabilistic algorithm for routing
peer-to-peer resource location queries. Each node in the net-
work keeps an array of Bloom filters, called anattenuated
Bloom filter, for each adjacent edge in the overlay topology.
In the array for each edge, there is a Bloom filter for each
distanced, up to a maximum value, so that thedth Bloom
filter in the array keeps track of resources available viad hops
through the overlay network along that edge. If it is deemed
probable that the resource that is being searched for is present,
the query is routed to the nearest neighbor. This scheme would
require the addition of feedback to identify false positives. If
false positives could be identified, they could be removed. This
might be worthwhile, as false negatives do not invalidate the
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system. The array of Bloom filters could be replaced by an
array of RBFs, bringing about a decrease in the false positive
rate at the cost of a comparatively small increase in the false
negative rate.

3) Network Packet Processing:Dharmapurikar et al. [38]
propose the use of Bloom filters for detecting predefined
signatures in packet payloads. They propose an architecture
of W parallel Bloom filters, each Bloom filter focusing on
strings of a specified length. If a string is found to be a
member of any Bloom filter, it is then declared as a possible
matching signature. To avoid the risk of false positives, each
matching signature is tested in ananalyzerwhich determines
if the signature is truly a member of the setA or not. In other
words, the analyzer contains all elements ofA. Bloom filters
are only used to discard elements not belonging toA.

At least one of the two criteria for using the RBFs is
met in the process described by Dharmapurikar et al. The
analyzer offers the opportunity to identify false positives.
The application should obtain a gain in terms of processing
time by removing from the filters those false positives. The
second criterion is application-specific. If a small rate offalse
negatives may be tolerated, then RBFs are suitable.

4) Measurement:Bloom filters are also used in topology
discovery. Some authors of this paper proposeDoubletree[10],
an efficient and cooperative algorithm that aims to reduce
redundancy, i.e., duplication of effort, in tracerouting systems
by taking into account the tree-like structure of routes in the in-
ternet. Reducing the redundancy implies coordination between
Doubletree monitors by sharing information about what was
previously discovered. To summarize this information shared,
Donnet et al. propose to implement it using Bloom filters [39].
Though it is difficult for Doubletree monitors to meet the
first criterion by detecting false positives, we proposed, in this
paper (see Sec. VI), a variant of the problem for which RBFs
are well adapted.

VIII. C ONCLUSION
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