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Abstract

Traceroute is a networking tool that allows one to dis-
cover the path that packets take from a source machine,
through the network, to a destination machine. It is
widely used as an engineering tool, and also as a scien-
tific tool, such as for discovery of the network topology
at the IP level. In prior work, authors on this techni-
cal report have shown how to improve the efficiency of
route tracing from multiple cooperating monitors. How-
ever, it is not unusual for a route tracing monitor to
operate in isolation. Somewhat different strategies are
required for this case, and this report is the first system-
atic study of those requirements. Standard traceroute is
inefficient when used repeatedly towards multiple desti-
nations, as it repeatedly probes the same interfaces close
to the source. Others have recognized this inefficiency
and have proposed tracing backwards from the desti-
nations and stopping probing upon encounter with a
previously-seen interface. One of this technical report’s
contributions is to quantify for the first time the effi-
ciency of this approach. Another contribution is to de-
scribe the effect of non-responding destinations on this
efficiency. Since a large portion of destination machines
do not reply to probe packets, backwards probing from
the destination is often infeasible. We propose an al-
gorithm to tackle non-responding destinations, and we
find that our algorithm can strongly decrease probing
redundancy at the cost of a small reduction in node and
link discovery.

1 Introduction

Traceroute [1] is a networking diagnostic tool natively
available on most of the operating systems. It allows one
to determine the path followed by a packet. Traceroute
allows therefore to draw up the map of router inter-
faces present along the path between a machine S (the
source or the monitor) and a machine D (the destina-
tion). Traceroute has also engineering applications as it
can be used, for instance, to detect routers that fail in a
network. This report proposes and evaluates improve-
ments to standard traceroute for tracing routes from a
single point.

Today’s most extensive tracing system at the IP inter-
face level, skitter [2], uses 24 monitors, each targeting

on the order of one million destinations. In the fash-
ion of skitter, scamper [3] makes use of several moni-
tors to traceroute IPv6 networks. The Distributed In-
ternet MEasurements & Simulations [4] (Dimes) is a
measurement infrastructure somewhat similar to the fa-
mous SETI@home [5]. SETI@home’s screensaver down-
loads and analyzes radio-telescope data. The idea be-
hind Dimes is to provide to the research community
a publicly downloadable distributed route tracing tool.
It was released as a daemon in September 2004. The
Dimes agent performs Internet measurements such as
traceroute and ping at a low rate, consuming at peak
1KB/sec. At the time of writing this report, Dimes

counts more than 8,700 agents scattered over five con-
tinents. In the fashion of skitter, scamper [3] makes use
of several monitors to traceroute IPv6 networks. Other
well known systems, such as Ripe NCC TTM [6] and
Nlanr AMP [7], each employs a larger set of monitors,
on the order of one- to two-hundred, but they avoid
probing outside their own network. Scriptroute [8] is a
system that allows an ordinary internet user to perform
network measurements from several distributed vantage
points. It proposes remote measurement execution on
PlanetLab nodes [9], through a daemon that implements
ping, hop-by-hop bandwidth measurement, and a num-
ber of other utilities in addition to traceroute.

Recently, in the context of large-scale internet topol-
ogy discovery, we have shown [10] that standard tracer-
oute probing (such as skitter) is particularly inefficient
due to duplication of effort at two levels: measurements
made by an individual monitor that replicate its own
work (intra-monitor redundancy), and measurements
made by multiple monitors that replicate each other’s
work (inter-monitor redundancy). Using skitter data
from August 2004, we have quantified both kinds of re-
dundancy. We showed that intra-monitor redundancy
is high close to each monitor and, with respect to inter-
monitor redundancy, we find that most interfaces are
visited by all monitors, especially when close to desti-
nations. We further proposed an algorithm, Doubletree,
for reducing both forms of redundancy at the same time.

This technical report focuses more deeply on the
intra-monitor redundancy problem. Systems that dis-
cover internet topology at IP level from a set of isolated
vantage points (i.e., there is no cooperation between
monitors) have interest to reduce their intra-monitor
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redundancy. By sending much less probes, monitors
can probe the network more frequently. The more fre-
quent snapshots you have, the more accurate should be
your view of the topology. This technical report demon-
strates how a monitor can act to reduce its intra-monitor
redundancy.

The nature of intra-monitor redundancy suggest to
start probing far from the traceroute monitor and probe
backwards (i.e., decreasing TTLs), as first noticed by
Govindan and Tangmunarunkit [11], Spring et al. [8],
Moors [12] and Donnet et al. [10]. However, perform-
ing backward probing from non-cooperative traceroute
monitors in the context of intra-monitor redundancy
has never been evaluated previously. Even if backward
probing is simple to understand, it is not clear how effi-
cient it is. This report evaluates the redundancy reduc-
tion of backward probing as well as the eventual infor-
mation lost compared to standard traceroute.

Nevertheless, backward probing is based on the as-
sumption that destinations reply to probes in order to
estimate path lengths and the distance of the last hop
before the destination. Unfortunately, a large set of des-
tinations (40% in our data set) does not reply to probes,
probably due to strongly configured firewalls. In this
case, backward probing cannot be performed. In this
report, we also propose a way to face non-responding
destinations. We further propose an efficient algorithm
that can handle both cases, i.e., responding and non-
responding destinations. We evaluate these algorithms
in terms of intra-monitor redundancy and quantity of
information lost.

The remainder of this report is organized as follows:
Sec. 2 introduces the data set used throughout this tech-
nical report; Sec. 3 gives a key for reading quantile plots;
Sec. 4 evaluates standard traceroute; Sec. 5 presents and
evaluates separately our backward probing algorithms;
Sec. 6 compares the different algorithms; finally, Sec. 7
concludes this report by summarizing its principal con-
tributions.

2 Data Set

Our study is based on skitter [2] data from August
1st through 3rd, 2004. This data set was generated
by 24 monitors located in the United States, Canada,
the United Kingdom, France, Sweden, the Netherlands,
Japan, and New Zealand. The monitors share a com-
mon destination set of 971,080 IPv4 addresses. Each
monitor cycles through the destination set at its own
rate, taking typically three days to complete a cycle.
For the purpose of our studies, in order to reduce com-
puting time to a manageable level, we worked from a
limited destination set of 50,000, randomly chosen from
the original set.

Visits to host and router interfaces are the metric

by which we evaluate redundancy. We consider an in-
terface to have been visited if its IP address returned
by the host or router appears, at least, at one of the
hops in a traceroute. Though it would be of inter-
est to calculate the load at the host and router level,
rather than at the individual interface level, we make
no attempt to disambiguate interfaces in order to ob-
tain router-level information. The alias resolution tech-
niques described by Pansiot and Grad [13], by Govindan
and Tangmunarunkit [11], for Mercator, and applied in
the iffinder tool from Caida [14], would require active
probing beyond the skitter data, preferably at the same
time that the skitter data is collected. The methods
used by Spring et al. [15], in Rocketfuel, and by Teixeira
et al. [16], apply to routers in the network core, and are
untested in stub networks. Despite these limitations, we
believe that the load on individual interfaces is a useful
measure. As Broido and claffy note [17], “interfaces are
individual devices, with their own individual processors,
memory, buses, and failure modes. It is reasonable to
view them as nodes with their own connections.”

How do we account for skitter visits to router and
host interfaces? Like many standard traceroute imple-
mentations, skitter sends three probe packets for each
hop count. An IP address appears thus in a traceroute
result if it appears in the replies to, at least, one of the
three probes sent (but it may also appear two or three
times). For each reply, we account one visit. If none
of the three probes are returned, the hop is recorded as
non-responding.

Even if an IP address is returned for a given hop
count, it might not be valid. Due to the presence of
poorly configured routers along traceroute paths, skit-
ter occasionally records anomalies such as private IP ad-
dresses that are not globally routable. We account for
invalid hops as if they were non-responding hops. The
addresses that we consider as invalid are a subset of the
special-use IPv4 addresses described in RFC 3330 [18].
Specifically, we eliminate visits to the private IP address
blocks 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.
We also remove the loopback address block 127.0.0.0/8.
In our data set, we find 4,435 different special addresses,
more precisely 4,434 are private addresses and only one
is a loopback address. Special addresses account for ap-
proximately 3% of the entire set of addresses seen in this
trace. Though there were no visits in the data to the fol-
lowing address blocks, they too would be considered in-
valid: the “this network” block 0.0.0.0/8, the 6to4 relay
any cast address block 192.88.99.0/24, the benchmark
testing block 198.18.0.0/15, the multicast address block
224.0.0.0/4, and the reserved address block formerly
known as the Class E addresses, 240.0.0.0/4, which in-
cludes the lan broadcast address, 255.255.255.255.
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Figure 1: Quantiles key

3 Description of the Plots

In this report, we plot interface redundancy distribu-
tions. Since these distributions are generally skewed,
quantile plots give us a better sense of the data than
would plots of the mean and variance. There are sev-
eral possible ways to calculate quantiles. We calculate
them in the manner described by Jain [19, p. 194], which
is: rounding to the nearest integer value to obtain the
index of the element in question, and using the lower
integer if the quantile falls exactly halfway between two
integers.

Fig. 1 provides a key to reading the quantile plots
found in subsequent sections of this report.

A dot marks the median (the 2nd quartile, or 50th

percentile). The vertical line below the dot delineates
the range from the minimum to the 1st quartile, and
leaves a space from the 1st to the 2nd quartile. The space
above the dot runs from the 2nd to the 3rd quartile, and
the line above that extends from the 3rd quartile to the
maximum. Small tick bars to either side of the lines
mark some additional percentiles: bars to the left for
the 10th and 90th, and bars to the right for the 5th and
95th.

In the case of highly skewed distributions, or distri-
butions drawn from small amounts of data, the vertical
lines or the spaces between them might not appear. For
instance, if there are tick marks but no vertical line
above the dot, this means that the 3rd quartile is iden-
tical to the maximum value.

In the figures, each quantile plot sits directly above an
accompanying bar chart that indicates the quantity of
data upon which the quantiles were based. For each hop
count, the bar chart displays the number of interfaces
at that distance. For these bar charts, a log scale is
used on the vertical axis. This allows us to identify
quantiles that are based upon very few interfaces (fewer
than twenty, for instance), and so for which the values
risk being somewhat arbitrary.
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Figure 2: Redundancy when probing with the pure for-
wards algorithm

4 Standard Traceroute

Our basis for comparison is the results from the stan-
dard forward tracing algorithm implemented in tracer-
oute. All monitors operate from a set of common desti-
nations, D. Each monitor probes forward starting from
TTL=1 and increasing the TTL hop by hop towards
each of the destinations in D in turn. As it probes, a
monitor i updates the set, Si, initially empty, of inter-
faces that it has visited.

Evaluating redundancy in the standard traceroute
was already published in an authors’ SIGMETRICS
2005 paper [10]. For comparison reasons in the next
sections of this report, we summarize in this section our
redundancy evaluation of standard traceroute.

Fig. 2 shows redundancy distributions for two skitter
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Figure 3: Pure backwards algorithm

monitors: arin and champagne. The results presented
in Fig. 2 are representative of all the skitter monitors.
Interested readers might find plots for the 22 other skit-
ter monitors in our technical report [20].

Looking first at the histograms for interface counts
(the lower half of each plot), we find data consistent with
distributions typically seen in such cases. If we were to
look at a plot on a linear scale (not shown here), we
would see that these distributions display the familiar
bell-shaped curve typical of internet interface distance
distributions [21]. If we concentrate on champagne, we
see that it discovers 92,354 unique and valid IP ad-
dresses. The interface distances are distributed with
a mean at 17 hops corresponding to a peak of 9,135
interfaces that are visited at that distance.

The quantile plots show the nature of the redundancy
problem. Looking at how the redundancy varies by dis-
tance, we see that the problem is worse the closer one is
to the monitor. This is what we expect given the tree-
like structure of routing from a monitor, but here we
see how serious the phenomenon is from a quantitative
standpoint. For the first two hops from each monitor,
the median redundancy is 150,000. A look at the his-
tograms shows that there are very few interfaces at these
distances. Just one interface for arin, and two (2nd hop)
or three (3rd hop) for champagne. These close to the
monitor interfaces are only visited three times, as rep-
resented by the presence of the 5th and 10th percentile
marks (since there are only two data points, the lower
values point is represented by the entire lower quarter
of values on the plot).

Beyond three hops, the median redundancy drops
rapidly. By the eleventh hop, in both cases, the me-
dian is below ten. However, the distributions remain
highly skewed. Even fifteen hops out, some interfaces
experience a redundancy on the order of several hun-
dred visits. With small variations, these patterns are
repeated for each of the monitors.

5 Backward Tracing

As seen and discussed in Sec. 4, the most worrisome
feature of redundancy in a standard measurement sys-
tem is the exceptionally high number of visits to the
median interfaces close in to the monitor. Also of con-
cern is the heavy tail of the distribution at more distant

hop counts, with a certain number of interfaces consis-
tently receiving a high number of visits. Our approach
here is to tackle the first problem head-on, and then to
see if the second problem remains.

The large number of visits to nodes close in to a mon-
itor is easily explained by the tree-like or conal struc-
ture of the graph generated by traceroutes from a single
monitor, as described by Broido and claffy [17]. There
are typically only a few interfaces close to a monitor,
and these interfaces must therefore be visited by a large
portion of the traceroutes. The solution to this problem
is simple, at least in principle: these close in interfaces
must be skipped most of the time.

Traceroute works forward from source to destination.
Its first set of probes goes just one hop, its second set
goes two, and so forth. It would seem that the best
way to reduce intra-monitor redundancy is to start fur-
ther out and probes backward, i.e., decreasing TTLs.
Govindan and Tangmunarunkit [11] do just this in the
Mercator system. Using a probing strategy based upon
IP address prefixes, Mercator conducts a check before
probing the path to a new address that has a prefix
P . If paths to an address in P already exist in its
database, Mercator starts probing at the highest hop
count for a responding router seen on those paths. No
results have been published on the performance of this
heuristic, though it seems to us an entirely reasonable
approach in light of our data.

The Mercator heuristic requires that a guess be made
about the relevant prefix length for an address. That
guess is based upon the class that the address would
have had before the advent of classless inter-domain
routing (CIDR) [22]. In this technical report, we have
tested a number of simple heuristics that do not require
us to hazard such a guess.

Our algorithms work backwards. As illustrated in
Fig. 3, a monitor sends its first probes to the desti-
nation, its second to one hop short of the destination,
and so forth. Now arises the question of when to stop
backward probing. Based on the tree-like structure of
routes emanating from a single point (i.e., the tracer-
oute source), we choose a stopping rule based on the
set of interfaces previously encountered. A monitor will
stop backward probing when an already visited interface
is encountered. The only redundancy such a strategy
should produce would be on interfaces that are branch-
ing points in paths between a monitor and its destina-
tions. A backward probing scheme uses the set, Si, of
interfaces that a monitor i has visited. In early prob-
ing, Si will have few elements, and so paths should be
traced from the destination almost all the way back to
the monitor. Later probing should terminate further
and further out, as more and more interfaces are added
to Si.

There are practical problems with a strategy of back-
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wards probing. They arise because of inherent flaws
with methods for establishing the number of hops from
a monitor to a destination. These methods rely upon
the sending of a ping packet (or a scout packet, following
Moors’ terminology [12]), and the examination of the
time to live (TTL) value in the IP packet that the desti-
nation returns. Various heuristics have been described,
by Templeton and Levitt [23], Jin et al. [24], Moors [12]
and Beverly [25], to guess the original TTL (typically
one of a few standard values) based upon the observed
value, and thus to guess the hop count from destination
to monitor. While these heuristics have been shown to
work well, the most serious problem is that they cannot
work when the destination does not reply, as is often the
case (40.3% in our data). In such a case, a system that
takes a backwards probing approach will ideally start
from the most distant interface that responds with an
ICMP “TTL expired” packet when discarding a hop-
limited probe. In practice, this might take some search
to locate, adding redundancy.

Furthermore, as established by Paxson [26] based
upon data from 1995, and confirmed with data from
2002 by Amini et al. [27], a considerable number of
paths in the Internet are asymmetric: most recently
almost 70%. This is a less serious problem, however,
as the differences in routing often do not translate into
considerable differences in hop count. Paxson’s work in-
dicated that differences in one or two hops were typical.
For the purposes of our simulations we assume that, if
a destination does reply to a ping, the system thereby
learns the correct number of hops on the forward path.

5.1 Pure Backwards

We simulate an algorithm for backwards probing in
which the most distant responding interface is assumed
to be known a priori. Called pure backward probing, this
algorithm is unrealistic because of its assumption. How-
ever, its performance sets a benchmark.Against that al-
gorithm, we later compare algorithms that use only in-
formation that is actually available to a monitor.

Fig. 4 shows redundancy for monitors running the
pure backwards algorithm1. We notice a significant drop
in comparison to the redundancy in straightforward
tracerouting shown in Fig. 2. The median drops for
the close interfaces, and the distribution tails are signif-
icantly shortened overall. However, Figs. 4(a) and 4(b)
show still high redundancy for interfaces located one
hop from the traceroute source.

We hypothesize that these remanent high redundan-
cies close to the monitors are caused by the existence of
firewalls or gateways that either do not permit probes to
pass through them, or do not permit replies to return.

1Plots for others monitors can be found in an appendix at the
end of this report.

104

102

100

 40 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100

re
du

nd
an

cy

(a) arin

104

102

100

 40 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100
re

du
nd

an
cy

(b) champagne

Figure 4: Redundancy when probing with the pure
backwards algorithm

If the destination addresses are invalid, these interfaces
could also be default free routers. Under pure back-
wards probing, a node situated immediately in front of
such a device, whatever it might be, will be visited again
and again, for each destination that lies beyond, thus
resulting in a high visit count for one of its interfaces.
Without any further knowledge, the actual cause of such
high redundancy under backwards probing remains for
us an open question.

However, Figs. 4(a) and 4(b) show that maximum
redundancies are in the thousands, rather that the hun-
dreds of thousands as before. Furthermore, median val-
ues are a little higher than with standard traceroute.
The strong drop in redundancy close to the monitor
thus comes at the expense of some increased redundancy
further out. The overall effect is one of smoothing the
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load.

There are costs associated with this drop in redun-
dancy. We measure these in terms of the number of
interfaces missed, using the set Si of interfaces visited
by the standard algorithm as the reference. For the pure
backwards algorithm, the numbers missed are relatively
small, as shown in Table 7. Table 7 gives also the cost in
term of links missed by the pure backwards algorithm.

Interfaces will necessarily be missed in backwards
probing when a hard and fast rule is applied that re-
quires probing to stop once an already visited interface
is encountered. Any routing change that might have
taken place between the monitor and that interface will
go unnoticed. A routing system that adopts a back-
wards probing algorithm should also adopt a strategy
for periodically reprobing certain paths, so as not to
miss such changes entirely. So long as the portion of
interfaces missed is small, we believe that the develop-
ment of such a reprobing strategy can be left to future
work.

5.2 Ordinary Backwards

The ordinary backwards algorithm works in much the
same way as perfect backwards, but it is a more realistic
algorithm. Just as with pure backwards, when a desti-
nation responds, the monitor starts probing backwards
from the destination until an already visited interface
is met. However, when a destination doesn’t reply, the
monitor, since it cannot know a priori the most distant
responding interface along the path, gives up probing
for this particular destination altogether. This is the
first of two building blocks that will be used by the al-
gorithm presented in Sec. 5.4, and is not intended to be
used in isolation.

Approximately 40% the traceroutes in our data set
terminate in a non-responding destination. What does
this mean in terms of interfaces that are missed? Table 2
shows the costs of not probing these paths combined
with the early stopping that is in any case associated
with backwards probing. What is remarkable to note
is that, compared to perfect backwards probing, ordi-
nary backwards probing only misses an additional 16%
of interfaces.

Fig. 5 shows trends very similar to those observed
with perfect backwards probing, but some high values
are no longer present.

5.3 Searching

If we are to use ordinary backwards probing as one
element of a larger probing strategy, we need a second el-
ement to handle destinations that do not respond. Since
the last responding interface on a path to such a destina-
tion cannot be known a priori, the monitor must search
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Figure 5: Redundancy when probing with the ordinary
backwards algorithm

for it. The search cost is what will make the difference
with respect to the pure backwards algorithm.

Our algorithm, labeled searching, now sends its ini-
tial probe with a TTL value h. If it receives a response,
it continues to probe forwards, to TTLs h + 1, h + 2,
and so forth. When the farthest responding interface
is found, probing resumes from TTL h − 1, and probes
backwards, to TTLs h−2, h−3, and so back. If, at any
point, a monitor i visits an interface that is in its set
Si of interfaces already viewed, probing for that desti-
nation stops. The working of the searching algorithm is
illustrated in Fig. 6, where h = 3 and R5 being the last
responding interface.

If the algorithm is supposed to start probing from a
midpoint h in the network, we have to decide which
value give to h. Doubletree [10], proposed by the au-
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Monitor Interfaces Links

total discovered % missed total discovered % missed
arin 92,381 88,204 4.52% 101,850 92,602 9.09%
champagne 92,354 88,012 4.70% 101,652 92,331 9.17%

Table 1: Interfaces missed by the pure backwards algorithm

Monitor Interfaces Links

total discovered % missed total discovered % missed
arin 92,381 73,529 20.40% 101,850 75,163 27.21%
champagne 92,354 73,410 20.51% 101,652 74,987 27.24%

Table 2: Interfaces missed by the ordinary backwards algorithm

Monitor R1 R2 R3 R4 R5 Destination
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Figure 6: Searching algorithm with h = 3
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Figure 7: Incomplete paths distribution

thors of this report, is a cooperative and efficient al-
gorithm for large-scale topology discovery. Each Dou-
bletree monitor starts probing at some hop h from it-
self, performing forwards probing from h and backwards
probing from h − 1. The value h is fixed by each moni-
tor according to its probability p of hitting a destination
with the very first probe sent. This choice is driven by
the risk of probing looking like a distributed denial-of-
service (DDoS) attack. Indeed, when probes sent by
multiples monitors converge towards a given destina-
tion, the probe traffic might appear, for an end-host, as
a DDoS attack. Doubletree aims to minimize this risk
and, therefore, each monitor chooses an appropriate h

value.

In this report, we are not interested in large-scale dis-
tributed probing, i.e., from a large set of monitors that
cooperate when probing towards a large set of destina-
tions. We consider that each monitor works in isolation
of others. It does not make sense to choose the h value
like Doubletree does.

Fig. 7 shows the incomplete paths distribution, i.e.,
the distance distribution of the last responding hop
when a traceroute does not terminate by hitting the
destination. Such a case occurs in approximately 40%
of the traceroutes in our dataset. We propose that each
monitor tunes its h value with the mean hop count for
its incomplete traceroutes. A monitor can easily evalu-
ates its own h value by performing a small number of
standard traceroutes.

In the special case where there is no response at dis-
tance h, the distance is halved, and halved again until
there is a reply, and probing continues forwards and
backwards from that point.

Our results in Fig. 8 indicate that low redundancy can
be achieved. We tested the heuristic algorithm using
only those traceroutes for which the destination does
not respond.

However, we notice that close to the monitor, in the
fashion of the pure backwards algorithm (see Fig. 4), the
redundancy is still high. We believe that this is caused
by very short paths for which the last responding inter-
face is close to the monitor. For those paths, there is a
high probability that sending the first probe at h hops
to the monitor will corresponds a non-response. The
h value will be divided by two, again and again, until
reaching a responding interface that will be located close
to the monitor, increasing therefore the redundancy of
such interfaces.

5.4 Searching Ordinary Backwards

In this section, we study a comprehensive strategy
for reducing probing redundancy. We employ ordinary
backwards probing, along with the heuristic algorithm
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Figure 8: Redundancy when probing with the searching
algorithm

for cases in which the destination does not respond.
This algorithm is called searching ordinary backwards.

Fig. 9 shows redundancy reduction similar to that
obtained with the other algorithms examined so far.

Table 3 shows the interfaces and links missed when
probing with the searching ordinary backwards algo-
rithm. Table 3 indicates that the numbers of missed
interfaces are a bit smaller (this is specially true for
arin) than with the supposedly pure backwards algo-
rithm, a surprising fact which will be explained in the
next section.

6 Algorithms Comparison

Fig. 10 shows the trade-offs between redundancy and
missed address interfaces. Redundancy is here repre-
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Figure 9: Redundancy when probing with the searching
ordinary backwards algorithm

sented by the mean number of visits per valid discov-
ered interface, and the missed addresses are expressed
as a proportion, using the standard traceroute as the
reference. Results shown in Fig. 10 are representative
for all monitors, as demonstrated by Table 4 giving the
mean over the 24 monitors.

Our goal is to avoid both redundancy and missed in-
terfaces as much as possible, however there is a trade-
off between the two. Extremes are represented by the
standard traceroute, which by definition misses no in-
terfaces, but has high average redundancy, and by the
heuristic algorithm which, having been applied to just
those traceroutes for which the destination did not re-
spond, necessarily misses a large number of interfaces.

We see that the ordinary backwards provides the low-
est redundancy but, as it is applied on only respond-

8



Monitor Interfaces Links

total discovered % missed total discovered % missed
arin 92,381 90,156 2.40% 101,850 94,149 7.57%
champagne 92,354 87,946 4.77% 101,652 91,123 10.36%

Table 3: Interfaces missed by the searching ordinary backwards algorithm

Algorithms Mean visit Prop. missed

standard 25.08 0
heuristic 9.16 0.74
search. ord. bwd 6.21 0.03
pure bwd 5.58 0.04
ordinary bwd 4 0.2

Table 4: Algorithms comparison - mean

ing traceroutes, it misses a lot of interfaces. The most
interesting comparison is between the pure backwards
algorithm and searching ordinary backwards. Both are
based upon the full set of traceroutes, and so are strictly
comparable. The searching ordinary backwards algo-
rithm manages to outperform the pure backwards al-
gorithm by paying a slight price in terms of increased
redundancy (in the case of arin).

7 Conclusion

This technical report addresses the area of efficient
probing in the context of traceroute monitors working in
isolation from each others. Prior work stated that stan-
dard traceroutes are particularly inefficient by repeat-
edly reprobing the same interfaces close to the monitor.
The solution to this redundancy problem is, at least in
principle, simple: those interfaces close to the monitor
must be skipped most of the time. It seems that the
best way to achieve this solution is to probe backwards
from the destinations and stop when encountering a pre-
viously seen interface.

In this report, we perform the first careful study of
the efficiency of backwards probing, by evaluating it in
terms of redundancy reduction and information lost.

Nevertheless, we state that a pure backwards probing
algorithm is unrealistic as it is based on the assumption
that destinations reply to probes. We therefore propose
an algorithm that searches for the last responding inter-
face. The key idea of this algorithm is to start probing
at some hop h from the monitor, probe forwards from
h until the last responding interface and, then, probe
backwards from h − 1 until reaching an already discov-
ered interface.

We finally propose a realistic algorithm that can han-
dle both cases, i.e., responding and non-responding des-
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Figure 10: Algorithms comparison

tinations. We evaluate this algorithm and state that it
is capable of reducing probe traffic by a factor of 10,
while only missing 4% of the interfaces discovered by a
standard traceroute.

As a future work, we aim to provide to the research
community an implementation of the algorithms dis-
cussed in this report.
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A Pure Backwards

A.1 Redundancy Reduction
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Figure 11: Redundancy when probing with the pure backwards algorithm - 1
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Figure 12: Redundancy when probing with the pure backwards algorithm - 2
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Figure 13: Redundancy when probing with the pure backwards algorithm - 3
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Figure 14: Redundancy when probing with the pure backwards algorithm - 4
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A.2 Losses

Monitor Interfaces Links

total discovered % missed total discovered % missed
apan-jp 86,763 82,659 0.04730% 96,908 88,562 0.08612%
b-root 92,754 88,565 0.04516% 103,595 94,379 0.08896%
cam 90,796 86,799 0.04402% 101,068 92,546 0.08431%
cdg-rssac 90,962 87,015 0.04339% 100,258 92,114 0.08123%
d-root 91,136 87,228 0.04288% 100,821 92,757 0.07998%
e-root 90,952 86,592 0.04793% 102,749 93,093 0.09397%
f-root 92,123 88,136 0.04327% 101,956 93,058 0.08727%
g-root 91,547 87,108 0.04848% 103,872 93,742 0.09752%
h-root 91,825 87,725 0.04465% 102,948 94,106 0.08588%
i-root 91,942 87,827 0.04475% 104,017 94,657 0.08998%
iad 92,175 88,092 0.04429% 102,324 93,046 0.09067%
ihug 94,719 89,715 0.05282% 107,979 96,292 0.10823%
k-peer 91,851 87,730 0.04486% 103,672 94,353 0.08988%
k-root 91,726 87,806 0.04273% 101,974 93,858 0.07958%
lhr 92,079 88,215 0.04196% 101,188 92,837 0.08252%
m-root 92,347 88,078 0.04622% 101,321 92,247 0.08955%
mwest 91,525 87,388 0.04520% 103,074 93,881 0.08918%
nrt 92,021 87,897 0.04481% 101,286 92,276 0.08895%
riesling 90,913 86,766 0.04561% 100,426 91,334 0.09053%
sjc 91,459 87,433 0.04401% 101,665 92,695 0.08823%
uoregon 90,585 86,624 0.04372% 100,851 92,360 0.08419%
yto 91,200 87,199 0.04387% 102,625 93,766 0.08632%

Table 5: Interfaces missed by the pure backwards algorithm
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B Ordinary Backwards

B.1 Redundancy Reduction
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Figure 15: Redundancy when probing with the ordinary backwards algorithm - 1
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Figure 16: Redundancy when probing with the ordinary backwards algorithm - 2
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Figure 17: Redundancy when probing with the ordinary backwards algorithm - 3
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Figure 18: Redundancy when probing with the ordinary backwards algorithm - 4
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B.2 Losses

Monitor Interfaces Links

total discovered % missed total discovered % missed
apan-jp 86,763 68,105 0.21504% 96,908 70796 0,26945%
b-root 92,754 73,673 0.20571% 103,595 76701 0,25960%
cam 90,796 72,239 0.20438% 101,068 75367 0,25429%
cdg-rssac 90,962 72,345 0.20466% 100,258 74897 0,25295%
d-root 91,136 72,708 0.20220% 100,821 75669 0,24947%
e-root 90,952 71,967 0.20873% 102,749 75477 0,26542%
f-root 92,123 73,389 0.20335% 101,956 75454 0,25993%
g-root 91,547 72,573 0.20726% 103,872 76349 0,26497%
h-root 91,825 73,016 0.20483% 102,948 76598 0,25595%
i-root 91,942 73,232 0.20349% 104,017 77063 0,25913%
iad 92,175 73,285 0.20493% 102,324 75317 0,26393%
ihug 94,719 74,549 0.21294% 107,979 77792 0,27956%
k-peer 91,851 72,954 0.20573% 103,672 76607 0,26106%
k-root 91,726 73,100 0.20306% 101,974 76451 0,25028%
lhr 92,079 73,329 0.20362% 101,188 75229 0,25654%
m-root 92,347 73,112 0.20829% 101,321 74611 0,26361%
mwest 91,525 72,722 0.20544% 103,074 76388 0,25890%
nrt 92,021 73,137 0.20521% 101,286 74612 0,26335%
riesling 90,913 72,126 0.20664% 100,426 73859 0,26454%
sjc 91,459 72,762 0.20443% 101,665 74936 0,26291%
uoregon 90,585 72,082 0.20426% 100,851 75256 0,2537%
yto 91,200 72,471 0.20536% 102,625 76155 0,25792%

Table 6: Interfaces missed by the ordinary backwards algorithm
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C Searching

C.1 Redundancy Reduction
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Figure 19: Redundancy when probing with the searching algorithm - 1
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Figure 20: Redundancy when probing with the searching algorithm - 2
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Figure 21: Redundancy when probing with the searching algorithm - 3
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Figure 22: Redundancy when probing with the searching algorithm - 4
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C.2 Incomplete Paths
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Figure 23: Incomplete paths distribution - 1
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Figure 24: Incomplete paths distribution - 2
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Figure 25: Incomplete paths distribution - 3
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Figure 26: Incomplete paths distribution - 4
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D Searching Ordinary Backwards

D.1 Redundancy Reduction
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Figure 27: Redundancy when probing with the SearchingOB ordinary backwards algorithm - 1

30



104

102

100

 40 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100

re
du

nd
an

cy

(a) d-root

104

102

100

 40 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100

re
du

nd
an

cy

(b) e-root

104

102

100

 40 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100

re
du

nd
an

cy

(c) f-root

104

102

100

 40 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100

re
du

nd
an

cy

(d) g-root

104

102

100

 40 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100

re
du

nd
an

cy

(e) h-root

104

102

100

 40 35 30 25 20 15 10 5 0nb
 in

te
rf

ac
es

hop

106

105

104

103

102

101

100

re
du

nd
an

cy

(f) i-root

Figure 28: Redundancy when probing with the SearchingOB ordinary backwards algorithm - 2
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Figure 29: Redundancy when probing with the SearchingOB ordinary backwards algorithm - 3
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Figure 30: Redundancy when probing with the SearchingOB ordinary backwards algorithm
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D.2 Losses

Monitor Interfaces Links

total discovered % missed total discovered % missed
apan-jp 86763 83,674 0.03560% 96,908 88,147 0.09040%
b-root 92754 89,540 0.03465% 103,595 94,469 0.08809%
cam 90796 88,278 0.02773% 101,068 93,822 0.07169%
cdg-rssac 90962 87,958 0.03302% 100,258 92,844 0.07394%
d-root 91136 89,167 0.02160% 100,821 94,634 0.06136%
e-root 90952 88,831 0.02332% 102,749 95,018 0.07524%
f-root 92123 90,926 0.01299% 101,956 95,770 0.06067%
g-root 91547 89,480 0.02257% 103,872 95,335 0.08218%
h-root 91825 88,914 0.03170% 102,948 94,040 0.08652%
i-root 91942 88,158 0.04115% 104,017 94,484 0.09164%
iad 92175 90,374 0.01953% 102,324 95,031 0.07127%
ihug 94719 91,882 0.02995% 107,979 98,129 0.09122%
k-peer 91851 89,431 0.02634% 103,672 96,780 0.06647%
k-root 91726 89,715 0.02192% 101,974 95,884 0.05972%
lhr 92079 89,877 0.02391% 101,188 94,754 0.06358%
m-root 92347 89,448 0.03139% 101,321 93,277 0.07939%
mwest 91525 89,953 0.01717% 103,074 96,561 0.06318%
nrt 92021 89,825 0.02386% 101,286 93,955 0.07237%
riesling 90913 87,681 0.03555% 100,426 91,518 0.08870%
sjc 91459 89,299 0.02361% 101,665 93,713 0.07821%
uoregon 90585 87,990 0.02864% 100,851 92,971 0.07813%
yto 91200 89,541 0.01819% 102,625 95,834 0.066173%

Table 7: Interfaces missed by the SearchingOB ordinary backwards algorithm
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E Algorithms Comparison
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Figure 31: Algorithms comparison - 1
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Figure 32: Algorithms comparison - 2
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Figure 33: Algorithms comparison - 3
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Figure 34: Algorithms comparison - 4
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