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Abstract—In the past few years, the network measurement
community has been interested in the problem of internet topl-
ogy discovery using a large number (hundreds or thousands)fo
measurement monitors. The standard way to obtain informaton
about the internet topology is to use the traceroute tool fron
a small number of monitors. Recent papers have made the case
that increasing the number of monitors will give a more accuate
view of the topology. However, scaling up the number of mondrs
is not a trivial process. Duplication of effort close to the nonitors
wastes time by reexploring well-known parts of the network,and
close to destinations might appear to be a distributed denia
of-service (DDoS) attack as the probes converge from a set of
sources towards a given destination. In prior work, authorsof
this report proposed Doubletree, an algorithm for cooperaive within a single AS is a separate area of inquiry. It is notc8jr

router IP interfaces and end-hosts, while discovering almst helped by the privileged access available to the admiistra
as many nodes and links as standard approaches based on

traceroute. This report presents our open-source and fregi ©Of an AS.
downloadable implementation of Doubletree in a tool we call  Fig. [ illustrates the three levels of the internet topology
traceroute@home. We describe the deployment and validatio  Black dots represents router interfaces, blank shaped &an
8‘; t{ﬁge{g:;g%h?gfngg ftr';?npt'&';ete'-xaberiitcb:d V\f;‘e“d di‘é"ceusr:pﬁgwrouters and shaded areas for ASes. The plain and dotted lines
traceroute@home can be developed fuprther and discuss ideéar c_orrespond to links. The IP interface Ieveﬂ IS |IIu§trat@dtIh)e
future improvements. links between routers. The router level is obtained when all
interfaces of a router are grouped in a single identifieraliym
|. INTRODUCTION the AS level is obtained when we look only at ASes and the
For some time, the problem of internet topology discovetinks between them.

has drawn the attention of the network measurement com-This report focuses on the IP interface level. More spegiall
munity. One can see the internet topology at three differeihtdescribes the implementation and deployment story of a
levels. The first one, th&P interface level considers internet topology discovery algorithmDoubletree[7], that reduces
protocol (IP) interfaces of routers and end systems. Ugualload on the network, i.e., router IP interfaces and endshost
this topology is obtained by using data collected with thehile discovering nearly the same set of nodes and links
probing tooltraceroute[1]. Traceroute is a networking tool as standard approaches based on traceroute. Doubletree was
that allows one to discover IP interfaces along the path thaoposed by authors of this report.
data packets take to go fromsaurcemachine omonitor to Today’s most extensive tracing system at the IP interface
a destinationmachine. The second levahe router levelis level, skitter [8], uses 24 monitors, each targeting on the
an aggregation of the IP level. It can be obtained by usirgder of one million destinations. Authors of this repore ar
a technique calledlias resolution[2], [3], [4], [5]. The idea responsible for skitter. In the fashion of skittegamper[9]
is to summarize all the IP addresses of a router into a singif@akes use of several monitors to traceroute IPv6 networks.
identifier. Finally, theAS levelprovides information about the Other well known systems, such BR$PE NCC TTM[10] and
connectivity of autonomous systems (ASes). An AS is a sit ANR AMP11], each employ a larger set of monitors, on the
of routers that are under the same administrative conttot. Torder of one- to two-hundred, but they avoid probing outside
ASes are interconnected in order to allow IP packets to itrantheir own network. However, recent work has indicated the
from one network to another, so providing global connetstivi need to increase the number of traceroute sources in order
The connectivity information might be inferred from BGRo obtain a more complete topology measurement [12], [13].
tables [6], BGP being the routing protocol used between ASésdeed, it has been shown that reliance upon a relativelyl sma
Note that the special problem of determining the topologyumber of monitors to generate a graph of the internet can

Fig. 1. The different levels of topology
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introduce unwanted biases.
One way of rapidly creating a large distributed monitor
infrastructure would be to deploy traceroute monitors in an
easily downloadable and readily usable piece of software,
such as a screensaver. This was first proposed by Jorg Non-
nenmacher, as reported by Cheswick et al. [14]. Such a
suggestion is in keeping with the spirit of of that have arise Fig. 2. Traceroute example
in the past few years. The most famous one is probably
SETI@home [15]. SETI@home’s screensaver downloads aﬁ%netLab nodes as destinations
analyzes radio-telescope data. Others similar projeetsaid- j
ing@home [16], a computation application that studiesginot

In this report, we describe the traceroute@home system.
N b o We evaluate the performance of our prototype, point out its
foldlng,.and, d!StrIb_llj_Led#‘let [l7t])|_aIgznerall-pljjrpglse(rﬁhslig weaknesses and the problems encountered in its deployment.
computing project. The first publicly downloadable dis . We discuss directions for future development of our tool and

route tracing tool isDIMES [18], released as a daemon Ny, . : . . .
X . . e opportunity for creating an infrastructure entirelgidated
September 2004. At the time of writing this report, DIME o ne?vF\)/ork mgasurementg v

counts more than 6,000 agents scattered over five continents]-he remainder of this report is organized as follows: §&c. II

pre_ver, building such a large structure Ieads_ to IOOtenti(§5|<plains how traceroute works; S€&cl 1l describes the Dsubl
scaling issues: the quantity of probes launched might G0BSU o0 4160rithm and some of its extensions: $&g. IV describes
undue netv_vork r_es;}ources and thg_ pfgbesd Zen'g 1;rom M3Wceroute@home; in SeEl V, we discuss its on PlanetLab
vantage points might appear as a distributed aenial- " nodes; Sec¥I introduces directions for future extensions

(DDoS) attack to end-hosts. These problems were quantif%"y’ Sec[¥I summarizes the principal contributionstiof
in our prior work [7]. There are two ways to avoid thes?eport

problems: the first one is to stay small, as skitter does for
instance, but this solution is opposed to the basic idea of Il. TRACEROUTE
scaling up the number of tracing monitors. The second is toTraceroute is a networking tool that allows one to discover
trace slowly, as does IDES. In this case, the problem is thatthe path a data packet takes to go from a machine Ss(thee
the resulting network snapshot may be blurred bye the rgutior the monitor) to a machine D (th&estination.
changes that take place over the course of a probing intervalFig. [ illustrates how traceroute workS.is the source of
The Doubletree algorithm [7] is a first attempt to perfornthe tracerouteD is the destination and tHei s are the routers
large-scale topology discovery efficiently and in a networlong the path. S sends multiple UDP probes, UDP being the
friendly manner. Doubletree acts to avoid retracing theesargser Datagram Protocolvhich is a connectionless transport
routes in the internet by taking advantage of the tree-liggrotocol, into the network with increasirtgne-to-live (TTL)
structure of routes fanning out from a source or converginglues, the TTL being a field in the IP header indicating how
on a destination. The key to Doubletree is that monitorseshdong a packet can circulate in the network. Each time a packet
information regarding the paths that they have explorednef enters a router, the router decrements the TTL. When the
monitor has already probed a given path to a destination tHETL value is one, the router determines that the packet has
another monitor should avoid that path. Probing in this neannconsumed sufficient resources in the network, drops it, and
can significantly reduce load on routers and destinatioriewhinforms the source of the packet by sending back an ICMP
maintaining high node and link coverage [7]. By avoidingime exceedethessagelCMP_TE in Fig.[d). ICMP, Internet
redundancy, not only is Doubletree able to reduce the load Gontrol Message Protocol, is a protocol for managing errors
the network but it also allows one to probe the network morelated to networked machines. By looking at the IP source
frequently. This makes it possible to better capture netwoaddress of the ICMP message, the monitor can learn the IP
dynamicity (routing changes, load balancing) compared #pidress of the router at which the probe packet stopped.
standard approaches based on traceroute. When, finally, a probe reaches the destination, the destina-
This report goes beyond earlier theory and simulation tion is supposed to reply with an ICMéestination unreach-
propose a Doubletree implementation written in Java [19ble messagelCMP_DUin Fig.[d).
We call this prototyperaceroute@homeraceroute@home is  Unfortunately, the traceroute behavior explained above is
certainly not the first tracerouting tool developed. Howeite the ideal case. A router along the path might not reply to
differs from standard approaches, such as skitter, duesto pgtobes because the ICMP protocol is not activated, or the
distributed aspect and its scaling resistance thanks to- Doauter is overloaded. In order to avoid waiting an infinime:i
bletree. traceroute@home is easily tunable and extenfible for the ICMP reply, the traceroute monitor actives a timer
further developments. traceroute@home is completely -opavhen it launches the UDP probe. If the timer expires and
source and freely downloadable [20]. no reply was received, then, for that TTL, the machine is
To validate traceroute@home, we deployed it on the Plamensidered asmon-responding
etLab [21] testbed. We installed traceroute@home on tenHowever, a particular problem occurs when it is the desti-
PlanetLab nodes and probed the network, using 200 otlation that does not reply to probes because, for instatiee, o



restrictive firewall. In this case, the destination will leeorded

as non responding but it is impossible to know that it was
reached. In order to avoid inferring a boundless path, arupp
bound on the number of successive non-responding machines
is used. For instance, in skitter and in our applications thi
upper bound is set to five.

Standard traceroute, as just described, is based on UDP
probes. However, two variants exist. The behavior of the
traceroute for the intermediate routers is the same asatdnd
traceroute. The difference comes with the destination. The
first variant is based on ICMP. Instead of launching UDP
probes, the source sends ICNBeho Requesiessages. The
destination is supposed to reply with an ICEPho ReplyThe
second sends packets using fhiensport Control Protocol
(TCP) which is a connection-oriented transport protocble T
TCP traceroute aims to bypass most common firewall filters
by sending TCP SYN packets. It assumes that firewalls will
permit inbound TCP packets to specific ports listening for
incoming connections.

I1l. DOUBLETREE

Doubletree [7] is the key component of a coordinated
probing system that significantly reduces load on routets an
end-hosts while discovering nearly the same set of nodes
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and links as standard approaches based on traceroute. It
takes advantage of the tree-like structures of routes in the
context of probing. Routes leading out from a monitor towgard
multiple destinations form a tree-like structure rootedthat
monitor (see Fid_3(h)). Similarly, routes converging toiga
destination from multiple monitors form a tree-like stur,
but rooted at the destination (see Hig. B(b)). A monitor psob _ o
hop by hop so long as it encounters previously unknown Doubletree has one tunable parameter. The choice of initial
interfaces. However, once it encounters a known interfaceProbing distance: is crucial. Too close, and duplication of
stops, assuming that it has touched a tree and the rest of @ff@rt will approach the high levels seen by classic forvsard
path to the root is also known. Using these trees suggests ffgPing techniques [7, Sec. 2]. Too far, and there will béhhig
diﬁerent probing Schemes: backwards (monitor-rootee)trerisk Of traffiC |00king ||ke a DDoS attaCk fOI’ destinationg]é—
and forwards (destination-rooted tree). choice must be guided primarily by this latter consideratio

For both backwards and forwards probing, Doubletrd@ avoid having probing look like a DDoS attack.
uses stop sets. The one for backwards probing, called théVhile Doubletree largely limits redundancy on destinagion
local stop set consists of all interfaces already seen bgnce hop-by-hop probing is underway, its global stop set
that monitor. Forwards probing uses theobal stop setof —cannot prevent the initial probe from reaching a destimafia
(interface, destination) pairs accumulated from all monitors.is set too high. Therefore, each monitor sets its own valué fo
A pair enters the stop set if a monitor received a packet froifhterms of the probability that a probe serit hops towards a
the interface in reply to a probe sent towards the destinatitaRndomly selected destination will actually hit that deation.
address. Fig.[MMshows the cumulative mass function for this proligpbi

A monitor that implements Doubletree starts probing for #@r skitter monitorapan-jp . If one considers as reasonable a
destination at some number of hapgrom itself. It will probe 0.2 probability of hitting a responding destination on the first
forwards ath + 1, h + 2, etc., adding to the global stop set aprobe, it must chosé < 12.
each hop, until it encounters either the destination or abeem Simulation results [7, Sec. 3.2] show for a rangg@ eflues
of the global stop set. It will then probe backwardshat 1, that, compared to classic probing, Doubletree is able taged
h — 2, etc., adding to both the local and global stop sets ateasurement load by approximately 70% while maintaining
each hop, until it either has reached a distance of one hdp onterface and link coverage above 90%.
encounters a member of the local stop set. It then proceeds télowever, one possible obstacle to successful deployment
probe for the next destination. When it has completed pgbinf Doubletree concerns the communication overhead from
for all destinations, the global stop set is communicateithéo sharing the global stop set among monitors. Tracing from
next monitor. 24 monitors, i.e., the same quantity of probing monitors as

(b) Destination-rooted

Fig. 3. Tree-like routing structures



IV. TRACEROUTEQHOME IMPLEMENTATION

1.0-

This section describes the traceroute@home implemen-
00® tation. Sec.[IV-A presents our design choices. Jec1IV-B
g introduces the macroscopic functioning of the cooperative
90 system that makes use of the Doubletree algorithm.[Sec] IV-C
& takes a microscopic look at traceroute@home by explaining
50'4’ the behavior of a monitor and each module composing it.
v

Sec[TV-D) discusses the general messages framework.

‘ ‘ ‘ ‘ ‘ ‘ ‘ A. Design Choices
0 5 10 15 20 25 30 35 40
path length We implemented traceroute@home in Java [19]. We choose
Java as the development language because of two reasons:
Fig. 4. Cumulative mass plot of path lengths from skitter itwrapan-jp the large quantity of available packages and the possilaifit
abstracting ourselves from technical details. As a consecg
the development time was strongly reduced. Unfortunately,
skitter, to a relatively small set of just 50,000 destinasiovith Sun does not provide any package for accessing packet lseader
p = 0.05 produces a set of 2.7 milliofinterface, destination) and handling raw sockets, which is necessary to implement
pairs. As pairs of IPv4 addresses are 64 bits long, an uncoim&ceroute. Instead of developing our own raw socketsrjpra
pressed stop set based on these parameters requires 20.6\WBused the open-sourcksocket Wrenchibrary [25]. We
A way to reduce this communication overhead is to udpodified the JSocket Wrench library in order to support multi
Bloom filters[22] to implement the global stop set. A Bloomthreading. Our modifications are freely available [20].
filter [23] summarizes information concerning a set in a bit We aimed for the design of traceroute@home to be easily
vector that can then be tested for set membership. An emgtended in the future by ourselves but also by the netwgrkin
Bloom filter is a vector of all zeroes. A key is registered igommunity. For instance, concerning the messages exctiange
the filter by hashing it to a position in the vector and settingy monitors, we define a general framework for messages,
the bit at that position to one. Multiple hash functions may bmaking creation and handling of new messages easier. In
used, setting several bits to one. Membership of a key in thgdition to that, traceroute@home is readily tunable due to
filter is tested by checking if all hash positions are set te.ona configuration file that is loaded by the application at its
A Bloom filter will never falsely return a negative result forstarting. Our implementation is freely available [20].
set membership. It might, however, return a false positfes. We designed our application by considering two levels: the
a given number of keys, the larger the Bloom filter, the leggicroscopiclevel and themacroscopidevel.
likely is a false positive. The number of hash functions also From a macroscopic point of view, i.e., all the monitors
plays a role. together, the monitors are organized in a ring, adoptingiado
In prior work [22], we have shown that, when= 0.05, robin process. At a given time, each monitor focuses on its
using a bit vector of siza07 and five hash functions allowsown part of the destination list. When it finishes probing its
nearly the same coverage level as a list implementationeof thart, it sends information to the next monitor and waits fated
global stop set while slightly reducing the redundancy othbofrom the previous one, if it was not yet received. Sec1v-B
destinations and internal interfaces and yielding a cosgioa €Xplains this macroscopic aspect of traceroute@home.
factor of 17.3. From a microscopic point of view of our implementation,
Donnet and Friedman, co-authors of this report, also prb®- & single monitor, a monitor is composed of several
posed an enhancement to the forwards stopping rule basednflules that interact with each other. Our implementatson i
Classless Inter-Domain Routing (CIDR) address prefixek [24hread-safe, as a monitor is able to send several probes at
The idea is to aggregate the destinations set by recordi§ same time. Further, topological information colledigyca
the CIDR address prefixes of destinations rather than t@nitor is regularly saved to XML files. Selc. TU-C explains
full IP address. This allows one to reduce the amount 8#is microscopic level of traceroute@home.
communication required by Doubletree. Instead of sharing a .
set of (interface, destination) pairs, monitors will share a B. System Overview
set of (interface, prefix_destination) pairs. The shortest the The simulations conducted in prior work [7] were based
prefix, the more destinations can be represented by a singte a simple probing system: each monitor in turn cov-
entry, but also the more likely the entry will generate fagles- ers the destination list, adds to the global stop set the
itives. With this simple mechanism, load on destinations cdinterface, destination) pairs that it encounters, and passes
be further reduced while maintaining the coverage accuraitie set to the subsequent monitor.
around 90%. When combined with a Bloom filter, one further This simple scenario is not suitable in practice: it is tamsl
reduces the global stop set size, providing a compressiorfa as an iterative approach allows only one monitor to probe the
of 57.1. network at a given time. We want all the monitors probing in



— _ .
Sldng Wdow andw. For our implementation of Doubletree, we let the user

decide the step size. This is a part of the XML configuration
Monitor 1 file that each Doubletree monitor loads at its start-up (see
ﬁ Sec[V=Q). Future work might reveal information about how
to tune the step size of a monitor.

C. Inside a traceroute@home Monitor

Fig. [@ shows the different modules composing a trace-

Monitor 4 ﬁ Monitor 2 route@home monitor and the way they interact with each
other (the arrows) and with their environment, i.e., harskdi
or network (circles).

Sliding Window 4 Sliding Window 2 First, a traceroute@home monitor loads an XML fiterf-
fig.xm) that contains configuration information, such as the
number of sliding windows and the name (or IP address)

Monitor 3 of the next monitor in the round robin process. This XML
file must strictly follow a DTD (Document Type Definition).

In the current version of the application, the XML file must

be present on the machine running the software. In the

following versions (See Se€_lVI), we can imagine that a

Fig. 5. Doubletree with sliding windows traceroute@home monitor will upload this file from a remote

server. Note also that the destination list and sliding wind

information must also be present on the machine. We can
parallel. However, how would one manage the global stop $§{yisage that these will also be remotely available in teréu

if it were being updated by a_lll th_e monitors at the same time?This configuration file is processed by thgent The Agent

An easy way to parallelize is to deploy sevesliding s the heart of a traceroute@home monitor as it first credites a
windowsthat slide along the different portions of the desyiher modules, manages them and, finally, allows the various
tination list. At a given time, a given monitor focuses ORgomponents to interact with each other.
its own window, as shown in Fid] 5. There is no collision the agent creates thStopSemodule that implements the
between monitors, in the sense that each one is filling in gﬁ)p set data structure [7]. Our stop set implementation is
own part of the global stop set. The entire system coun{gjiithread safe. Two types of implementations are progose
m _different sliding windows, wheren is the number of yi; ang Bloom filter. The list is the basic implementatiordan
Doubletree monitors. If there aredestinations, each window ¢op, e ysed for the local stop set as well as the global stop set
is of sizew = n/m. This is an upper-bound on the windowrphe loom filter implementation [22] may only be used for
size as the concept still applies if they are smaller. the global stop set. The hash functions needed by the Bloom

A sliding window mechanism requires us to decide on e are emulated with the SHA-1 algorithm [26]. Depending
step size by which to advance the window. We could use the XML configuration file, the global stop set may be
step size of a single destination. After probing that desitm,  ¢ompressed or not before being sent to the next monitor. Note

a Doubletree monitor sends a small set of pairs correspgndifa; for consistency reasons, each monitor in the systest mu
to that destination to the next monitor, as its contributmthe | se the same implementation for the global stop set.

global stop set. It advances its window past this destinatio g, pletree is a cooperative algorithm. The different mon-

and proceeds to the next destination. Clearly, though, @ Sig, s have to share their global stop set. They thus exchange
size of one will be costly in termg of communication. PaCk%essages. The purpose of tMessageomponent is therefore
headers (see Sefc. 4D for details about packet format) Wil b jiiq, parse and store messages (before their handlitigeby
not be amortized over a large payload, and the paylogdent) sent and received by a monitor. We explain in detail
itself, consisting of a small set, will not be as susceptiiole o Message component by describing our general message
compression as a larger set would be. framework in Sed TD.

On the other hand, a step size equal to the size of thep r5ceroute@home monitor, through the Message module,
window |tse_lf poses other.rlsk.s. S,UF’,POS? a monitor has COf8-aple to handle messages. To send and receive them, it makes
pleted prc_)blng each destination in its window, and has s_eur‘ge of theCommunicationcomponent that allows a monitor
the r_esultmg SUbS_Et of th_e glopal stop set on to the fO”QW'rlo interact with other monitors. It sends messages to a given
monitor. It then might be in a situation where it must wait fof, 5 hitor when the Agent orders it and listens to potential
the prior monitor to terminate its window before it can do any,nections for incoming messages. Incoming messages are

further useful work. parsed and stored by the Message module before their hgndlin

A compromise must be reached, between lowering commy; the Agent. In order to make this module as efficient as
nications costs and continuously supplying each monitdin wi

useful work. This implies a step size somewhere between ZLFor interested readers, the DTD is available online [20].

Sliding Window 3
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Fig. 6. A traceroute@home monitor's modules

possible, it was implemented using selector A selector implemented in two ways, such that it defines the two probing
provides the ability to do readiness selection, which egmblscheme behaviors, i.e., backwards and forwards, proposed b
multiplexed I/O operations. A selector makes it possible fgrior work [7]. However, the Doubletree module is not a Probe
a single thread to manage many 1/O channels simultaneoushpdule client. In this case, multithreading is managed by
This corresponds to theelect() operation in C. the Agent. The Doubletree module is only used to decide,

The Probe module builds probes (UDP or ICMP), assign@ccording to a probe reply (which might be empty if the
them a TTL value, sends them into the network and waits féputer did not reply to probes), if a stopping condition is
eventual ICMP replies. The Probe module is created by atcliégached. Four stopping conditions are defingaiormal (the
that wants to probe the network. An example of such a clientdstination, forwards probing, or the first hop, backwards
the Agent. The client may require multithreading in its nety Probing, is reached)ii) stop set,iii) loop andiv) gap. A
exploration. Therefore, the Probe module allows one to se@P occurs when the monitor encounters five successive non-
multiple probes at the same time. Another unique threaehist fesponding interfaces. The Doubletree module is also irgeha
to incoming ICMP replies messages and dispatches them to @igleciding the next TTL value.
client. The client is in charge of the matching between a grob When a traceroute@home monitor has finished probing a
sent and the eventual ICMP reply. This matching is possibhért of the sliding window corresponding to the step size, it
because the ICMP replyléstination unreachable or sends the corresponding stop set to the subsequent mouitor b
time exceeded ) contains the IP header and the 8 first bytel also saves the topological information that it has gattier
of the original datagram (refer to S&G. Il for details abomvh Maintaining information about the topology discovered and
traceroute works). Placing a unique source port number $8ving this information on the hard disk is tBata module’s
the UDP header of each outgoing probe allows the returnii@)- The topological information is transformed into an XML
ICMP replies to be identified. Moors discusses the reasofl§ according to a DTD. The XML format was chosen in

for varying the source port of UDP datagram instead of trfder to facilitate eventual later data migration into a enor
destination port [27, Sec. IlI]. complex data type. An XML format also makes the data

The PLEstimator(for “Path Length Estimator”) module is handling easier. Eor _each de_stlr?anon probed, we currently
record the following information: the source (i.e., the IP

in charge of discovering path lengths for the current stdin . o .
9 gp 9 sy ddress of the monitor), the destination, a timestamp, the

window. It sends to destinations UDP probes with a TT ackwards probing stopping reason as described above. the
of 64 and a high destination port. If a destination replieb kW q P b! 9 " ppPIng dist the f ! d Vt;'
with a Destination Unreachable ICMP message, the ackwards probing stopping distance, the forwards probing
i . . i stopping reason, the forwards probing stopping distance, a
PLEstimator is able to know the distance by looking at th ) !
e path discovered. The path is composed of several hops, a

TTL field contained in the IP header copied in the ICM :
message payload. A simple subtraction allows one to know tﬂ%p being composed of the TTL value and three IP addresses

Gk H H H
path length. With all the path length information receivigh Oéd , corresponding to a non—respondmg interface. If “.Iﬁé
PLEstimator builds the path length CDF, as shown in Eig. 1], ress corresponds to a responding router,_then the foipnd-
As suggested in prior work [7], the PLEstimator will use, byIme (RTT) for the probe and the response is added.
default, ap value of 0.05 in order to determine thevalue that Message Exchange
must be used for the current sliding window. The PLEstimator , i , ,

Monitors in the system have to share information about

's a client of the Probe module. what was previously discovered. This is achieved by regular
The Doubletree module defines an interface describing P y ' y

the general behavior of a probing scheme. This interface iSinterested readers may find it online [20].



<msg> = <header <payload>* <payload> = <window><slice><impl>

<header = <length><type> <stopset _
<length> = <integef> <W!ndovv> = <integeg>
<type> = <stopset <slice> = <integeg>
<stopset- = “0” <impl> = <stype><ip><compress
<integefig> = “4” | ...| “65535” <stype> = <bit>
<ip> = <bit>
Fig. 7. ABNF for a message <compress = <bit>

<stopset = <byte>+

0 1516 31

- <integeg> = “1" | ...| “32767"
length type }g <byte> = <bit>*8
% <b|t> — uou uln
data
Fig. 9. ABNF for the SOPSET message
8 0 78 1516 32
§ length 0
= window slice |gi|C reserved
stop set

Fig. 8. General packet format \

exchanging their global stop set.
A trivial implementation could have a monitor simply send
its global stop set as a byte stream to another monitor,
without any additional information. However, such a simple
mechanism would make further extensions difficult, spécial

in the case of a peer-to-peer or overlay system used to Manget the receiver might identify the message and link it to a

the whole system (see S¢c VI). portion of a sliding window. In the ABNF, the step size is

For that reason, we provide a general framework for mes;jieq aslice A STOPSET message must provide information
sages exchanged between monitors. This framework might implementation details: the type of stop set (hpe list

easily extended in order to manage any type of messages. . sioom filter), the type of network probed (tfig, IPv4 or

In this section, we describe the message framework WS5v6)® and the eventual compression (thempresk of the
propose and a specific message that is actually the only Qg 'sey Of course, it also contains the relevant porticthef

currently implemented: 8PSET. Both will be first described global stop set. The ®PSET payload in an ABNF format is
in Augmented Backus-Naur Form (ABNF) [28] and second ﬁven by Fig D?.

a byte stream.

Fig. 10. SToPSET packet format

size considered) must be present in tle®dS8SET message so

ig.[I0 shows the ®OPSET message as a byte stream. We

: . F
thA tmessagte.|r:h;tragerout§(c?hhomeIsy(sjte_m |shcor(rj1pos_ed QE that 13 bits are reserved for future extensions. Padsling
€ Wo parts. caderan epayloa € header IS sed to fill in this unused part of the packet. The stop set is

. . . u
man_datory and gives information about the message Ie.n%rrs[ﬂcoded as a byte array. If the stop set is implemented as a
and its type. As opposed to the header, the payload is oﬂmoqu a group of 8 bytes refers to a global stop set key. The

Sorr:je messa?esa ffl)_rh'nsAtgrlllclf fa heartbeat-hk_e messe_\g&t_dq- 1 four bytes represent the interface address and the last
need any payload. the or a message IS given Inlrig. ¢y, bytes represent the destination address. The prangpl

Fig.| provides a byte-stream_ vision of a message. Lenq ntical modulo group size in case of IPv6 addresses.
and type are expressed as 16 bit integers. Note that thenlengt

includes both the header and the payload. The minimum length
of a message is thus four bytes, i.e., the header length. The

type and length encoding is big-endian. _ _ This section talks about the deployment and validation of
In the current traceroute@home implementation, a monitgaceroute@home on PlanetLab nodes, the different diffsul
sends and receives only one type of message: t®SET.  we encountered (not necessarily related to PlanetLab) and

This message contains information about the topology tiscahe way we solved them (Sec_V-A). SEC_V-B presents our
ered by a monitor. A 8oPSET message is sent when, fordeployment results.

a given sliding window, a step size is reached. Two pieces
of information (number of the sliding window and the step 3Currently, only IPv4 is implemented.

V. DEPLOYMENT STORY



Usability | Number
offline 120 45
unreachable 69 20-
broken 0
ok 448 535’
total 637 B30-
:257
TABLE | .
PLANETLAB NODES AVAILABILITY , DECEMBER2005 2
§15—
210,
5
e ; H o . |
A. Difficulties Encountered 0 1 2 35 610 1120 2150 >50

§ Number of reboot
Some routers along the path may be poorly configured. It

seems that they, when building the ICMP message, can modify
the original datagram. Several ICMP messages were returned
with the source and destination ports changed in the oligina

Fig. 11. PlanetLab nodes reboot, one week (December 2005)

datagram. This is a critical issue as the source port of the o .., = ?25:336%%
originating UDP datagram is different for each datagram, as 55 oss
explained in Sed_IVAC, in order to identify the thread that 7 0s0 5
sends the datagram. This problem can be avoided by also £
checking the destination address in the original IP header. 8 "8

By definition, a PlanetLab node is minimalist in the sense . oo
that it provides a nearly empty file system. The only envi- €35 -065 £
ronments provided consist of Perl (version 5.8.3) and Rytho 30- —o.soﬁ
(version 2.3.3). By default, there are no compilation possi 25- Coss
bilities (no make, no gcc, no g++) and no Java environment. 2 050
We had to install a Java runtime environment, on each nodes Y% % meniter - 0 0

supposed to run traceroute@home.

Table[ describes the availability of PlanetLab nodes in gy 15
December, 20050ffline nodes are those that are either being
installed or having long term issues. When gathering these
statistics, 18.9% of the PlanetLab nodes were offiimeeach- s the PlanetLab term for an account. The right-side vdrtica
able nodes are in production, i.e., the PlanetLab system dsis gives the proportion of network resources used by the
running, but not reachable via SSH. 10.9% of the nodes wef@st consuming slice on each monitor (grey bar). By network
unreachablebrokennodes are those that have failed tests buésources, we understand the quantity of information sedt a
that can be logged into via SSH as root. No PlanetLab nodeseived.
were brokenok nodes are those that can be used normally. Regarding first the quantity of slices per monitor, we see
70.2% of the PlanetLab nodes were up but it was importaghiat the maximum, 59, is reached with the monitor labeled 2.
for us to check availability before running any experiment. The minimum is 32 for the monitor 6. On average, a PlanetLab

PlanetLab nodes reboot periodically for scheduled maiRode chosen for being a traceroute@home monitor hosted 45
tenance and upgrades. FIgl 11 shows the number of rebgiides. These statistics give us an idea of a PlanetLab node
during one week in December 2005. 64 PlanetLab nodes wesgd, as each PlanetLab node is supposed to affect resources
involved in rebooting, for a total of 18,577 reboots. Among a slice in a best effort way.
these 64 nodes, 40 rebooted only once. However, 14 nodeshe right-hand of the vertical axis informs us of the
rebooted more than 50 times. Among these 14 nodes, 10 nogﬂ;‘portion of network resources used, on each monitor, by
rebooted more than 1,000 times during the one week perig@ most active slice. It oscillates between 0.5526 (mor#jo
and one node rebooted 3,144 times. As it is not clear how4@ad 0.8383 (monitor 1). On average, 0.65601 of the network
know which PlanetLab node will reboot and when, a longesources are used by a single slice.
term experiment must allow for the possibility that a pastio
of the nodes will reboot. B. Deployment Success

Fig. [I2 evaluates the performances of the ten PlanetLabAs described in prior work [7], security concerns are
nodes we used as traceroute@home monitors (seeSelc. paBamount in large-scale active probing. It is important to
for details about the traceroute@home monitors). The p@met trigger alarms inside the network with Doubletree psobe
formance statistics were gathered on Decembdt, ZDO5. It is also important to avoid burdening the network and the
The horizontal axis shows the PlanetLab nodes we useddastination hosts. It follows from this that the deployment
traceroute@home monitors. The left-side vertical axisegivof a cooperative active probing tool must be done carefully,
the number of active slices on each monitor (black bar). éesli proceeding step by step, from an initial small size, up tgdar

traceroute@home monitors evaluation (Decemb®r ZM5)



scales. Note that this behavior is strongly recommended by o L T tereardeming
PlanetLab [29, Pg. 5]. : :
Our application was deployed to only ten PlanetLab nodes. :
We selected ten nodes based on their relatively high dtabili .
. .. . . 10 °-
(i.e., remaining up and connected), and their relatively lo :
load. These traceroute@home monitors are scattered around "'g'_
the world: North America (USA, Canada), Europe (France,
Spain, Switzerland, Spain), and Asia (Japan, Korea). In the
future, we will wish to scale up the number of monitors to, at
least, the skitter scale (i.e., 24 monitors).
The destination list consists of = 200 PlanetLab nodes 0 5 10 15 20 25 30 35
. . L. distance from monitor (hops)
randomly chosen amongst the approximately 300 institstion
that currently host PlanetLab nodes. Restricting ourselve
to PlanetLab nodes destinations was motivated by security

10’25’

Fig. 13. Stopping distance for tHgoregon monitor

concerns. By avoiding tracing outside the PlanetLab ne¢wor monitor size
we avoid disturbing end-systems that do not welcome probe Blast 12.31
traffic. None of the ten PlanetLab monitors (or other nodes Cornell 8.77
i SR Ethz 7.41
located at the same place) belongs to this destination list. Inria 785
The sliding window size ofw = n/m consists of twenty Kaist 11.41
destinations. We consider two step sizes (i.e., slices) by Nbgisp | 12.84
window, so each slice counts ten destinations. Eg”SSD ig:ii
Finally, each traceroute@home monitor was configured as Uoregon | 11.62
follows: the probabilityp was set to 0.05, the global stop set Upc 10.29
implementation was the list (i.e., the standard implentéerth mean 10.39
and no compression was required before sending ttoeSET TABLE Il
messages. TOTAL STOPSET MESSAGE SIZE(IN KB) PER MONITOR

The experiment was run on the PlanetLab nodes on Dec.
20" 2005. All the traceroute@home monitors were started
at the same time. The experiment was finished when each
monitor had probed the entire destination list. interfaces) plays a greater rule. We believe that these gaps
A total of 2,703 links and 2,232 nodes were discoveredccur when a destination does not respond to probes because
We also encountered 2,434 non-responding interfacesef®uf a restrictive firewall or because the PlanetLab node isrdow
and destinations). We recorded 36 invalid addresses.ithval On average, in 58% of the cases, the stop set rule applies,
addresses are, for example, private addresses [7, Sec. 2.1and in 28.2% of the cases, the normal rule applies. The normal
Tablelll shows the different reasons for stopping backwardsle proportion might be seen as high but we have to keep in
and forwards probing for each traceroute@home monitor.ritind that a Doubletree monitor starts with an empty stop set.
further indicates thé value computed by each monitor. TheTherefore, during the first sliding window, the only thingath
last row of the table indicates the mean for each column. can stop a monitor, aside from the gap rule, is an encounter
Looking first at the backwards stopping reasons, we see thdth the destination.
the stop set rule strongly dominates (98.6% on average). OrLooking at the stopping distance in FigJ13, we see that
average, normal stopping (i.e., reaching the first hop) ccuhe distances are more scattered for forwards probing than f
only 0.65% of the time. backwards probing. Regarding the forwards probing, a peak
Fig. [I3 shows the stopping distance (in terms of hops$, reached at a distance of 10 (18.5% of the cases). In 7% of
for a given monitorUoregon , when probing backwards andthe cases, the monitor stops probing at a distance of 6, that
forwards. The vertical line indicates thkevalue computed by is equal to the valué. It could correspond to the stop set
Uoregon . Results presented in Fi§]13 are typical for theule application or the normal rule, by definition pf Recall
other traceroute@home monitors. that p defines the probability of hitting a destination with the
We see that more than 90% of the backwards stopping grobe sent with a TTL equals th. For our experiment, we
curs at a distance of 5, that is to say the distance corregppndsetp = 0.05, meaning that in 5% of the cases the first probe
to h — 1. In 2.5% of the cases, the probing stops between hepnt by a monitor will hit a destination.
1 (normal stopping) and hop 4. Except for hop 1, the other Table[Ill shows the total size ofi®PSET messages (in KB)
stops are caused by the stop set, probably due to very steamt by each monitor. The size takes into account the header
paths. They illustrate the cases in which the first probe seftthe message (4 bytes) and the payload.
with a TTL of h directly hits a destination. A STOPSET message is sent by a monitor when it reaches
Looking now at the forwards stopping reasons in TdHle 1§ step size (i.e. a slice) in the current sliding window. As we
we see that the gap rule (five successive non respondiefine for our experiment two step sizes per sliding window



Backwards Forwards

monitor loop gap stopset normdl loop gap stop set normal h

Blast 0 0 99.5 0.5 2 17 50 31 7

Cornell 0 0 99 1 0 135 695 17 7

Ethz 1 0 98.5 0.5 2 105 52 355 11

Inria 15 0 97.5 1 1 4 67 28 15

Kaist 0 0 99 1 0.5 105 645 24.5 9

Nbgisp 0.5 4 95 0.5 35 305 22 44 7

LiP6 0 0 99.5 0.5 1 95 625 27 11

UCsD 0 0 99.5 0.5 0 105 60.5 29 7

Uoregon 0 0 99.5 0.5 0 7 74.5 185 6

Upc 0.5 0 99 0.5 1 14 57.5 275 15

mean 035 04 986 0.65 0.11 12.7 58 28.2 9

TABLE Il
STOPPING REASONSIN %) AND h VALUE PER MONITOR
time step_size N received
monitor total | probing  waiting m timer_expired A —received
Blast 24 23 1 step_size \ ~received
Cornell 28 15 13 —step_size
Ethz 20 12.5 7.5
Inria 32 12.5 19.5 timer_expired A received
Kaist 23 13 10
NngSp 26 10 16 end_probing imer_expired A\ wait_too_long
LiP6 21 9 12
UCsD 22 135 8.5
Uoregon 31 31 0
Upc 27 18.5 8.5 . . . . .
Fig. 14. Probing/waiting state interactions
TABLE IV

RUNNING TIME (IN MINUTES
( ) a new probing period begins. Otherwise, it sleeps during 30

seconds. To avoid infinite waiting, if after 40 sleeping pds
(i.e., 20 minutes), nothing was received, the monitor quith

and as we deploy our prototype on ten PlanetLab nodes e%&error message. Fid14 illustrates the interactions dwiw
Lot

monitor sent 20 BOPSET messages. We tune each Doubletre t;:‘Nprobng stathe anrc]i the Ivvamng ;t.ate. iod d
monitor in order to use the list implementation of the stdpse c believe that these long waiting periods are due to a
The monitors do not exchange their entire stop set Thcharactenstlc of the PlanetLab IP stack. It seems that when

. . o fIMP replies are received by the stack, thecvfrom
on!y se.nd an update_that contains (merfa?e’ desthatlon) function zoes not read themyimmediately As the timgr set
pairs discovered during the current step size probing. :

. on the listening socket never expires in this case, we think
In Table[Il, we can see that a monitor sends a total 9 P

) at therecvfrom () function is waiting for the permission
between 7.41 K|.3 Ethz ) and 12.84 KB (\Ibg|5p ) to the to access the IP stack. It looks like the resource is owned (or
subsequent monitor. On average, a monitor sends 10.39

. S I%ked) by another process on the PlanetLab node. Note that
of stop set information into the network.

- ) ) _ this behavior was also noticed by other Planet-Lab usefs [30
During our experimentation, the traceroute@home applica-

tion did not flood the network with ®PSET messages. How- VI. FURTHER WORK

ever, our prior work [22] has shown, on a larger destinatistn | Thjs section discusses possible extensions and ways to
that it can grow to excessive sizes. In this case, we recodmemprove traceroute@home (SEC_VI-A). It also discussesesom

configuring a traceroute@home monitor to first use the Blooggy points to enhance measurement infrastructures in gener
filter implementation of the stop set and second compresgdec [VI-B).

before sending it in the network.

Table[I¥ shows, for each traceroute@home monitor, tHe traceroute@home
running time (in minutes) in terms of probing and waitingeTh One of the main aspects we would like to address in the
waiting period occurs when a monitor has finished its slidingear future is the stability of the whole system. Curreritly,
window or a slice in a given sliding window and is waiting foiis like dominos: when a monitor fails, the whole system fails
the global stop set that should be sent by the previous monito From a long term point of view, we aim to develop a peer-to-
in the round-robin topology. We see that nearly all monitogseer (p2p) or overlay application to manage the whole system
have to wait. A waiting period, in our implementation, lastslowever, it is not yet obvious how this p2p/overlay should
30 seconds. When the timer expires, the monitor checks ifwbrk. We need a transitional solution. Currently, our main
received a new message. If so, the waiting period ends aswhcern is monitor failure recovery.



A simple solution would be to build a centralized serveavailable. We should use ublic key infrastructurgPKI) to
We keep the basic round robin functioning of the system (seeeate and manage certificates for both clients and servers.
Sec[TVEB) but in the middle, we place a server. In this cas€Eommunicating entities will thus have the ability to easily
the system has a star topology. The server’s job will be terify their peer’s identity before proceeding.
maintain the coherency of the round robin structure. Furthermore, in addition to the Doubletree prototype rébus
The basic idea is the following: the server knows the entiress increase, this centralized infrastructure opensestiag
topology of the system and, for a given monitor, to whicperspectives, in particular for the development of a gdnera
monitor it is supposed to send its global stop set and fronetwork monitoring tool, along the lines suggested by COMNI
which it must receive it. Regularly, the server checks eadforkshop [31] in which we were active. We can imagine an
monitor's state by sending messages of typeARTBEAT. extension to our tracerouting tool in order to provide addél
When a monitor receives aHARTBEAT message, it is sup- measurement services that can be used for network momgtorin
posed to reply immediately with aBARTBEAT_ACK message. This could differ from Scriptroute [32] as the monitors have
Non receiving consecutively, e.g., threekRTBEAT_ACK the opportunity to cooperate.
messages from a given monitor leads to its removal from theAnother interesting future undertaking would be to make
topology. The central server then begins a maintenance (an traceroute@home prototype IPv6 networks aware, allow-
reorganization) phase of the topology. We estimate that timg thus the use of Doubletree in IPv6 networks. Currently, t
system can still work while there are at least two workingrototype can only probe IPv4 networks. In the near future,
monitors. we would like to increase its capabilities to IPv6 networks.
The second aspect we would like to tackle in the near futuvde believe that the current version can be easily extended in
is load balancing between monitors. Each traceroute@houoveler to support IPv6. The main work should be done in the
monitor focuses on its own part of the destination list, akSocket Wrench library, to handle IPv6 messages and sockets
described in Se€_TVAB. However, a problem arises on the stBpte that standard IPv6 traceroute, such as scamper [9], or
size by which to advance the window. A manually tunable stepore complex tools, such alas[33], already exist.
size does not eliminate blocking situations in which a mamit
is waiting for the prior monitor to terminate its window
before it can do any further useful work. Some monitors To test our prototype, we choose the PlanetLab infrastruc-
may potentially wait a long time before receiving the needddre because it offers an easy access to a relatively large
information (see TablETV). This might happen because sorgeantity of nodes. However, despite this apparent sinplici
monitors are slower (as they are more heavily loaded) thae encountered several difficulties, as mentioned in [S&& V-
others. In a certain sense, these problems were expected as Plan-
We plan to develop, in our future version, a way to balanadlLab is atestbedoriented towards overlays and peer-to-
the load between monitors. This will imply that the slidingpeer networks. It is not an infrastructure entirely dedidat
window size will differ from one monitor to another. Someo network measurement or the deployment of measurement
monitors will work harder while others will maintain a lowtools. Such tools have to share resources (CPU, memory,
probing rate. network access) with all the users, to strongly limit theseu
Currently, a person who controls a traceroute@home systefidisk space, cannot control node management.
might use it in a malicious way in order perform DDoS attacks. Consequently and inspired by the COMNI workshop [31],
Nothing is done to prevent this misuse of our tool. Howevene believe it is time to think about an infrastructure eryire
the centralized solution also has the opportunity to improwedicated to network measurements and network monitoring.
the security in traceroute@home. This infrastructure should allow us to go beyond the experi-
The new version of traceroute@home should also allowental environment of PlanetLab.
communicating entities (monitors and servers) to mutually In the fashion of PlanetLab, the nodes composing this
authenticate themselves through cryptographic lewghen- infrastructure should be numerous and geographicallyrsive
tication. The next version must also prevent third partieBurther, this infrastructure should be carefully engieéein
from eavesdropping network communications, i.e., gua@ntorder to avoid attacks from the outside world and to avoid
their confidentiality It is unfortunately impossible to fully abuse from users.
prevent eavesdropping from administrators of machines run
ning our programs. In addition to that, the next version of
traceroute@home must be able to guaranteeirttegrity of In this report, we described our Java implementation of
the results. We should be able to identify tampering if arah efficient and cooperative topology discovery algorithm,
when it happens. While it is not reasonable to expect thabubletree. We implemented the algorithm in a tool we call
we will be able to detect subtle modifications, we shall rejetraceroute@home. traceroute@home is freely available and
absurd results and stop accepting input from those trying @asy to extend.
submit them. We first discussed the global functioning of the system
We are likely to extensively use cryptographic means. Theyd, next, we introduced the internal architecture of aetrac
have all the features we need and good tools are alreadyte@home monitor. We also explained the message frame-

B. Measurement Infrastructure

VII. CONCLUSION



work proposed for our prototype. This message framework[s]
easy to extend for further improvements.
In order to test our implementation, we deployed our protL[JZj]
type on a few PlanetLab nodes and evaluated its performance.
We finally identified some weaknesses in our prototypéd!
and proposed several ideas for further development. We
introduce a discussion about the opportunity of develoging

networking measurement infrastructure. [30]
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