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Abstract— In the past few years, the network measurement
community has been interested in the problem of internet topol-
ogy discovery using a large number (hundreds or thousands) of
measurement monitors. The standard way to obtain information
about the internet topology is to use the traceroute tool from
a small number of monitors. Recent papers have made the case
that increasing the number of monitors will give a more accurate
view of the topology. However, scaling up the number of monitors
is not a trivial process. Duplication of effort close to the monitors
wastes time by reexploring well-known parts of the network,and
close to destinations might appear to be a distributed denial-
of-service (DDoS) attack as the probes converge from a set of
sources towards a given destination. In prior work, authorsof
this report proposed Doubletree, an algorithm for cooperative
topology discovery, that reduces the load on the network, i.e.,
router IP interfaces and end-hosts, while discovering almost
as many nodes and links as standard approaches based on
traceroute. This report presents our open-source and freely
downloadable implementation of Doubletree in a tool we call
traceroute@home. We describe the deployment and validation
of traceroute@home on the PlanetLab testbed and we report
on the lessons learned from this experience. We discuss how
traceroute@home can be developed further and discuss ideasfor
future improvements.

I. I NTRODUCTION

For some time, the problem of internet topology discovery
has drawn the attention of the network measurement com-
munity. One can see the internet topology at three different
levels. The first one, theIP interface level, considers internet
protocol (IP) interfaces of routers and end systems. Usually,
this topology is obtained by using data collected with the
probing tool traceroute [1]. Traceroute is a networking tool
that allows one to discover IP interfaces along the path that
data packets take to go from asourcemachine ormonitor to
a destinationmachine. The second level,the router level, is
an aggregation of the IP level. It can be obtained by using
a technique calledalias resolution[2], [3], [4], [5]. The idea
is to summarize all the IP addresses of a router into a single
identifier. Finally, theAS levelprovides information about the
connectivity of autonomous systems (ASes). An AS is a set
of routers that are under the same administrative control. The
ASes are interconnected in order to allow IP packets to transit
from one network to another, so providing global connectivity.
The connectivity information might be inferred from BGP
tables [6], BGP being the routing protocol used between ASes.
Note that the special problem of determining the topology
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Fig. 1. The different levels of topology

within a single AS is a separate area of inquiry. It is not, strictly
speaking, internet topology discovery, and it is considerably
helped by the privileged access available to the administrator
of an AS.

Fig. 1 illustrates the three levels of the internet topology.
Black dots represents router interfaces, blank shapes stand for
routers and shaded areas for ASes. The plain and dotted lines
correspond to links. The IP interface level is illustrated by the
links between routers. The router level is obtained when all
interfaces of a router are grouped in a single identifier. Finally,
the AS level is obtained when we look only at ASes and the
links between them.

This report focuses on the IP interface level. More specially,
it describes the implementation and deployment story of a
topology discovery algorithm,Doubletree [7], that reduces
load on the network, i.e., router IP interfaces and end-hosts,
while discovering nearly the same set of nodes and links
as standard approaches based on traceroute. Doubletree was
proposed by authors of this report.

Today’s most extensive tracing system at the IP interface
level, skitter [8], uses 24 monitors, each targeting on the
order of one million destinations. Authors of this report are
responsible for skitter. In the fashion of skitter,scamper[9]
makes use of several monitors to traceroute IPv6 networks.
Other well known systems, such asRIPE NCC TTM[10] and
NLANR AMP[11], each employ a larger set of monitors, on the
order of one- to two-hundred, but they avoid probing outside
their own network. However, recent work has indicated the
need to increase the number of traceroute sources in order
to obtain a more complete topology measurement [12], [13].
Indeed, it has been shown that reliance upon a relatively small
number of monitors to generate a graph of the internet can
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introduce unwanted biases.
One way of rapidly creating a large distributed monitor

infrastructure would be to deploy traceroute monitors in an
easily downloadable and readily usable piece of software,
such as a screensaver. This was first proposed by Jörg Non-
nenmacher, as reported by Cheswick et al. [14]. Such a
suggestion is in keeping with the spirit of of that have arisen
in the past few years. The most famous one is probably
SETI@home [15]. SETI@home’s screensaver downloads and
analyzes radio-telescope data. Others similar projects are Fold-
ing@home [16], a computation application that studies protein
folding, and, distributed.net [17] a general-purpose distributed
computing project. The first publicly downloadable distributed
route tracing tool isDIMES [18], released as a daemon in
September 2004. At the time of writing this report, DIMES
counts more than 6,000 agents scattered over five continents.

However, building such a large structure leads to potential
scaling issues: the quantity of probes launched might consume
undue network resources and the probes sent from many
vantage points might appear as a distributed denial-of-service
(DDoS) attack to end-hosts. These problems were quantified
in our prior work [7]. There are two ways to avoid these
problems: the first one is to stay small, as skitter does for
instance, but this solution is opposed to the basic idea of
scaling up the number of tracing monitors. The second is to
trace slowly, as does DIMES. In this case, the problem is that
the resulting network snapshot may be blurred bye the routing
changes that take place over the course of a probing interval.

The Doubletree algorithm [7] is a first attempt to perform
large-scale topology discovery efficiently and in a network
friendly manner. Doubletree acts to avoid retracing the same
routes in the internet by taking advantage of the tree-like
structure of routes fanning out from a source or converging
on a destination. The key to Doubletree is that monitors share
information regarding the paths that they have explored. Ifone
monitor has already probed a given path to a destination then
another monitor should avoid that path. Probing in this manner
can significantly reduce load on routers and destinations while
maintaining high node and link coverage [7]. By avoiding
redundancy, not only is Doubletree able to reduce the load on
the network but it also allows one to probe the network more
frequently. This makes it possible to better capture network
dynamicity (routing changes, load balancing) compared to
standard approaches based on traceroute.

This report goes beyond earlier theory and simulation to
propose a Doubletree implementation written in Java [19].
We call this prototypetraceroute@home. traceroute@home is
certainly not the first tracerouting tool developed. However, it
differs from standard approaches, such as skitter, due to its
distributed aspect and its scaling resistance thanks to Dou-
bletree. traceroute@home is easily tunable and extensiblefor
further developments. traceroute@home is completely open-
source and freely downloadable [20].

To validate traceroute@home, we deployed it on the Plan-
etLab [21] testbed. We installed traceroute@home on ten
PlanetLab nodes and probed the network, using 200 other
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Fig. 2. Traceroute example

PlanetLab nodes as destinations.
In this report, we describe the traceroute@home system.

We evaluate the performance of our prototype, point out its
weaknesses and the problems encountered in its deployment.
We discuss directions for future development of our tool and
the opportunity for creating an infrastructure entirely dedicated
to network measurement.

The remainder of this report is organized as follows: Sec. II
explains how traceroute works; Sec. III describes the Double-
tree algorithm and some of its extensions; Sec. IV describes
traceroute@home; in Sec. V, we discuss its on PlanetLab
nodes; Sec. VI introduces directions for future extensions;
finally, Sec. VII summarizes the principal contributions ofthis
report.

II. T RACEROUTE

Traceroute is a networking tool that allows one to discover
the path a data packet takes to go from a machine S (thesource
or themonitor) to a machine D (thedestination).

Fig. 2 illustrates how traceroute works.S is the source of
the traceroute,D is the destination and theRi s are the routers
along the path. S sends multiple UDP probes, UDP being the
User Datagram Protocolwhich is a connectionless transport
protocol, into the network with increasingtime-to-live(TTL)
values, the TTL being a field in the IP header indicating how
long a packet can circulate in the network. Each time a packet
enters a router, the router decrements the TTL. When the
TTL value is one, the router determines that the packet has
consumed sufficient resources in the network, drops it, and
informs the source of the packet by sending back an ICMP
time exceededmessage (ICMP TE in Fig. 2). ICMP, Internet
Control Message Protocol, is a protocol for managing errors
related to networked machines. By looking at the IP source
address of the ICMP message, the monitor can learn the IP
address of the router at which the probe packet stopped.

When, finally, a probe reaches the destination, the destina-
tion is supposed to reply with an ICMPdestination unreach-
able message (ICMP DU in Fig. 2).

Unfortunately, the traceroute behavior explained above is
the ideal case. A router along the path might not reply to
probes because the ICMP protocol is not activated, or the
router is overloaded. In order to avoid waiting an infinite time
for the ICMP reply, the traceroute monitor actives a timer
when it launches the UDP probe. If the timer expires and
no reply was received, then, for that TTL, the machine is
considered asnon-responding.

However, a particular problem occurs when it is the desti-
nation that does not reply to probes because, for instance, of a



restrictive firewall. In this case, the destination will be recorded
as non responding but it is impossible to know that it was
reached. In order to avoid inferring a boundless path, an upper
bound on the number of successive non-responding machines
is used. For instance, in skitter and in our application, this
upper bound is set to five.

Standard traceroute, as just described, is based on UDP
probes. However, two variants exist. The behavior of the
traceroute for the intermediate routers is the same as standard
traceroute. The difference comes with the destination. The
first variant is based on ICMP. Instead of launching UDP
probes, the source sends ICMPEcho Requestmessages. The
destination is supposed to reply with an ICMPEcho Reply. The
second sends packets using theTransport Control Protocol
(TCP) which is a connection-oriented transport protocol. The
TCP traceroute aims to bypass most common firewall filters
by sending TCP SYN packets. It assumes that firewalls will
permit inbound TCP packets to specific ports listening for
incoming connections.

III. D OUBLETREE

Doubletree [7] is the key component of a coordinated
probing system that significantly reduces load on routers and
end-hosts while discovering nearly the same set of nodes
and links as standard approaches based on traceroute. It
takes advantage of the tree-like structures of routes in the
context of probing. Routes leading out from a monitor towards
multiple destinations form a tree-like structure rooted atthe
monitor (see Fig. 3(a)). Similarly, routes converging towards a
destination from multiple monitors form a tree-like structure,
but rooted at the destination (see Fig. 3(b)). A monitor probes
hop by hop so long as it encounters previously unknown
interfaces. However, once it encounters a known interface,it
stops, assuming that it has touched a tree and the rest of the
path to the root is also known. Using these trees suggests two
different probing schemes: backwards (monitor-rooted tree)
and forwards (destination-rooted tree).

For both backwards and forwards probing, Doubletree
uses stop sets. The one for backwards probing, called the
local stop set, consists of all interfaces already seen by
that monitor. Forwards probing uses theglobal stop setof
(interface, destination) pairs accumulated from all monitors.
A pair enters the stop set if a monitor received a packet from
the interface in reply to a probe sent towards the destination
address.

A monitor that implements Doubletree starts probing for a
destination at some number of hopsh from itself. It will probe
forwards ath + 1, h + 2, etc., adding to the global stop set at
each hop, until it encounters either the destination or a member
of the global stop set. It will then probe backwards ath − 1,
h − 2, etc., adding to both the local and global stop sets at
each hop, until it either has reached a distance of one hop or it
encounters a member of the local stop set. It then proceeds to
probe for the next destination. When it has completed probing
for all destinations, the global stop set is communicated tothe
next monitor.

(a) Monitor-rooted

(b) Destination-rooted

Fig. 3. Tree-like routing structures

Doubletree has one tunable parameter. The choice of initial
probing distanceh is crucial. Too close, and duplication of
effort will approach the high levels seen by classic forwards
probing techniques [7, Sec. 2]. Too far, and there will be high
risk of traffic looking like a DDoS attack for destinations. The
choice must be guided primarily by this latter consideration
to avoid having probing look like a DDoS attack.

While Doubletree largely limits redundancy on destinations
once hop-by-hop probing is underway, its global stop set
cannot prevent the initial probe from reaching a destination if h
is set too high. Therefore, each monitor sets its own value for h
in terms of the probabilityp that a probe senth hops towards a
randomly selected destination will actually hit that destination.
Fig. III shows the cumulative mass function for this probability
for skitter monitorapan-jp . If one considers as reasonable a
0.2 probability of hitting a responding destination on the first
probe, it must choseh ≤ 12.

Simulation results [7, Sec. 3.2] show for a range ofp values
that, compared to classic probing, Doubletree is able to reduce
measurement load by approximately 70% while maintaining
interface and link coverage above 90%.

However, one possible obstacle to successful deployment
of Doubletree concerns the communication overhead from
sharing the global stop set among monitors. Tracing from
24 monitors, i.e., the same quantity of probing monitors as
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skitter, to a relatively small set of just 50,000 destinations with
p = 0.05 produces a set of 2.7 million(interface, destination)
pairs. As pairs of IPv4 addresses are 64 bits long, an uncom-
pressed stop set based on these parameters requires 20.6 MB.

A way to reduce this communication overhead is to use
Bloom filters[22] to implement the global stop set. A Bloom
filter [23] summarizes information concerning a set in a bit
vector that can then be tested for set membership. An empty
Bloom filter is a vector of all zeroes. A key is registered in
the filter by hashing it to a position in the vector and setting
the bit at that position to one. Multiple hash functions may be
used, setting several bits to one. Membership of a key in the
filter is tested by checking if all hash positions are set to one.
A Bloom filter will never falsely return a negative result for
set membership. It might, however, return a false positive.For
a given number of keys, the larger the Bloom filter, the less
likely is a false positive. The number of hash functions also
plays a role.

In prior work [22], we have shown that, whenp = 0.05,
using a bit vector of size107 and five hash functions allows
nearly the same coverage level as a list implementation of the
global stop set while slightly reducing the redundancy on both
destinations and internal interfaces and yielding a compression
factor of 17.3.

Donnet and Friedman, co-authors of this report, also pro-
posed an enhancement to the forwards stopping rule based on
Classless Inter-Domain Routing (CIDR) address prefixes [24].
The idea is to aggregate the destinations set by recording
the CIDR address prefixes of destinations rather than the
full IP address. This allows one to reduce the amount of
communication required by Doubletree. Instead of sharing a
set of (interface, destination) pairs, monitors will share a
set of (interface, prefix destination) pairs. The shortest the
prefix, the more destinations can be represented by a single
entry, but also the more likely the entry will generate falsepos-
itives. With this simple mechanism, load on destinations can
be further reduced while maintaining the coverage accuracy
around 90%. When combined with a Bloom filter, one further
reduces the global stop set size, providing a compression factor
of 57.1.

IV. TRACEROUTE@HOME IMPLEMENTATION

This section describes the traceroute@home implemen-
tation. Sec. IV-A presents our design choices. Sec. IV-B
introduces the macroscopic functioning of the cooperative
system that makes use of the Doubletree algorithm. Sec. IV-C
takes a microscopic look at traceroute@home by explaining
the behavior of a monitor and each module composing it.
Sec. IV-D discusses the general messages framework.

A. Design Choices

We implemented traceroute@home in Java [19]. We choose
Java as the development language because of two reasons:
the large quantity of available packages and the possibility of
abstracting ourselves from technical details. As a consequence,
the development time was strongly reduced. Unfortunately,
Sun does not provide any package for accessing packet headers
and handling raw sockets, which is necessary to implement
traceroute. Instead of developing our own raw sockets library,
we used the open-sourceJSocket Wrenchlibrary [25]. We
modified the JSocket Wrench library in order to support multi-
threading. Our modifications are freely available [20].

We aimed for the design of traceroute@home to be easily
extended in the future by ourselves but also by the networking
community. For instance, concerning the messages exchanged
by monitors, we define a general framework for messages,
making creation and handling of new messages easier. In
addition to that, traceroute@home is readily tunable due to
a configuration file that is loaded by the application at its
starting. Our implementation is freely available [20].

We designed our application by considering two levels: the
microscopiclevel and themacroscopiclevel.

From a macroscopic point of view, i.e., all the monitors
together, the monitors are organized in a ring, adopting a round
robin process. At a given time, each monitor focuses on its
own part of the destination list. When it finishes probing its
part, it sends information to the next monitor and waits for data
from the previous one, if it was not yet received. Sec. IV-B
explains this macroscopic aspect of traceroute@home.

From a microscopic point of view of our implementation,
i.e., a single monitor, a monitor is composed of several
modules that interact with each other. Our implementation is
thread-safe, as a monitor is able to send several probes at
the same time. Further, topological information collectedby a
monitor is regularly saved to XML files. Sec. IV-C explains
this microscopic level of traceroute@home.

B. System Overview

The simulations conducted in prior work [7] were based
on a simple probing system: each monitor in turn cov-
ers the destination list, adds to the global stop set the
(interface, destination) pairs that it encounters, and passes
the set to the subsequent monitor.

This simple scenario is not suitable in practice: it is too slow,
as an iterative approach allows only one monitor to probe the
network at a given time. We want all the monitors probing in
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parallel. However, how would one manage the global stop set
if it were being updated by all the monitors at the same time?

An easy way to parallelize is to deploy severalsliding
windows that slide along the different portions of the des-
tination list. At a given time, a given monitor focuses on
its own window, as shown in Fig. 5. There is no collision
between monitors, in the sense that each one is filling in its
own part of the global stop set. The entire system counts
m different sliding windows, wherem is the number of
Doubletree monitors. If there aren destinations, each window
is of sizew = n/m. This is an upper-bound on the window
size as the concept still applies if they are smaller.

A sliding window mechanism requires us to decide on a
step size by which to advance the window. We could use a
step size of a single destination. After probing that destination,
a Doubletree monitor sends a small set of pairs corresponding
to that destination to the next monitor, as its contributionto the
global stop set. It advances its window past this destination,
and proceeds to the next destination. Clearly, though, a step
size of one will be costly in terms of communication. Packet
headers (see Sec. IV-D for details about packet format) will
not be amortized over a large payload, and the payload
itself, consisting of a small set, will not be as susceptibleto
compression as a larger set would be.

On the other hand, a step size equal to the size of the
window itself poses other risks. Suppose a monitor has com-
pleted probing each destination in its window, and has sent
the resulting subset of the global stop set on to the following
monitor. It then might be in a situation where it must wait for
the prior monitor to terminate its window before it can do any
further useful work.

A compromise must be reached, between lowering commu-
nications costs and continuously supplying each monitor with
useful work. This implies a step size somewhere between 1

andw. For our implementation of Doubletree, we let the user
decide the step size. This is a part of the XML configuration
file that each Doubletree monitor loads at its start-up (see
Sec. IV-C). Future work might reveal information about how
to tune the step size of a monitor.

C. Inside a traceroute@home Monitor

Fig. 6 shows the different modules composing a trace-
route@home monitor and the way they interact with each
other (the arrows) and with their environment, i.e., hard disk
or network (circles).

First, a traceroute@home monitor loads an XML file (con-
fig.xml) that contains configuration information, such as the
number of sliding windows and the name (or IP address)
of the next monitor in the round robin process. This XML
file must strictly follow a DTD (Document Type Definition).1

In the current version of the application, the XML file must
be present on the machine running the software. In the
following versions (See Sec. VI), we can imagine that a
traceroute@home monitor will upload this file from a remote
server. Note also that the destination list and sliding window
information must also be present on the machine. We can
envisage that these will also be remotely available in the future.

This configuration file is processed by theAgent. The Agent
is the heart of a traceroute@home monitor as it first creates all
other modules, manages them and, finally, allows the various
components to interact with each other.

The Agent creates theStopSetmodule that implements the
stop set data structure [7]. Our stop set implementation is
multithread safe. Two types of implementations are proposed:
list and Bloom filter. The list is the basic implementation and
can be used for the local stop set as well as the global stop set.
The Bloom filter implementation [22] may only be used for
the global stop set. The hash functions needed by the Bloom
filter are emulated with the SHA-1 algorithm [26]. Depending
on the XML configuration file, the global stop set may be
compressed or not before being sent to the next monitor. Note
that, for consistency reasons, each monitor in the system must
use the same implementation for the global stop set.

Doubletree is a cooperative algorithm. The different mon-
itors have to share their global stop set. They thus exchange
messages. The purpose of theMessagecomponent is therefore
to build, parse and store messages (before their handling bythe
Agent) sent and received by a monitor. We explain in detail
the Message component by describing our general message
framework in Sec. IV-D.

A traceroute@home monitor, through the Message module,
is able to handle messages. To send and receive them, it makes
use of theCommunicationcomponent that allows a monitor
to interact with other monitors. It sends messages to a given
monitor when the Agent orders it and listens to potential
connections for incoming messages. Incoming messages are
parsed and stored by the Message module before their handling
by the Agent. In order to make this module as efficient as

1For interested readers, the DTD is available online [20].
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possible, it was implemented using aselector. A selector
provides the ability to do readiness selection, which enables
multiplexed I/O operations. A selector makes it possible for
a single thread to manage many I/O channels simultaneously.
This corresponds to theselect() operation in C.

The Probe module builds probes (UDP or ICMP), assigns
them a TTL value, sends them into the network and waits for
eventual ICMP replies. The Probe module is created by a client
that wants to probe the network. An example of such a client is
the Agent. The client may require multithreading in its network
exploration. Therefore, the Probe module allows one to send
multiple probes at the same time. Another unique thread listens
to incoming ICMP replies messages and dispatches them to the
client. The client is in charge of the matching between a probe
sent and the eventual ICMP reply. This matching is possible
because the ICMP reply (destination unreachable or
time exceeded ) contains the IP header and the 8 first bytes
of the original datagram (refer to Sec. II for details about how
traceroute works). Placing a unique source port number in
the UDP header of each outgoing probe allows the returning
ICMP replies to be identified. Moors discusses the reasons
for varying the source port of UDP datagram instead of the
destination port [27, Sec. III].

The PLEstimator(for “Path Length Estimator”) module is
in charge of discovering path lengths for the current sliding
window. It sends to destinations UDP probes with a TTL
of 64 and a high destination port. If a destination replies
with a Destination Unreachable ICMP message, the
PLEstimator is able to know the distance by looking at the
TTL field contained in the IP header copied in the ICMP
message payload. A simple subtraction allows one to know the
path length. With all the path length information received,the
PLEstimator builds the path length CDF, as shown in Fig. III.
As suggested in prior work [7], the PLEstimator will use, by
default, ap value of 0.05 in order to determine theh value that
must be used for the current sliding window. The PLEstimator
is a client of the Probe module.

The Doubletree module defines an interface describing
the general behavior of a probing scheme. This interface is

implemented in two ways, such that it defines the two probing
scheme behaviors, i.e., backwards and forwards, proposed by
prior work [7]. However, the Doubletree module is not a Probe
module client. In this case, multithreading is managed by
the Agent. The Doubletree module is only used to decide,
according to a probe reply (which might be empty if the
router did not reply to probes), if a stopping condition is
reached. Four stopping conditions are defined:i) normal (the
destination, forwards probing, or the first hop, backwards
probing, is reached),ii) stop set,iii) loop and iv) gap. A
gap occurs when the monitor encounters five successive non-
responding interfaces. The Doubletree module is also in charge
of deciding the next TTL value.

When a traceroute@home monitor has finished probing a
part of the sliding window corresponding to the step size, it
sends the corresponding stop set to the subsequent monitor but
it also saves the topological information that it has gathered.
Maintaining information about the topology discovered and
saving this information on the hard disk is theData module’s
job. The topological information is transformed into an XML
file according to a DTD.2 The XML format was chosen in
order to facilitate eventual later data migration into a more
complex data type. An XML format also makes the data
handling easier. For each destination probed, we currently
record the following information: the source (i.e., the IP
address of the monitor), the destination, a timestamp, the
backwards probing stopping reason as described above, the
backwards probing stopping distance, the forwards probing
stopping reason, the forwards probing stopping distance, and
the path discovered. The path is composed of several hops, a
hop being composed of the TTL value and three IP addresses
or “*”, corresponding to a non-responding interface. If theIP
address corresponds to a responding router, then the round-trip
time (RTT) for the probe and the response is added.

D. Message Exchange

Monitors in the system have to share information about
what was previously discovered. This is achieved by regularly

2Interested readers may find it online [20].
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exchanging their global stop set.
A trivial implementation could have a monitor simply send

its global stop set as a byte stream to another monitor,
without any additional information. However, such a simple
mechanism would make further extensions difficult, specially
in the case of a peer-to-peer or overlay system used to manage
the whole system (see Sec. VI).

For that reason, we provide a general framework for mes-
sages exchanged between monitors. This framework might be
easily extended in order to manage any type of messages.

In this section, we describe the message framework we
propose and a specific message that is actually the only one
currently implemented: STOPSET. Both will be first described
in Augmented Backus-Naur Form (ABNF) [28] and second as
a byte stream.

A message in a traceroute@home system is composed of
the two parts: theheader and thepayload. The header is
mandatory and gives information about the message length
and its type. As opposed to the header, the payload is optional.
Some messages, for instance a heartbeat-like message, do not
need any payload. The ABNF for a message is given in Fig. 7.

Fig. 8 provides a byte-stream vision of a message. Length
and type are expressed as 16 bit integers. Note that the length
includes both the header and the payload. The minimum length
of a message is thus four bytes, i.e., the header length. The
type and length encoding is big-endian.

In the current traceroute@home implementation, a monitor
sends and receives only one type of message: the STOPSET.
This message contains information about the topology discov-
ered by a monitor. A STOPSET message is sent when, for
a given sliding window, a step size is reached. Two pieces
of information (number of the sliding window and the step

<payload> = <window><slice><impl>
<stopset>
<window> = <integer8>
<slice> = <integer8>
<impl> = <stype><ip><compress>
<stype> = <bit>
<ip> = <bit>
<compress> = <bit>
<stopset> = <byte>+

<integer8> = “1” | . . .| “32767”
<byte> = <bit>*8
<bit> = “0” | “1”

Fig. 9. ABNF for the STOPSET message
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Fig. 10. STOPSET packet format

size considered) must be present in the STOPSET message so
that the receiver might identify the message and link it to a
portion of a sliding window. In the ABNF, the step size is
called aslice. A STOPSET message must provide information
on implementation details: the type of stop set (thestype, list
or Bloom filter), the type of network probed (theip, IPv4 or
IPv6)3 and the eventual compression (thecompress) of the
stop set. Of course, it also contains the relevant portion ofthe
global stop set. The STOPSET payload in an ABNF format is
given by Fig. 9.

Fig. 10 shows the STOPSET message as a byte stream. We
see that 13 bits are reserved for future extensions. Paddingis
used to fill in this unused part of the packet. The stop set is
encoded as a byte array. If the stop set is implemented as a
list, a group of 8 bytes refers to a global stop set key. The
first four bytes represent the interface address and the last
four bytes represent the destination address. The principle is
identical modulo group size in case of IPv6 addresses.

V. DEPLOYMENT STORY

This section talks about the deployment and validation of
traceroute@home on PlanetLab nodes, the different difficulties
we encountered (not necessarily related to PlanetLab) and
the way we solved them (Sec. V-A). Sec. V-B presents our
deployment results.

3Currently, only IPv4 is implemented.



Usability Number
offline 120

unreachable 69
broken 0

ok 448
total 637

TABLE I

PLANETLAB NODES AVAILABILITY , DECEMBER2005

A. Difficulties Encountered

Some routers along the path may be poorly configured. It
seems that they, when building the ICMP message, can modify
the original datagram. Several ICMP messages were returned
with the source and destination ports changed in the original
datagram. This is a critical issue as the source port of the
originating UDP datagram is different for each datagram, as
explained in Sec. IV-C, in order to identify the thread that
sends the datagram. This problem can be avoided by also
checking the destination address in the original IP header.

By definition, a PlanetLab node is minimalist in the sense
that it provides a nearly empty file system. The only envi-
ronments provided consist of Perl (version 5.8.3) and Python
(version 2.3.3). By default, there are no compilation possi-
bilities (no make, no gcc, no g++) and no Java environment.
We had to install a Java runtime environment, on each nodes
supposed to run traceroute@home.

Table I describes the availability of PlanetLab nodes in
December, 2005.Offline nodes are those that are either being
installed or having long term issues. When gathering these
statistics, 18.9% of the PlanetLab nodes were offline.unreach-
able nodes are in production, i.e., the PlanetLab system is
running, but not reachable via SSH. 10.9% of the nodes were
unreachable.brokennodes are those that have failed tests but
that can be logged into via SSH as root. No PlanetLab nodes
were broken.ok nodes are those that can be used normally.
70.2% of the PlanetLab nodes were up but it was important
for us to check availability before running any experiment.

PlanetLab nodes reboot periodically for scheduled main-
tenance and upgrades. Fig. 11 shows the number of reboot
during one week in December 2005. 64 PlanetLab nodes were
involved in rebooting, for a total of 18,577 reboots. Among
these 64 nodes, 40 rebooted only once. However, 14 nodes
rebooted more than 50 times. Among these 14 nodes, 10 nodes
rebooted more than 1,000 times during the one week period
and one node rebooted 3,144 times. As it is not clear how to
know which PlanetLab node will reboot and when, a long-
term experiment must allow for the possibility that a portion
of the nodes will reboot.

Fig. 12 evaluates the performances of the ten PlanetLab
nodes we used as traceroute@home monitors (see Sec. V-B
for details about the traceroute@home monitors). The per-
formance statistics were gathered on December 20th, 2005.
The horizontal axis shows the PlanetLab nodes we used as
traceroute@home monitors. The left-side vertical axis gives
the number of active slices on each monitor (black bar). A slice
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Fig. 11. PlanetLab nodes reboot, one week (December 2005)
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Fig. 12. traceroute@home monitors evaluation (December 20th 2005)

is the PlanetLab term for an account. The right-side vertical
axis gives the proportion of network resources used by the
most consuming slice on each monitor (grey bar). By network
resources, we understand the quantity of information sent and
received.

Regarding first the quantity of slices per monitor, we see
that the maximum, 59, is reached with the monitor labeled 2.
The minimum is 32 for the monitor 6. On average, a PlanetLab
node chosen for being a traceroute@home monitor hosted 45
slices. These statistics give us an idea of a PlanetLab node
load, as each PlanetLab node is supposed to affect resources
to a slice in a best effort way.

The right-hand of the vertical axis informs us of the
proportion of network resources used, on each monitor, by
the most active slice. It oscillates between 0.5526 (monitor 2)
and 0.8383 (monitor 1). On average, 0.65601 of the network
resources are used by a single slice.

B. Deployment Success

As described in prior work [7], security concerns are
paramount in large-scale active probing. It is important to
not trigger alarms inside the network with Doubletree probes.
It is also important to avoid burdening the network and the
destination hosts. It follows from this that the deployment
of a cooperative active probing tool must be done carefully,
proceeding step by step, from an initial small size, up to larger-



scales. Note that this behavior is strongly recommended by
PlanetLab [29, Pg. 5].

Our application was deployed to only ten PlanetLab nodes.
We selected ten nodes based on their relatively high stability
(i.e., remaining up and connected), and their relatively low
load. These traceroute@home monitors are scattered around
the world: North America (USA, Canada), Europe (France,
Spain, Switzerland, Spain), and Asia (Japan, Korea). In the
future, we will wish to scale up the number of monitors to, at
least, the skitter scale (i.e., 24 monitors).

The destination list consists ofn = 200 PlanetLab nodes
randomly chosen amongst the approximately 300 institutions
that currently host PlanetLab nodes. Restricting ourselves
to PlanetLab nodes destinations was motivated by security
concerns. By avoiding tracing outside the PlanetLab network,
we avoid disturbing end-systems that do not welcome probe
traffic. None of the ten PlanetLab monitors (or other nodes
located at the same place) belongs to this destination list.
The sliding window size ofw = n/m consists of twenty
destinations. We consider two step sizes (i.e., slices) by
window, so each slice counts ten destinations.

Finally, each traceroute@home monitor was configured as
follows: the probabilityp was set to 0.05, the global stop set
implementation was the list (i.e., the standard implementation)
and no compression was required before sending the STOPSET

messages.
The experiment was run on the PlanetLab nodes on Dec.

20th 2005. All the traceroute@home monitors were started
at the same time. The experiment was finished when each
monitor had probed the entire destination list.

A total of 2,703 links and 2,232 nodes were discovered.
We also encountered 2,434 non-responding interfaces (routers
and destinations). We recorded 36 invalid addresses. Invalid
addresses are, for example, private addresses [7, Sec. 2.1].

Table II shows the different reasons for stopping backwards
and forwards probing for each traceroute@home monitor. It
further indicates theh value computed by each monitor. The
last row of the table indicates the mean for each column.

Looking first at the backwards stopping reasons, we see that
the stop set rule strongly dominates (98.6% on average). On
average, normal stopping (i.e., reaching the first hop) occurs
only 0.65% of the time.

Fig. 13 shows the stopping distance (in terms of hops),
for a given monitor,Uoregon , when probing backwards and
forwards. The vertical line indicates theh value computed by
Uoregon . Results presented in Fig. 13 are typical for the
other traceroute@home monitors.

We see that more than 90% of the backwards stopping oc-
curs at a distance of 5, that is to say the distance corresponding
to h− 1. In 2.5% of the cases, the probing stops between hop
1 (normal stopping) and hop 4. Except for hop 1, the other
stops are caused by the stop set, probably due to very short
paths. They illustrate the cases in which the first probe sent
with a TTL of h directly hits a destination.

Looking now at the forwards stopping reasons in Table II,
we see that the gap rule (five successive non responding
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Fig. 13. Stopping distance for theUoregon monitor

monitor size
Blast 12.31
Cornell 8.77
Ethz 7.41
Inria 7.85
Kaist 11.41
Nbgisp 12.84
Paris 10.96
UCSD 10.44
Uoregon 11.62
Upc 10.29
mean 10.39

TABLE III

TOTAL STOPSET MESSAGE SIZE(IN KB) PER MONITOR

interfaces) plays a greater rule. We believe that these gaps
occur when a destination does not respond to probes because
of a restrictive firewall or because the PlanetLab node is down.

On average, in 58% of the cases, the stop set rule applies,
and in 28.2% of the cases, the normal rule applies. The normal
rule proportion might be seen as high but we have to keep in
mind that a Doubletree monitor starts with an empty stop set.
Therefore, during the first sliding window, the only thing that
can stop a monitor, aside from the gap rule, is an encounter
with the destination.

Looking at the stopping distance in Fig. 13, we see that
the distances are more scattered for forwards probing than for
backwards probing. Regarding the forwards probing, a peak
is reached at a distance of 10 (18.5% of the cases). In 7% of
the cases, the monitor stops probing at a distance of 6, that
is equal to the valueh. It could correspond to the stop set
rule application or the normal rule, by definition ofp. Recall
that p defines the probability of hitting a destination with the
probe sent with a TTL equals toh. For our experiment, we
setp = 0.05, meaning that in 5% of the cases the first probe
sent by a monitor will hit a destination.

Table III shows the total size of STOPSET messages (in KB)
sent by each monitor. The size takes into account the header
of the message (4 bytes) and the payload.

A STOPSET message is sent by a monitor when it reaches
a step size (i.e. a slice) in the current sliding window. As we
define for our experiment two step sizes per sliding window



Backwards Forwards
monitor loop gap stop set normal loop gap stop set normal h
Blast 0 0 99.5 0.5 2 17 50 31 7
Cornell 0 0 99 1 0 13.5 69.5 17 7
Ethz 1 0 98.5 0.5 2 10.5 52 35.5 11
Inria 1.5 0 97.5 1 1 4 67 28 15
Kaist 0 0 99 1 0.5 10.5 64.5 24.5 9
Nbgisp 0.5 4 95 0.5 3.5 30.5 22 44 7
LiP6 0 0 99.5 0.5 1 9.5 62.5 27 11
UCSD 0 0 99.5 0.5 0 10.5 60.5 29 7
Uoregon 0 0 99.5 0.5 0 7 74.5 18.5 6
Upc 0.5 0 99 0.5 1 14 57.5 27.5 15
mean 0.35 0.4 98.6 0.65 0.11 12.7 58 28.2 9

TABLE II

STOPPING REASONS(IN %) AND h VALUE PER MONITOR

time
monitor total probing waiting
Blast 24 23 1
Cornell 28 15 13
Ethz 20 12.5 7.5
Inria 32 12.5 19.5
Kaist 23 13 10
Nbgisp 26 10 16
LiP6 21 9 12
UCSD 22 13.5 8.5
Uoregon 31 31 0
Upc 27 18.5 8.5

TABLE IV

RUNNING TIME (IN MINUTES)

and as we deploy our prototype on ten PlanetLab nodes, each
monitor sent 20 STOPSET messages. We tune each Doubletree
monitor in order to use the list implementation of the stopset.

The monitors do not exchange their entire stop set. They
only send an update that contains the(interface, destination)
pairs discovered during the current step size probing.

In Table III, we can see that a monitor sends a total of
between 7.41 KB (Ethz ) and 12.84 KB (Nbgisp ) to the
subsequent monitor. On average, a monitor sends 10.39 KB
of stop set information into the network.

During our experimentation, the traceroute@home applica-
tion did not flood the network with STOPSET messages. How-
ever, our prior work [22] has shown, on a larger destination list,
that it can grow to excessive sizes. In this case, we recommend
configuring a traceroute@home monitor to first use the Bloom
filter implementation of the stop set and second compress it
before sending it in the network.

Table IV shows, for each traceroute@home monitor, the
running time (in minutes) in terms of probing and waiting. The
waiting period occurs when a monitor has finished its sliding
window or a slice in a given sliding window and is waiting for
the global stop set that should be sent by the previous monitor
in the round-robin topology. We see that nearly all monitors
have to wait. A waiting period, in our implementation, lasts
30 seconds. When the timer expires, the monitor checks if it
received a new message. If so, the waiting period ends and

probing

end

waiting

end probing

step size ∧ ¬received
timer expired ∧ ¬received

timer expired ∧ received

timer expired ∧ wait too long

¬step size

step size ∧ received

Fig. 14. Probing/waiting state interactions

a new probing period begins. Otherwise, it sleeps during 30
seconds. To avoid infinite waiting, if after 40 sleeping periods
(i.e., 20 minutes), nothing was received, the monitor quitswith
an error message. Fig. 14 illustrates the interactions between
the probing state and the waiting state.

We believe that these long waiting periods are due to a
characteristic of the PlanetLab IP stack. It seems that when
ICMP replies are received by the stack, therecvfrom ()
function does not read them immediately. As the timer set
on the listening socket never expires in this case, we think
that therecvfrom () function is waiting for the permission
to access the IP stack. It looks like the resource is owned (or
locked) by another process on the PlanetLab node. Note that
this behavior was also noticed by other Planet-Lab users [30].

VI. FURTHER WORK

This section discusses possible extensions and ways to
improve traceroute@home (Sec. VI-A). It also discusses some
key points to enhance measurement infrastructures in general
(Sec. VI-B).

A. traceroute@home

One of the main aspects we would like to address in the
near future is the stability of the whole system. Currently,it
is like dominos: when a monitor fails, the whole system fails.

From a long term point of view, we aim to develop a peer-to-
peer (p2p) or overlay application to manage the whole system.
However, it is not yet obvious how this p2p/overlay should
work. We need a transitional solution. Currently, our main
concern is monitor failure recovery.



A simple solution would be to build a centralized server.
We keep the basic round robin functioning of the system (see
Sec. IV-B) but in the middle, we place a server. In this case,
the system has a star topology. The server’s job will be to
maintain the coherency of the round robin structure.

The basic idea is the following: the server knows the entire
topology of the system and, for a given monitor, to which
monitor it is supposed to send its global stop set and from
which it must receive it. Regularly, the server checks each
monitor’s state by sending messages of type HEARTBEAT.
When a monitor receives a HEARTBEAT message, it is sup-
posed to reply immediately with a HEARTBEAT ACK message.

Non receiving consecutively, e.g., three HEARTBEAT ACK

messages from a given monitor leads to its removal from the
topology. The central server then begins a maintenance (or
reorganization) phase of the topology. We estimate that the
system can still work while there are at least two working
monitors.

The second aspect we would like to tackle in the near future
is load balancing between monitors. Each traceroute@home
monitor focuses on its own part of the destination list, as
described in Sec. IV-B. However, a problem arises on the step
size by which to advance the window. A manually tunable step
size does not eliminate blocking situations in which a monitor
is waiting for the prior monitor to terminate its window
before it can do any further useful work. Some monitors
may potentially wait a long time before receiving the needed
information (see Table IV). This might happen because some
monitors are slower (as they are more heavily loaded) than
others.

We plan to develop, in our future version, a way to balance
the load between monitors. This will imply that the sliding
window size will differ from one monitor to another. Some
monitors will work harder while others will maintain a low
probing rate.

Currently, a person who controls a traceroute@home system
might use it in a malicious way in order perform DDoS attacks.
Nothing is done to prevent this misuse of our tool. However,
the centralized solution also has the opportunity to improve
the security in traceroute@home.

The new version of traceroute@home should also allow
communicating entities (monitors and servers) to mutually
authenticate themselves through cryptographic levelauthen-
tication. The next version must also prevent third parties
from eavesdropping network communications, i.e., guarantee
their confidentiality. It is unfortunately impossible to fully
prevent eavesdropping from administrators of machines run-
ning our programs. In addition to that, the next version of
traceroute@home must be able to guarantee theintegrity of
the results. We should be able to identify tampering if and
when it happens. While it is not reasonable to expect that
we will be able to detect subtle modifications, we shall reject
absurd results and stop accepting input from those trying to
submit them.

We are likely to extensively use cryptographic means. They
have all the features we need and good tools are already

available. We should use apublic key infrastructure(PKI) to
create and manage certificates for both clients and servers.
Communicating entities will thus have the ability to easily
verify their peer’s identity before proceeding.

Furthermore, in addition to the Doubletree prototype robust-
ness increase, this centralized infrastructure opens interesting
perspectives, in particular for the development of a general
network monitoring tool, along the lines suggested by COMNI
Workshop [31] in which we were active. We can imagine an
extension to our tracerouting tool in order to provide additional
measurement services that can be used for network monitoring.
This could differ from Scriptroute [32] as the monitors have
the opportunity to cooperate.

Another interesting future undertaking would be to make
our traceroute@home prototype IPv6 networks aware, allow-
ing thus the use of Doubletree in IPv6 networks. Currently, the
prototype can only probe IPv4 networks. In the near future,
we would like to increase its capabilities to IPv6 networks.
We believe that the current version can be easily extended in
order to support IPv6. The main work should be done in the
JSocket Wrench library, to handle IPv6 messages and sockets.
Note that standard IPv6 traceroute, such as scamper [9], or
more complex tools, such asatlas [33], already exist.

B. Measurement Infrastructure

To test our prototype, we choose the PlanetLab infrastruc-
ture because it offers an easy access to a relatively large
quantity of nodes. However, despite this apparent simplicity,
we encountered several difficulties, as mentioned in Sec. V-A.

In a certain sense, these problems were expected as Plan-
etLab is a testbed oriented towards overlays and peer-to-
peer networks. It is not an infrastructure entirely dedicated
to network measurement or the deployment of measurement
tools. Such tools have to share resources (CPU, memory,
network access) with all the users, to strongly limit their use
of disk space, cannot control node management.

Consequently and inspired by the COMNI workshop [31],
we believe it is time to think about an infrastructure entirely
dedicated to network measurements and network monitoring.
This infrastructure should allow us to go beyond the experi-
mental environment of PlanetLab.

In the fashion of PlanetLab, the nodes composing this
infrastructure should be numerous and geographically diverse.
Further, this infrastructure should be carefully engineered in
order to avoid attacks from the outside world and to avoid
abuse from users.

VII. C ONCLUSION

In this report, we described our Java implementation of
an efficient and cooperative topology discovery algorithm,
Doubletree. We implemented the algorithm in a tool we call
traceroute@home. traceroute@home is freely available and
easy to extend.

We first discussed the global functioning of the system
and, next, we introduced the internal architecture of a trace-
route@home monitor. We also explained the message frame-



work proposed for our prototype. This message framework is
easy to extend for further improvements.

In order to test our implementation, we deployed our proto-
type on a few PlanetLab nodes and evaluated its performance.

We finally identified some weaknesses in our prototype
and proposed several ideas for further development. We also
introduce a discussion about the opportunity of developinga
networking measurement infrastructure.
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