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Abstract:  

Vesicular exocytosis is an essential and ubiquitous process in neurons and endocrine cells by 

which neurotransmitters are released in synaptic clefts or extracellular fluids. It involves the 

fusion of a vesicle loaded with chemical messengers with the cell membrane through a 

nanometric fusion pore. In endocrine cells, unless it closes after some flickering (“Kiss-and-Run” 

events), this initial pore is supposed to expand exponentially leading to a full integration of the 

vesicle membrane into the cell one, a stage called “full fusion”. We report hereafter a compact 

analytical formulation that allows extracting precise measurements of the fusion pore expansion 

extent and rate from individual amperometric spikes time-courses. These data definitively 

establish that during release of catecholamines fusion pores enlarge at most to ca. one fifth of 

the radius of their parent vesicle, hence ruling out the ineluctability of “full fusion”. 
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Introduction 

The high importance of vesicular exocytosis in biology and medicine is evidenced, among many 

other examples [1-6], by two recent Nobel prizes of physiology and medicine, the latest one being 

awarded in 2013 to James E. Rothman, Randy W. Schekman, and Thomas C. Südhof [3-6]. In 

neurons and endocrine cells neurotransmitters are transported as cargoes by vesicles tailored 

and loaded in the Golgi apparatuses to be finally delivered at specific release sites of the cell 

membrane where they dock to finally release neurotransmitters through a fusion pore connecting 

the cell and vesicle membranes [7-12]. In endocrine cells, release through the initial fusion pore 

is minute and the pore may close or flicker (Kiss-and-Run) [13-21] as occurs in neurons [22-24] 

but generally rapidly expands [25] to release a massive flux of neurotransmitter that is precisely 

quantifiable by amperometry at carbon fibres micro- and nanoelectrodes [22-24, 26-34]. This 

stage is generally considered to end in a full integration of the vesicle membrane into the cell one, 

hence its “full fusion” designation. There is a wealth of data characterizing in deep details vesicles 

formation, transport and SNAREs-assisted docking stages as well as the initial fusion pore size and 

flickering dynamics. However, the ineluctability of the “full fusion” stage has recently become a 

matter of debate [30-33], though, at least in endocrine cells, it conditions the ultimate purpose 

of the whole process leading to neurotransmitters release. 

Would the fusion pore dynamics be exclusively governed by bilipid membranes energetics [34-

36], its enlargement should be driven by the viscous dissipation of tension energies imposed by 

the important curvatures created at the small fusion pores edges and by the vesicle membrane 

surface tension [32, 34-36]. The replacement of catecholamine cations by hydrated monovalent 

ones inside the matrix during release should lead to its swelling [37-40]. However, swelling is 

necessarily refrained by the presence of the vesicle membrane, at least while the pore radius 

remains small vs. that of the vesicle [32]. The ensuing internal swelling pressure that builds up in 

the constrained matrix during release provokes a constant increase of the membrane surface 

tension and sustains the continuous enlargement of the fusion pore [35, 36]. So in the absence of 

external factors “full fusion” appears ineluctable. This explains why the occurrence of this stage 

has become a paradigm in the field. In addition, several TIRFM [25] and EM [15, 41-43] data 
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support its existence through the report of fusion pores with sizes comparable to those of 

vesicles. 

However, it is not clear whether or not these data represent normal or exceptional events 

possibly related to another vesicle function [44, 45-48]. Actually, in endocrine cells, depending on 

the level of excitation and the size of the fusion pore [45-48], exocytotic vesicles ensure a second 

important function besides the release of small neurotransmitters molecules that is considered 

here. This second role serves to regulate hormone peptides through release of the chromogranins 

forming the matrix structure [49-52] followed by their enzymatic digestion. Release of such long 

highly folded peptidic strands requires that the matrix is swollen and almost fully exposed to the 

extracellular fluid. This implies the formation of fusion pore with size comparable to that of the 

former vesicle [45-48] as described by the “full fusion” paradigm and observed by TIRFM and EM. 

This duality of function is fully coherent with the significant delays observed between fusion pore 

opening and peptide release by neuroendocrine cells dense-core vesicles [45-48, 52]. Conversely, 

neurotransmitters are sufficiently small for diffusing within still compact matrixes and high fluxes 

be released through much smaller fusion pores.  

Amperometry at carbon fibres micro- and nanoelectrodes (“artificial synapse”) [26, 27] allows 

recording of statistically relevant series of kinetic measurements of neurotransmitters fluxes 

emitted by endocrine cells [26-33] or in neuronal synapses [22-24] as soon as the initial fusion 

pore opens. Albeit the considerable wealth of information provided by amperometry [27, 30], 

relating fluxes to fusion pores sizes has been unmanageable up to recently. Doing so requires 

knowing the transport rate of neurotransmitters within vesicle matrixes, 𝜅 = 𝐷ves/𝑅ves
2 , where 

𝐷ves is the apparent diffusion coefficient [53, 54-63] of the neurotransmitter inside the vesicle 

matrix of radius 𝑅ves [64-66]. Yet, 𝜅 = 415 s−1 was determined recently for chromaffin cells [66] 

based on correlations between current pre-spike-features intensities and initial fusion pore size, 

𝑅pore
initial, values reported by patch-clamp [20]. This allowed extracting quantitatively the time-

course and final values of fusion pores expansion from individual amperometric spikes currents 

based on heavy and delicate auto-adaptive simulations [23, 24, 64-66]. Though difficultly 

manageable by non-experts due to the need of human decision at several critical stages [23, 24, 

65, 66] such simulations established quantitatively for the first time that most amperometrically-
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detected events involve fusion pores whose expansion was stalled at a maximum size of only ca. 

one tenth that of the vesicle. These results, as well as other evidences inferred by others based 

on purely experimental strategies [30, 31, 67-70], have instilled the concept that in endocrine 

cells most releasing events entirely proceed through fusion pores whose radii remain much 

smaller than those of vesicles, i.e., contradict the “full fusion” paradigm. 

These previous simulations provided important knowledge about the dynamics of diffusion within 

endocrine matrixes during catecholamine release (see a summary of the main points and 

conclusions in Sections SM1 and SM2 of Supplementary Material (SM)). One key conclusion is 

that most of the release is governed by a quasi-steady state diffusional regime that is achieved 

within the vesicle since the very beginning of release. This conclusion leads now to a fast, simple 

and expedient analytical approach for extracting the time variations of the fusion pore radius, 

𝑅pore(𝑡), that we wish to disclose here. This method allows gathering statistically significant sets 

of data from control cells or from cells submitted to different strains that will then be used to 

examine whether or not the fusion pore expansion is solely regulated by the energetics and 

dissipative properties of the cell-vesicle membrane assembly. For this purpose we will take 

advantage of several sets of amperometric spikes that were published previously by our group 

[71, 72] and whose classical amperometric characteristics are summarized in Section SM3 of SM. 

Results and Discussion 

It is now well established that almost all amperometric spikes involve exponentially decaying 

branches [64-66, 73, 74]. The origin of such behaviour is a direct consequence of the quasi-steady 

state diffusional regime established within the vesicle (see SM2) when the fusion pore has 

reached its maximal opening size (see below). In this work we need to restrict to the commonly 

considered situation in which the current decays following a single-exponential mode though it is 

noted that a non-negligible fraction of events involve decay branches exhibiting two-exponentials 

modes [30, 32, 33, 67, 70]. Though the origin of this second class of spikes has been fully 

rationalized [32], the method developed hereafter cannot be directly applied to such events. 

Our previous works [64-66] whose main conclusions are summarized in SM1 and SM2 established 

that that soon as 𝜅𝑡 > 0.1 (viz., 𝑡 > 0.1 × 𝑅ves
2 /𝐷ves ≈ 0.2 ms for 𝜅 = 415 s−1 [66]), i.e., under 
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all experimental circumstances of interest here, the diffusionally-controlled neurotransmitter 

concentration pattern established within a releasing vesicle reaches a quasi-steady state regime. 

Under this regime, at any time the concentration at any point within the matrix is proportional to 

the time-dependent neurotransmitter average value within the whole matrix, with a scaling 

factor that depends on the location within the matrix but is independent of time (see Figure SM-

1). Note that this property of diffusional leakage from a closed reservoir is universal and is the 

justification of Newton and Kelvin exponential laws of cooling of solid bodies. It then follows that 

at any time, 𝑡, the flux of catecholamine cations through the fusion pore (i.e., the concentration 

gradient at the entrance of the pore) is proportional to the average quantity, 𝑞ves(𝑡), of 

releasable catecholamines still present inside the vesicle matrix at the same time 𝑡. Hence, 

assuming that the released fluxes are exclusively governed by the convergent diffusion of 

neurotransmitters inside the matrix towards the entrance of the fusion pore (see SM1 for 

justification of this model based on our previous works [32, 33, 64-66]), allows to express the 

time-dependent quantity of releasable catecholamines inside the matrix as: 

 d𝑞ves/d𝑡 = −𝜅𝜌 × 𝑞ves(𝑡) (1) 

where 𝜌 is a time-dependent coefficient that depends on the value of 𝑅pore(𝑡)/𝑅ves. This justifies 

the observation of amperometric spikes with single exponential decay current branches. Indeed, 

as soon as the fusion has reached its time-independent final size 𝑅pore
max , the product 𝜅𝜌 becomes 

a constant. Accordingly, 𝑞ves decreases exponentially giving an indirect proof of the quasi-steady 

state diffusional regime. On the other hand, owing to Faraday’s law, the amperometric current is 

given by: 

 𝑖(𝑡) = −2𝐹(d𝑞𝑣𝑒𝑠/d𝑡) (2) 

since the oxidation of any catecholamine molecule at the electrode surface consumes 2 electrons 

[27]. Hence, the amperometric spikes currents also decay exponentially. 

Interestingly, 𝜌 ≅ 𝑅pore(𝑡)/𝑅ves provided that 𝑅pore(𝑡)/𝑅ves < 0.7 [32, 33, 64-66], a condition 

that applies to all amperometric events treated hereafter (see below), so that Eqn (1) writes as: 

 d𝑞ves/𝑞ves  = −𝜅[𝑅pore(𝑡)/𝑅ves]d𝑡 (3) 

Noting 𝑞ves
tot  the total amount of releasable catecholamine cations in the vesicles, viz.: 
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 𝑞ves
tot = 2𝐹 ∫ 𝑖(𝑡)𝑑𝑡

∞

0
 (4) 

as follows from Eqn (2), Eqn (1) can be rewritten as: 

 𝑅pore(𝑡)/𝑅ves = [𝑖(𝑡)/𝜅]/[2𝐹𝑞ves
tot − ∫ 𝑖(𝑢)d𝑢]

𝑡

0
 (5) 

i.e.: 

 𝑅pore(𝑡) = (𝑅ves/𝜅) × [𝑖(𝑡)/ ∫ 𝑖(𝑢)d𝑢]
∞

𝑡
 (6) 

(note that in Eqns (5,6) the variable 𝑢 represent a dummy integration variable related to the time). 

By definition, Eqn (6) applies as soon as 𝑡 > 0.1/𝜅, i.e., as soon as the quasi-steady state regime 

is achieved within the vesicle under scrutiny. Its validity was tested by comparison to the results 

of our previous rigorous auto-adaptive numerical procedures [23, 24, 64-66] and found accurate 

within one percent at worst. For and 𝜅 = 415 s−1 as determined previously [66, 79], Eqn (6) 

applies at times larger than ca. 0.2 ms after the beginning of release, viz., virtually describes the 

whole spikes and their possible pre-spike features (PSF) that correspond to the opening of the 

initial fusion pore and are observed in ca. 30% of the events [27, 30]. In other words, Eqn (6) 

describes the full course of release at the exception of the rising part of PSF that describes, when 

observable, the opening of the initial fusion pore. Indeed, then the release kinetics are certainly 

governed in part by the transport through the sub-nanometric channel and not only by the 

convergent diffusion inside the matrix. Indeed, the only hypothesis made in deriving Eqn (6) 

amounts to assume that the rate of transit across the fusion pore channel is not rate limiting, i.e., 

that the released flux only depends on the concentration gradients inside the vesicle at the 

entrance of the fusion pore [65, 66, 75-77]. As recalled in SM1, this is valid as soon as the initial 

fusion pore has achieved its nanometric initial radius [20] but is probably not before this is 

achieved. 

Finally, it is remarked that an independent knowledge of 𝑅ves/𝜅 value is not required for applying 

Eqn (6) to a series of related individual current spikes that involve releasing events from 

essentially similar vesicles, viz., belonging to a given cell type. Indeed, would this factor be 

unknown, 𝑅pore(𝑡) would be obtained on a same relative scale. In the following, 𝑅pore(𝑡) 

variations are reported on an absolute scale through relying onto the mean 𝑅ves = 156 nm vesicle 

radius reported for chromaffin cells [78] and 𝜅 = 415 s−1 as determined previously [66, 79]. 
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Indeed, the size of the initial fusion pore that led to the measurement of 𝜅 = 415 s−1 for 

chromaffin cells is imposed by the architecture of the SNAREs assembly. Hence, this can be 

considered as invariant even when the membrane is affected by brief external changes in 

experimental conditions (e.g., osmolality or exogenous lipids trans-insertion; see below). 

Two quantitative features are useful for characterizing these curves. One is the maximal size, 

𝑅pore
max , of the fusion pore (Figures 1A,B) and the other its radial expansion rate, 𝑣open =

d𝑅pore(𝑡)/d𝑡, represented by its maximum value, 𝑣open
max , in Figure 1C. Within the “full fusion” 

paradigm one would expect that 𝑅pore
max /𝑅ves → 1 while a significant amperometric current is still 

monitored. Figures 1A,B establish that this is far from being the case: under all circumstances 

examined here, 𝑅pore
max  median values are ca. one tenth of the mean vesicle radius and remains 

always lesser than ca. one fifth of it. This same upper limit was observed for controls (Figure 1Ba) 

or for cells submitted to brief hyper- (Figure 1Bb) or hypotonic (Figure 1Bc) shocks [71] albeit the 

membrane surface tension was drastically reduced in the first case and drastically increased in 

the second one compared to controls (compare Figures SM-2a-c in SM). These perturbations 

affect the shapes of 𝑅pore
max  distributions in Figure 1B (see Table 1 for median and quartile values), 

increasing the probability of small 𝑅pore
max  values under hypertonic conditions (Figure 1Bb, lowly 

tensed membranes) and of large ones for hypotonic ones (Figure 1Bc, highly tensed membranes). 

Within a mechanical perspective, both changes are coherent with the expected decrease or 

increase, respectively, of surface tensions, i.e., of the driving force powering the fusion pore 

expansion [34-36, 75-77]. Nonetheless, one observes that 𝑅pore
max < 30 nm in all cases (normal, 

hyper- or hypotonic conditions) suggesting that this limit does not depend on the membrane 

characteristics though, as expected, it is more frequently reached for tense membranes than for 

relaxed ones. 

Another set of experiments involved cells submitted to brief micromolar incubations with 

exogenous bilipids with cone angles θ different from that, θ ≈ 0, of the “cylindrical” endogenous 

cell ones, viz., arachidonic acid (“cone-shaped”, θAA > 0; Figure 1Bd) or lyso-phosphatidylcholine 

(“inverted cone shaped”, θLPC < 0; Figure 1Be) immediately before stimulating release [72], with 

the perspective of altering the fusogenic and dissipative properties of the membrane assembly 

[80-85]. The brief incubations ensured that exogenous lipids exclusively trans-inserted in the 
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outer leaflet of the cell membrane [84] with opposite consequences on the large positive 

curvatures at the fusion pores edges [36, 64-66, 75-77, 86, 87] due to their shapes. Figure 1Bd 

confirms the unfavourable effect of the negative curvatures promoted by AA [86, 87]. 

Contrariwise, as expected, LPC favours positive curvatures [84, 85] and shifts 𝑅pore
max  distributions 

towards larger values (Figure 1Be and Table 1). Nonetheless, in both cases, the previous limit at 

ca. 30 nm holds. This ubiquitous limit strongly suggests that while it expands, the fusion pore tube 

external wall encounters a biological barrier that blocks its further enlargement beyond this range 

[88, 89]. Considering that in this work we access to the inner radius of the fusion pore and taking 

into account that the thickness of a lipidic bilayer ranges between 3 and 4 nm and neglecting the 

possible presence of membrane proteins in the fusion tube, a probable diameter of the free space 

in which the fusion pore may expand is ca. 50-70 nm under control conditions. This is a large size 

but remains still between ca. one sixth to one fourth of a mean vesicle diameter (312 nm [78]). 

Still, it is noted that such a value is not incompatible with the mesh sizes of sub-membrane 

cytoskeleton proteic structures [90-93]. 

Before the fusion pore external edge meets this limit, its radial expansion rate results from a 

balance between the driving force acting on the pore edge and the ability of the system to relax 

its released energy through viscous dissipation [35, 36, 75, 76]. Accordingly, 𝑅pore(𝑡) enlarges 

exponentially at the beginning of its expansion (i.e., before the markers in Figure 1A) [35, 36, 75, 

76, 90-93]. After this phase, the rate of expansion progressively levels off while the fusion pore 

radius reaches its maximum value, 𝑅pore
max . 𝑣open

max  (Figure 1C) provides a good indication of the 

expansion velocity before the fusion pore edge may start to significantly interact with the non-

lipidic biological structure(s) that ultimately limit(s) its expansion [94]. 

All 𝑣open
max  distributions display exponential tails at large values as is expected for individual rates 

of single events controlled by a single elementary process [95, 96]. For hypertonic and AA-

modified conditions this applies over the whole range of 𝑣open
max  values (Figures 1Cb and 1Cd). 

Conversely, for controls, hypotonic and LPC-modified conditions (respectively in Figures 1Ca,c,e) 

probability densities in the low 𝑣open
max  range result considerably smaller than expected through 

extrapolating back the upper-range exponential comportment. This phenomenon is exacerbated 

for hypotonic and LPC-modified conditions compared to controls. We have not yet definite 
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explanation for the occurrence of such behaviour, but this and the relative effects of hypotonic 

and LPC-modified conditions vs. controls suggest that at least two factors control the initial fusion 

pore expansion rate [96]. One possible rationale amounts to consider that the decrease in leaflet-

leaflet viscosity [35] due to a high initial surface tension at the end of the SNAREs-constricted 

phase (controls and hypotonic conditions, Figures 1Ca,c) or to a stabilization of positive 

curvatures (LPC-modified conditions, Figure 1Ce) facilitates the viscous dissipation of the energy 

accumulated in the matrix before the fusion pore could expand, hence decreases the observation 

of low 𝑣open
max  values. Still, whatever the exact mechanism(s) underlying such peculiar 𝑣open

max  

distributions, the data in Figure 1C establish that in all cases the rate of the fusion pore expansion 

during the first part of its total span strongly depends on the bilipidic membrane properties, 

confirming what was inferred from 𝑅pore
max  distributions (Figure 1B and Table 1). However, this 

never leads to “full fusion” as would happen if the expansion was controlled only by the 

membrane properties. Indeed, the fast initial enlargement of the fusion pore is rapidly 

counteracted by other forces that eventually limit its final radius at ca. 30 nm. 

These two series of paired experiments confirm that the membrane tensions forces act in 

powering the fusion pore enlargement [34-36, 75-77] after its initial SNAREs-stabilized 

architecture breakdowns [13]. However, the internal pressure within the matrix necessarily 

continues to build [37-40] during the whole release, thus contributing to increase the surface 

tension forces even after the fusion pore has reached its maximum value. Nonetheless, these 

forces result ultimately insufficient to overcome the other ones imposed by the biological 

barrier(s) [88, 89]. This conclusion is perfectly coherent with recent reports from Ewing et al. who 

showed that interfering with proteins that are generally considered to be involved in vesicle 

budding (viz., actin regulating proteins or other cytoplasmic ones such as dynamin) modifies the 

intensity and time duration of amperometric spikes [69, 70]. In some regards, this is also coherent 

with the possible interplay between dynamin and myosin described by Smith et al. [45-48] to 

account for the dichotomy between catecholamines and peptides release by endocrine cells. 

Though recent reviews still presented such possibilities as “hypothetical” [88, 89], the 

measurements reported in Figures 1A and 1B provide for the first time a strong quantitative 

ground to these previous views. 
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Conclusion 

Altogether, the present data provide a first quantitative support to a new paradigm and reject 

the ineluctability of a “full fusion” outcome when the fusion pore enlarges beyond it SNAREs-

stabilized architecture. If the rapid fusion pore expansion is unquestionably promoted by the 

viscous dissipation of edge and surface tensions energies of vesicle-cell membrane assembly, the 

corresponding driving forces are rapidly counteracted by other forces that apply as soon as the 

fusion pore reaches ca. 15-30 nm [30, 67-70]. Within this perspective, the occurrence of the much 

wider fusion pores observed by TIRFM or EM, a fact that usually substantiates the “full fusion” 

paradigm, may either be featuring incidental rare events or exocytotic vesicle functions that are 

not related to neurotransmitter release but possibly to another role such as hormonal peptide 

regulation [45-52]. 
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Table 1. Median and quartile values of fusion pores maximal sizes, 𝑅pore
max , and 

maximal opening rates, 𝑣open
max , as deduced from the probability densities shown 

in Figures 1B and 1C under different release conditions.[a] 

Conditions[c] 𝑅pore
max  / nm[b] 𝑣open

max  / µm.s-1 [b] 

Controls 16.8 (12.6; 20.2) 1.41 (0.74; 2.41) 

Hypertonic 10.6 (6.6; 15.9) 0.74 (0.35; 1.84) 

Hypotonic 20.3 (16.8; 21.9) 1.42 (0.93; 2.21) 

AA-modified 11.4 (8.2; 15.3) 0.66 (0.40; 1.14) 

LPC-modified 17.0 (15.0; 20.1) 1.65 (1.32; 2.42) 

[a] Vesicular release elicited from chromaffin cells by 2mM Ba2+ (in Locke buffer 

supplemented with 0.7 mM MgCl2, without carbonates) injection during 2s. [b] 

Median values (first and third quartile values reported between parentheses) 

based on Eqn (6) with 𝑅ves = 156 nm [78], and 𝜅 = 𝐷ves/𝑅ves
2 = 415 s−1 [64-

66] (see text). [c] Amperometric spikes measured at bovine chromaffin cells with 

7 µm diameter carbon fiber microelectrodes held at 0.65 V vs. Ag/AgCl, see 

Section SM3 in SM and references [71, 72] for experimental details 
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Figure 1 

 

 

 

Figure 1. (A) Representative time-variations of the fusion pore radius, 𝑅pore, superimposed onto the 

corresponding amperometric spikes recorded under several conditions [71, 72]: (a) controls; (b) hyper- or (c) 

hypotonic shock; (d) AA- or (e) LPC-modified cell membrane; the same code applies to the sequence of panels (a-

e) in (B) and (C). (B) Statistical distributions of the maximal pore radii, 𝑅pore
max , and (C) of the maximal radial 

expansion rates, 𝑣open
max , as a function of the condition. The horizontal arrows in (A) indicate the 𝑅pore values at 

which 𝑣open
max  was achieved. In (B) and (C) the vertical dashed lines indicate the median values while the double-

arrowed segments feature the first and third quartiles ones (see Table 1 for the corresponding numerical values). 


