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1 Introduction

The near forward photoproduction of a pair of particles with a large invariant mass is

a case for a natural extension of collinear QCD factorization theorems which have been

much studied for near forward deeply virtual Compton scattering (DVCS) and deeply

virtual meson production [1–6]. In the present paper, we study the case where a wide

angle Compton scattering subprocess γ(qq̄) → γρ characterized by the large scale Mγρ (the

invariant mass of the final state) factorizes from generalized parton distributions (GPDs).

This large scale Mγρ is related to the large transverse momenta transmitted to the final

photon and to the final meson, the pair having an overall small transverse momentum.

This opens a new way to the extraction of these GPDs and thus to check their universality.

The study of such processes was initiated in refs. [7, 8], where the process under study

was the high energy diffractive photo- (or electro-) production of two vector mesons, the

hard probe being the virtual “Pomeron” exchange (and the hard scale being the virtuality

of this pomeron), in analogy with the virtual photon exchange occuring in the deep inelastic

electroproduction of a meson. A similar strategy has also been advocated in refs. [9],1 [10,

11] to enlarge the number of processes which could be used to extract information on GPDs.

The process we study here2

γ(∗)(q) +N(p1) → γ(k) + ρ0(pρ, ερ) +N ′(p2) , (1.1)

is sensitive to both chiral-even and chiral-odd GPDs due to the chiral-even (resp. chiral-

odd) character of the leading twist distribution amplitude (DA) of ρL (resp. ρT ).

Its experimental study should not present major difficulties to large acceptance detec-

tors such as those developed for the 12GeV upgrade of JLab. The estimated rate depends

of course much on the magnitude of the GPDs, but we show that the experiment is feasible

under reasonable assumptions based on their relations to usual parton distributions and to

lattice [14–17] calculations.

Let us briefly comment on the extension of the existing factorization proofs in the

framework of QCD to our process. The argument is two-folded.

The now classical proof of factorization of exclusive scattering at fixed angle and large

energy [18] allows to write the leading twist amplitude for the process γ + π → γ + ρ

as the convolution of a mesonic distribution amplitude and a hard scattering subprocess

1Note: cross-sections presented here should be corrected due to the omission of numerical prefactors.
2Some of the results presented here have been reported previously [12, 13].
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Figure 1. a) Factorization of the amplitude for the process γ+π → γ+ρ at large s and fixed angle

(i.e. fixed ratio t′/s); b) replacing one DA by a GPD leads to the factorization of the amplitude for

γ +N → γ + ρ+N ′ at large M2
γρ .

amplitude γ + (q + q̄) → γ + (q + q̄) with the meson state replaced by a collinear quark-

antiquark pair. This is described in figure 1a. The demonstration of the absence of any

pinch singularity (which is the weak point of the proof for the generic case A+B → C+D)

has been proven in the case of interest here [19].

We extract from the factorization procedure of the exclusive meson electroproduction

amplitude near the forward region [20] the right to replace in figure 1a the lower left meson

distribution amplitude by a N → N ′ GPD, and thus get figure 1b. Indeed the same

collinear factorization property bases the validity of the leading twist approximation which

replaces either the meson wave function by its distribution amplitude or the N → N ′

transition to its GPDs. A slight difference is that light cone fractions (z, 1− z) leaving the

DA are positive, but the corresponding fractions (x+ ξ, ξ− x) may be positive or negative

in the case of the GPD. Our calculation will show that this difference does not spoil the

factorization property, at least at the (leading) order at which we are working here.

The analogy to the timelike Compton scattering process [21–23]:

γ(∗)N → γ∗N ′ → µ+µ−N ′ , (1.2)

where the lepton pair has a large squared invariant mass Q2, is quite instructive. Although

the photon-meson pair in our process (1.1) has a more complex momentum flow, one may

draw on this analogy to ascribe the role of the hard scale to the photon-meson pair invariant

mass.

In order for the factorization of a partonic amplitude to be legitimate, one should avoid

the dangerous kinematical regions where a small momentum transfer is exchanged in the

upper blob, namely small t′ = (k− q)2 or small u′ = (pρ− q)2, and the region where strong

final state interactions between the ρ meson and the nucleon are dominated by resonance

effects, namely where the invariant mass M2
ρN ′ = (pρ + pN ′)2 is not large enough.

– 2 –
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Our paper is organized as follows. In section 2, we clarify the kinematics we are

interested in and set our conventions. Section 3 is devoted to the presentation of our

model for DAs and GPDs. Then, in section 4, we describe the scattering amplitude of the

process under study in the framework of QCD factorization. Section 5 presents our results

for the unpolarized differential cross section in the kinematics of quasi-real photon beams

at JLab where SγN ∼ 6-22GeV2 . Finally, in section 6 we give estimates of expected rates

at JLab. In appendices, we describe several technical details required by analytical and

numerical aspects of our calculations.

As a final remark in this introduction, let us stress that our discussion applies as well

to the case of electroproduction where a moderate virtuality of the initial photon may help

to access the perturbative domain with a lower value of the hard scale Mγρ.

2 Kinematics

We study the exclusive photoproduction of a vector meson ρ0 and a real photon on a

polarized or unpolarized proton or neutron target

γ(q, εq) +N(p1, λ) → γ(k, εk) + ρ0(pρ, ερ) +N ′(p2, λ
′) , (2.1)

in the kinematical regime of large invariant massMγρ of the final photon and meson pair and

small momentum transfer t = (p2−p1)
2 between the initial and the final nucleons. Roughly

speaking, these kinematics mean moderate to large, and approximately opposite, transverse

momenta of the final photon and meson. Our conventions are the following. We define

Pµ =
pµ1 + pµ2

2
, ∆µ = pµ2 − pµ1 , (2.2)

and decompose momenta on a Sudakov basis as

vµ = anµ + b pµ + vµ⊥ , (2.3)

with p and n the light-cone vectors

pµ =

√
s

2
(1, 0, 0, 1) nµ =

√
s

2
(1, 0, 0,−1) p · n =

s

2
, (2.4)

and

vµ⊥ = (0, vx, vy, 0) , v2⊥ = −~v2t . (2.5)

The particle momenta read

pµ1 = (1+ξ) pµ+
M2

s(1+ξ)
nµ , pµ2 =(1−ξ) pµ+

M2+~∆2
t

s(1−ξ)
nµ+∆µ

⊥ , qµ=nµ , (2.6)

kµ = αnµ +
(~pt − ~∆t/2)

2

αs
pµ + pµ⊥ − ∆µ

⊥
2

,

pµρ = αρ n
µ +

(~pt + ~∆t/2)
2 +m2

ρ

αρs
pµ − pµ⊥ − ∆µ

⊥
2

, (2.7)

– 3 –
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with M , mρ the masses of the nucleon and the ρ meson. From these kinematical relations

it follows that

2 ξ =
(~pt − 1

2
~∆t)

2

s α
+

(~pt +
1
2
~∆t)

2 +m2
ρ

s αρ
(2.8)

and

1− α− αρ =
2 ξ M2

s (1− ξ2)
+

~∆2
t

s (1− ξ)
. (2.9)

The total squared center-of-mass energy of the γ-N system is

SγN = (q + p1)
2 = (1 + ξ)s+M2 . (2.10)

On the nucleon side, the squared transferred momentum is

t = (p2 − p1)
2 = −1 + ξ

1− ξ
~∆2

t −
4ξ2M2

1− ξ2
. (2.11)

The other useful Mandelstam invariants read

s′ = (k + pρ)
2 = M2

γρ = 2ξ s

(

1− 2 ξ M2

s(1− ξ2)

)

− ~∆2
t

1 + ξ

1− ξ
, (2.12)

−t′ = −(k − q)2 =
(~pt − ~∆t/2)

2

α
, (2.13)

−u′ = −(pρ − q)2 =
(~pt + ~∆t/2)

2 + (1− αρ)m
2
ρ

αρ
, (2.14)

and

M2
ρN ′ = s

(

1− ξ +
(~pt + ~∆t/2)

2 +m2
ρ

s αρ

)(

αρ +
M2 + ~∆2

t

s (1− ξ)

)

−
(

~pt −
1

2
~∆t

)2

. (2.15)

The hard scale M2
γρ is the invariant squared mass of the (γ ρ0) system. The leading

twist calculation of the hard part only involves the approximated kinematics in the gener-

alized Bjorken limit: neglecting ~∆t in front of ~pt as well as hadronic masses, it amounts to

M2
γρ ≈ ~p2t

αᾱ
, (2.16)

αρ ≈ 1− α ≡ ᾱ , (2.17)

ξ =
τ

2− τ
, τ ≈

M2
γρ

SγN −M2
, (2.18)

−t′ ≈ ᾱM2
γρ , −u′ ≈ αM2

γρ . (2.19)

For further details on kinematics, we refer to appendix C.

The typical cuts that one should apply are −t′,−u′ > Λ2 andM2
ρN ′ = (pρ+pN ′)2 > M2

R

where Λ ≫ ΛQCD and MR is a typical baryonic resonance mass. This amounts to cuts in

α and ᾱ at fixed M2
γρ, which can be translated in terms of u′ at fixed M2

γρ and t. These

conditions boil down to a safe kinematical domain (−u′)min 6 −u′ 6 (−u′)max which we

will discuss in more details in section 5.

– 4 –
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In the following, we will choose as independent kinematical variables t, u′,M2
γρ .

Due to electromagnetic gauge invariance, the scattering amplitude for the production

of a ρT meson with chiral-odd GPDs and the scattering amplitude for the production of

a ρL meson with chiral-even GPDs are separately gauge invariant, up to the well known

corrections of order ∆T√
s
which have been much studied for the DVCS case [24, 25]. We

choose the axial gauge pµ ε
µ
k = 0 and parametrize the polarization vector of the final photon

in terms of its transverse components

εµk = εµk⊥ − εk⊥ · k⊥
p · k pµ , (2.20)

while the initial photon polarization is simply written as

εµq = εµq⊥ . (2.21)

We will use the transversity relation pρ · ερ = 0 to express the polarization of the ρ meson

in terms of only its transverse components and its component along n, using

n · ερ =
1

αρ

[

p2⊥
αρs

(p · ερ) + (p⊥ · ερ⊥)
]

. (2.22)

3 Non-perturbative ingredients: DAs and GPDs

In this section, we describe the way the non-perturbative quantities which enter the scat-

tering amplitude are parametrized.

3.1 Distribution amplitudes for the ρ meson

The chiral-even light-cone DA for the longitudinally polarized meson vector ρ0L is defined,

at the leading twist 2, by the matrix element [26]

〈0|ū(0)γµu(x)|ρ0(pρ, ερL)〉 =
1√
2
pµρfρ0

∫ 1

0
dz e−izpρ·x φ‖(z), (3.1)

with fρ0 = 216MeV, while the chiral-odd light-cone DA for the transversely polarized

meson vector ρ0T is defined as:

〈0|ū(0)σµνu(x)|ρ0(pρ, ερ±)〉 =
i√
2
(εµρ± pνρ − ενρ± pµρ)f

⊥
ρ

∫ 1

0
dz e−izpρ·x φ⊥(z), (3.2)

where εµρ± is the ρ-meson transverse polarization and with f⊥
ρ = 160MeV. The factor 1√

2

takes into account the quark structure of the ρ0−meson: |ρ0〉 = 1√
2
(|uū〉 − |dd̄〉). We shall

use the asymptotic form for the normalized functions φ‖ and φ⊥

φ‖(z) = 6z(1− z) ,

φ⊥(z) = 6z(1− z) . (3.3)

– 5 –
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3.2 Generalized parton distributions

The chiral-even GPDs of a parton q (here q = u, d) in the nucleon target (λ and λ′ are
the light-cone helicities of the nucleons with the momenta p1 and p2) are defined by [27]:

〈p(p2, λ′)| q̄
(

−y

2

)

γ+q
(y

2

)

|p(p1, λ)〉 (3.4)

=

∫ 1

−1
dx e−

i
2
x(p+

1
+p+

2
)y− ū(p2, λ

′)

[

γ+Hq(x, ξ, t) +
i

2m
σ+α∆αE

q(x, ξ, t)

]

u(p1, λ) ,

and

〈p(p2, λ′)| q̄
(

−y

2

)

γ+γ5q
(y

2

)

|p(p1, λ)〉 (3.5)

=

∫ 1

−1
dx e−

i
2
x(p+

1
+p+

2
)y− ū(p2, λ

′)

[

γ+γ5H̃q(x, ξ, t) +
1

2m
γ5∆+ Ẽq(x, ξ, t)

]

u(p1, λ) .

The transversity GPD of a quark q is defined by:

〈p(p2, λ′)| q̄
(

−y

2

)

i σ+jq
(y

2

)

|p(p1, λ)〉 (3.6)

=

∫ 1

−1
dx e−

i
2
x(p+

1
+p+

2
)y− ū(p2, λ

′)
[

i σ+jHq
T (x, ξ, t) + . . .

]

u(p1, λ) ,

where . . . denote the remaining three chiral-odd GPDs which contributions are omitted in

the present analysis.

We parametrize the GPDs in terms of double distributions (DDs) [28]

Hq(x, ξ, t = 0) =

∫

Ω
dβ dα δ(β + ξα− x)Fq(β, α, t = 0) , (3.7)

where Fq is a generic quark DD and Ω = {|β| + |α| 6 1} is its support domain. A D-

term contribution, necessary to be completely general while fulfilling the polynomiality

constraints, could be added. In our parameterization, we do not include such an arbitrary

term. Note that similar GPD parameterizations have been used in ref. [29].

As shown in section 4.2, with a good approximation we will only use the three GPDs

H, H̃ and HT . We adhere on Radyushkin-type parameterization and write the unpolarized

DD f q and the transversity DD f q
T in the form

f q(β, α, t = 0) = Π(β, α) q(β)Θ(β)−Π(−β, α) q̄(−β)Θ(−β) , (3.8)

and [9]

f q
T (β, α, t = 0) = Π(β, α) δq(β)Θ(β)−Π(−β, α) δq̄(−β)Θ(−β) , (3.9)

while the polarized DD f̃ q reads

f̃ q(β, α, t = 0) = Π(β, α)∆q(β)Θ(β) + Π(−β, α)∆q̄(−β)Θ(−β) , (3.10)

where Π(β, α) = 3
4
(1−β)2−α2

(1−β)3
is a profile function and q, q̄ are the quark and antiquark

unpolarized parton distribution functions (PDFs), ∆q, ∆q̄, are the quark and antiquark

polarized PDFs and δq, δq̄ are the quark and antiquark transversity PDFs.

– 6 –
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We now give specific formulas for the three GPDs which we use in the present study.

The GPD Hq reads

Hq(x, ξ, t = 0) = Θ(x > ξ)

∫ 1−x
1−ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
q(x− ξy)

+Θ(ξ > x > −ξ)

[

∫ x
ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
q(x− ξy)

−
∫ 1+x

1+ξ

x
ξ

dy
3

4

(1 + x− ξy)2 − y2

(1 + x− ξy)3
q̄(−x+ ξy)

]

−Θ(−ξ > x)

∫ 1+x
1+ξ

− 1+x
1−ξ

dy
3

4

(1 + x− ξy)2 − y2

(1 + x− ξy)3
q̄(−x+ ξy) . (3.11)

Similarly, the transversity GPD Hq
T reads

Hq
T (x, ξ, t = 0) = Θ(x > ξ)

∫ 1−x
1−ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
δq(x− ξy)

+Θ(ξ > x > −ξ)

[

∫ x
ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
δq(x− ξy)

−
∫ 1+x

1+ξ

x
ξ

dy
3

4

(1 + x− ξy)2 − y2

(1 + x− ξy)3
δq̄(−x+ ξy)

]

−Θ(−ξ > x)

∫ 1+x
1+ξ

− 1+x
1−ξ

dy
3

4

(1 + x− ξy)2 − y2

(1 + x− ξy)3
δq̄(−x+ ξy) , (3.12)

while the GPD H̃q reads

H̃q(x, ξ, t = 0) = Θ(x > ξ)

∫ 1−x
1−ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
∆q(x− ξy)

+Θ(ξ > x > −ξ)

[

∫ x
ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
∆q(x− ξy)

+

∫ 1+x
1+ξ

x
ξ

dy
3

4

(1 + x− ξy)2 − y2

(1 + x− ξy)3
∆q̄(−x+ ξy)

]

+Θ(−ξ > x)

∫ 1+x
1+ξ

− 1+x
1−ξ

dy
3

4

(1 + x− ξy)2 − y2

(1 + x− ξy)3
∆q̄(−x+ ξy) . (3.13)

Since our process selects the exchange of charge conjugation C = −1 in the t−channel, we

now consider the corresponding valence GPDs

Hq(−)(x, ξ, t) = Hq(x, ξ, t) +Hq(−x, ξ, t) (3.14)

and

H
q(−)
T (x, ξ, t) = Hq

T (x, ξ, t) +Hq
T (−x, ξ, t) (3.15)

– 7 –
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which have the symmetry properties Hq(−)(x, ξ, t) = Hq(−)(−x, ξ, t) and H
q(−)
T (x, ξ, t) =

H
q(−)
T (−x, ξ, t), as well as the valence GPD

H̃q(−)(x, ξ, t) = H̃q(x, ξ, t)− H̃q(−x, ξ, t) , (3.16)

which has the antisymmetry property H̃q(−)(x, ξ, t) = −H̃q(−)(−x, ξ, t) .

Introducing the symmetric valence distributions

qval(x) = θ(x)[q(x)− q̄(x)] + θ(−x)[q(−x)− q̄(−x)] (3.17)

and

δqval(x) = θ(x)[δq(x)− δq̄(x)] + θ(−x)[δq(−x)− δq̄(−x)] , (3.18)

and the antisymmetric valence distribution

∆qval(x) = θ(x)[∆q(x)−∆q̄(x)]− θ(−x)[∆q(−x)−∆q̄(−x)] , (3.19)

the set of GPDs which we use in our computation of the scattering amplitude reads

1

2
Hq(−)(x, ξ, t = 0) =

1

2

[(

Θ(x > ξ)

∫ 1−x
1−ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
qval(x− ξy)

+ Θ(ξ > x > −ξ)

∫ x
ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
qval(x− ξy)

)

+(x ↔ −x)

]

, (3.20)

1

2
H

q(−)
T (x, ξ, t = 0) =

1

2

[(

Θ(x > ξ)

∫ 1−x
1−ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
δqval(x− ξy)

+ Θ(ξ > x > −ξ)

∫ x
ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
δqval(x− ξy)

)

+(x ↔ −x)

]

, (3.21)

and

1

2
H̃q(−)(x, ξ, t = 0) =

1

2

[(

Θ(x > ξ)

∫ 1−x
1−ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
∆qval(x− ξy)

+ Θ(ξ > x > −ξ)

∫ x
ξ

−1+x
1+ξ

dy
3

4

(1− x+ ξy)2 − y2

(1− x+ ξy)3
∆qval(x− ξy)

)

−(x ↔ −x)

]

. (3.22)
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Figure 2. Models for the GPDs Hu(−) and Hd(−) for ξ = .1, a value corresponding to SγN =

20 GeV2 and M2
γρ = 3.5 GeV2. The various curves differ with respect to the ansätze for the PDFs

q: GRV-98 (solid black), MSTW2008lo (long-dashed blue), MSTW2008nnlo (short-dashed red),

ABM11nnlo (dotted-dashed green), CT10nnlo (dotted brown). Note that the two GPDs Hd(−)

based on these two last ansätze are hardly distinguishable.

3.3 Numerical modeling

For the various PDFs, we neglect any QCD evolution (in practice, we take a fixed factor-

ization scale µ2
F = 10 GeV2) and we use the following models:

• For xq(x), we rely on the GRV-98 parameterization [30], as made available from

the Durham database. To evaluate the uncertainty of this parameterization, we also

consider a few other sets of PDFs, namely MSTW2008lo and MSTW2008nnlo [31],

ABM11nnlo [32], CT10nnlo [33].

In figure 2, we show the resulting GPDs Hu(−) and Hd(−) for ξ = .1 corresponding

in our process to the typical value SγN = 20 GeV2 and M2
γρ = 3.5 GeV2.

• For x∆q(x) , we rely on the GRSV-2000 parameterization [34], as made available from

the Durham database. Two scenarios are proposed in this parameterization: the

“standard”, i.e. with flavor-symmetric light sea quark and antiquark distributions,

and the “valence” scenario with a completely flavor-asymmetric light sea densities.

We use both of them in order to evaluate the order of magnitude of the theoretical

uncertainty.

In figure 3, we show the resulting GPDs H̃u(−) and H̃u(−) for ξ = .1 corresponding

in our process to the typical value SγN = 20 GeV2 and M2
γρ = 3.5 GeV2.

• For xδq(x) we rely on a parameterization performed for TMDs (based on a fit of

azimuthal asymmetries in semi-inclusive deep inelastic scattering), from which the

transversity PDFs xδq(x) are obtained as a limiting case [35]. The parameterization

of ref. [35] for TMDs is based on the GRV-98 PDF x∆q(x) and GRSV-2000 PDF

– 9 –
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Figure 3. Models for the GPDs H̃u(−) and H̃d(−) for ξ = .1, a value corresponding to SγN =

20 GeV2 and M2
γρ = 3.5 GeV2. In dotted blue, the “standard” scenario and in red the “valence”

scenario.

- 1 .0 - 0 .5 0 .0 0 .5 1 .0

0 .2

0 .4

0 .6

0 .8

1 .0

1 .2

x

H
u(−)
T (x, ξ)

- 1 .0 - 0 .5 0 .5 1 .0

- 0 .8

- 0 .6

- 0 .4

- 0 .2

x

H
d(−)
T (x, ξ)

Figure 4. Models for the GPDs H
u(−)
T and H

d(−)
T for ξ = .1, a value corresponding to SγN =

20 GeV2 and M2
γρ = 3.5 GeV2. In blue dotted the “standard” scenario and in red the “valence”

scenario.

x∆q(x). These transversity PDFs are parametrized as

δq(x) =
1

2
N T

q (x)[q(x) + ∆(x)] (3.23)

with

N T
q (x) = NT

q x
α(1− x)β

(α+ β)(α+β)

ααββ
. (3.24)

Since this parameterization itself relies on the knowledge of xq(x) and x∆q(x), we

will evaluate the uncertainty on these PDFs by two means: first by passing from the

“standard” to the “valence” polarized PDFs (see above), second by performing a vari-

ation of the set of parameters NT
q , α, β, using the χ2 distribution of these parameters

as used in ref. [35].3 We further discuss our procedure in section 5.6.

3We thank S. Melis for providing us the complete set of parameters with the corresponding χ2 distribu-

tion.

– 10 –



J
H
E
P
0
2
(
2
0
1
7
)
0
5
4

In figure 4, we show the resulting GPDs H
u(−)
T and H

d(−)
T for ξ = .1 corresponding

in our process to the typical value SγN = 20 GeV2 and M2
γρ = 3.5 GeV2.

In order to evaluate the scattering amplitudes of our process, we calculate, for each

of the above three types of GPDs, sets of u and d quarks GPDs indexed by M2
γρ, i.e.

ultimately by ξ given by

ξ =
M2

γρ

2(SγN −M2)−M2
γρ

(3.25)

We vary M2
γρ from 2.2GeV 2 up to 10GeV 2, with a step of 0.1GeV 2, in order to have a

full coverage of M2
γρ for the case SγN = 20GeV 2, see appendix D.

For each M2
γρ, the GPDs are computed as tables of 1000 values for x from −1 to 1.

Figures 2, 3 and 4 are examples of these sets.

4 The scattering amplitude

4.1 Analytical part

We now pass to the computation of the scattering amplitude of the process (2.1). When

the hard scale is large enough, it is possible to study it in the framework of collinear QCD

factorization, where the squared invariant mass of the (γ, ρ0) system M2
γρ is taken as the

factorization scale. We write the scattering amplitude of the process (2.1), taking into

account the fact that the ρ0 meson is described as uū−dd̄√
2

:

M‖,⊥(t,M
2
γρ, u

′) =
1√
2
(Mu

‖,⊥ −Md
‖,⊥) (4.1)

whereMu
‖,⊥ andMd

‖,⊥ are expressed in terms of form factorsHq, E , H̃q, Ẽq andHq
T⊥j , H̃

q
T⊥j ,

Eq
T⊥j , Ẽ

q
T⊥j , analogous to Compton form factors in DVCS, in the factorized form and read

Mq
‖ ≡

1

n · pū(p2, λ
′)

[

n̂Hq(ξ, t) +
i σnα∆α

2m
Eq(ξ, t) + n̂γ5H̃q(ξ, t) +

n ·∆
2m

γ5 Ẽq(ξ, t)

]

u(p1, λ)

(4.2)

in the chiral-even case, and

Mq
⊥ ≡ 1

n · p ū(p2, λ
′)

[

i σnjHq
T⊥j(ξ, t) +

P · n ∆j −∆ · n P j

m2
H̃q

T⊥j(ξ, t)

+
γ · n ∆j −∆ · n γj

2m
Eq
T⊥j(ξ, t) +

γ · n P j − P · n γj

m
Ẽq
T⊥j(ξ, t)

]

u(p1, λ) (4.3)

in the chiral-odd case.

For convenience, we now define

Mq(t,M2
γρ, pT ) =≡

∫ 1

−1
dx

∫ 1

0
dz T q(t,M2

γρ, pT , x, z) . (4.4)

The scattering sub-process is described at lower twist by 20 Feynman diagrams, but

using the q ↔ q̄ (anti)symmetry properties allows one to only compute 10 of them, shown

in figure 5, then deduce the remaining contributions by substituting (x, z) ↔ (−x, 1− z).
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Figure 5. Half of the Feynman diagrams contributing to the hard amplitude. In the chiral-odd

case, A3, A4 and B1, B5 are the only contributing diagrams (the red diagrams cancel in this case).

In the case of (γ, ρL) production all the diagrams contribute. In the case of (γ, ρ⊥) pro-

duction, due to the chiral-odd structure of DAs and GPDs, there are only 8 non-vanishing

diagrams, out of which one only needs to compute B1, A3, A4 and B5.

We now discuss diagram B1 in some details, and give the results for the other diagrams

in appendix A.

The chiral-even scattering amplitudes for longitudinally polarized ρ0 described by the

DA (3.1) involve both the vector GPDs (3.5) and the axial GPDs (3.6). We now give the

detailed expressions for T q CE
V (B1), T

q CE
A (B1), for a quark with flavor q and for diagram

B1 in Feynman gauge. The vector amplitude reads

T q CE
V (B1) =

1

i

tr(tata)

(4N)2
fρ φ||(z) (−ieQq)

2 (−ig)2 i2 (−i)

× trD

[

p̂ρε̂
∗
k

k̂ + zp̂ρ
(k + zpρ)2 + iǫ

γµ
q̂ + (x+ ξ)p

(q + (x+ ξ)p)2 + iǫ
ε̂q p̂ γµ

1

(z̄pρ + (x− ξ)p)2 + iǫ

]

× 2

s
ū(p2, λ

′)

[

n̂Hq(x, ξ, t) +
i

2m
σnα∆αE

q(x, ξ, t)

]

u(p1, λ) (4.5)

= Cq CE trVD [B1] φ||(z)
2

s
ū(p2, λ

′)

[

n̂Hq(x, ξ, t) +
i

2m
σnα∆αE

q(x, ξ, t)

]

u(p1, λ) ,

which includes all non trivial factors (vertices as well as quark and gluon propagators) of

the hard part of diagram B1. Here, C
q CE is a common coefficient for all diagrams involving

vector and axial GPDs, reading

Cq CE =
4

9
fρ αem αs π

2Q2
q . (4.6)
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The trace reads:

trVD [B1] = trD

[

p̂ρε̂
∗
k

k̂ + zp̂ρ
(k + zpρ)2 + iǫ

γµ
q̂ + (x+ ξ)p

(q + (x+ ξ)p)2 + iǫ
ε̂q p̂ γµ

1

(z̄pρ + (x− ξ)p)2 + iǫ

]

=
8s

[

−sξα (εq⊥ · ε∗k⊥) + z
α (εq⊥ · pρ⊥) (ε∗k⊥ · pρ⊥)

]

((k + zpρ)2 + iǫ)((q + (x+ ξ)p)2 + iǫ)((z̄pρ + (x− ξ)p)2 + iǫ)
, (4.7)

=
4
[

−α2ξsTA + zTB

]

αᾱξs2zz̄ (x− ξ + iǫ) (x+ ξ + iǫ)
.

We introduced the two tensor structures that will appear in chiral-even diagrams in the

vector sector:

TA = (εq⊥ · ε∗k⊥) ,
TB = (εq⊥ · p⊥)(p⊥ · ε∗k⊥). (4.8)

Similarly one can write in the axial sector:

T q CE
A (B1) =

1

i

tr(tata)

(4N)2
fρ φ||(z) (−ieQq)

2 (−ig)2 i2 (−i)

× trD

[

p̂ρε̂
∗
k

k̂ + zp̂ρ
(k + zpρ)2 + iǫ

γµ
q̂ + (x+ ξ)p

(q + (x+ ξ)p)2 + iǫ
ε̂q p̂ γ

5 γµ
1

(z̄pρ + (x− ξ)p)2 + iǫ

]

× 2

s
ū(p2, λ

′)

[

γ5 n̂ H̃q(x, ξ, t)− n ·∆
2m

γ5 Ẽq(x, ξ, t)

]

u(p1, λ) (4.9)

= Cq CE trAD [B1] φ||(z)
2

s
ū(p2, λ

′)

[

γ5 n̂ H̃q(x, ξ, t)− n ·∆
2m

γ5 Ẽq(x, ξ, t)

]

u(p1, λ) ,

with

trAD [B1] = trD

[

p̂ρε̂
∗
k

k̂ + zp̂ρ
(k + zpρ)2+iǫ

γµ
q̂ + (x+ ξ)p

(q + (x+ ξ)p)2 + iǫ
ε̂q p̂ γ

5 γµ
1

(z̄pρ + (x− ξ)p)2+iǫ

]

= − 8i

ααρ

[

α (εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ − (α+ 2zαρ) (ε
∗
k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥

]

((k + zpρ)2 + iǫ)((q + (x+ ξ)p)2 + iǫ)((z̄pρ + (x− ξ)p)2 + iǫ)

=
−4i [(α+ 2ᾱz)TA5

− αTB5
]

αᾱ2ξs3zz̄ (x− ξ + iǫ) (x+ ξ + iǫ)
, (4.10)

where we introduced the two tensor structures which will appear in chiral-even diagrams

in the axial sector:

TA5
= (p⊥ · ε∗k⊥) ǫn p εq⊥ p⊥ ,

TB5
= (p⊥ · εq⊥) ǫn pε∗k⊥ p⊥ . (4.11)
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The chiral-odd (CO) scattering amplitude involving quark of flavor q (q = u, d) corre-

sponding to diagram B1 in Feynman gauge has the form:

T q CO(B1) = − 1

i

tr(tata)

(8N)2
i 2f⊥

ρ φ⊥(z) (−ieQq)
2 (−ig)2 i2 (−i)

×trD

[

p̂ρε̂
∗
ρε̂

∗
k

(k̂ + zp̂ρ)

(k + zpρ)2 + iǫ
γµ

q̂ + (x+ ξ)p

(q + (x+ ξ)p)2 + iǫ
ε̂q p̂ γ⊥j γµ

1

(z̄pρ + (x− ξ)p)2 + iǫ

]

×2

s
ū(p2, λ

′)
[

σnjHq
T (x, ξ, t)

]

u(p1, λ)

= Cq CO trCO
D [B1]j φ⊥(z)

2

s
ū(p2, λ

′)
[

iσnjHq
T (x, ξ, t)

]

u(p1, λ) (4.12)

where

Cq CO = −2

9
f⊥
ρ αem αs π

2Q2
q (4.13)

is a common coefficient for all diagrams involving chiral-odd DA and GPD, and

trCO
D [B1]j = (4.14)

= trD

[

p̂ρε̂
∗
ρε̂

∗
k

(k̂ + zp̂ρ)

(k+zpρ)2+iǫ
γµ

q̂ + (x+ ξ)p

(q+(x+ξ)p)2+iǫ
ε̂q p̂ γ⊥j γµ

1

(z̄pρ+(x−ξ)p)2+iǫ

]

,

includes all non trivial factors (vertices as well as quark and gluon propagators) of the hard

part of diagram B1. The calculation of traces over γ-matrices leads to the expression

trCO
D [B1]j =

8s
[

(q · p)εq⊥ j

(

pρ · ε∗k ε∗ρ · k − sξ ε∗k · ε∗ρ
)

− ǫk ε∗k pρ ε∗ρ ǫq εq p νg⊥νj

]

((k + zpρ)2 + iǫ) ((z̄pρ + (x− ξ)p)2 + iǫ)((q + (x+ ξ)p)2 + iǫ)

=
TB⊥j

2ᾱξs3zz̄ (x+ ξ + iǫ) (x− ξ + iǫ)
. (4.15)

Here TB⊥j is one of the two tensor structures which will appear in chiral-odd diagrams,

T i
A⊥ ≡ (p · k) εi∗k⊥

[

(εq · pρ) (q · ε∗ρ)− (q · pρ) (εq · ε∗ρ)
]

− ǫpρ ε
∗
ρ q εq ǫp ν k ε∗kgi⊥ν

=
−8s

ᾱ

{

αεi∗k⊥
[

−2αξ
(

p · ǫ∗ρ
)

(p⊥ · εq⊥) + (p⊥ · εq⊥)
(

p⊥ · ε∗ρ⊥
)

+ αᾱξs
(

εq⊥ · ε∗ρ⊥
)]

−ᾱεi∗ρ⊥ [α (α− 2) ξs (εq⊥ · ε∗k⊥)− (p⊥ · εq⊥) (p⊥ · ε∗k⊥)] (4.16)

+pi⊥
[

−2α2ξpi⊥
(

p · ǫ∗ρ
)

(εq⊥ · ε∗k⊥) +
(

p⊥ · ε∗ρ⊥
)

(εq⊥ · ε∗k⊥)− ᾱ
(

ε∗k⊥ · ε∗ρ⊥
)

(p⊥ · εq⊥)
]

+εiq⊥
[

2α2ξ
(

p · ǫ∗ρ
)

(p⊥ · ε∗k⊥)−
(

p⊥ · ε∗ρ⊥
)

(p⊥ · ε∗k⊥) + αᾱ (α− 2) ξs
(

ε∗k⊥ · ε∗ρ⊥
)]}

,

the other one being

T i
B⊥ ≡ (q · p) εiq⊥

[

(pρ · ε∗k) (ε∗ρ · k)− sξ (ε∗k · ε∗ρ)
]

− ǫk ε∗k pρ ε∗ρ ǫq εq p νgi⊥ν (4.17)

=
8s

αᾱ

{

ᾱεi∗ρ⊥ [(p⊥ · εq⊥) (p⊥ · ε∗k⊥)− α (2α− 1) ξs (εq⊥ · ε∗k⊥)]

+αεi∗k⊥
[

ᾱ (2α− 1) ξs
(

εq⊥ · ε∗ρ⊥
)

+ 2ξ
(

p · ǫ∗ρ
)

(p⊥ · εq⊥) + (p⊥ · εq⊥)
(

p⊥ · ε∗ρ⊥
)]

+εiq⊥
[

2αξ
(

p · ǫ∗ρ
)

(p⊥ · ε∗k⊥)−
(

p⊥ · ε∗ρ⊥
)

(p⊥ · ε∗k⊥)− αᾱξs
(

ε∗k⊥ · ε∗ρ⊥
)]

+pi⊥
[

2αξ
(

p · ǫ∗ρ
)

(εq⊥ · ε∗k⊥)− α
(

p⊥ · ε∗ρ⊥
)

(εq⊥ · ε∗k⊥)− ᾱ
(

εq⊥ · ε∗ρ⊥
)

(p⊥ · ε∗k⊥)
]}

.
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Here, we expressed these two tensor structures in terms of the transverse polarization

vectors and of (p · ερ), using eqs. (2.20)–(2.22), for later convenience.

At the dominant twist, the sum over the transverse polarizations of the ρ meson can

be written as
∑

pol

εµρε
ν∗
ρ = −gµν +

pµρpνρ
m2

ρ

, (4.18)

when computing the square of the chiral odd amplitude. The second term of this sum,

which arises mainly from the longitudinal polarization, does not contribute at leading

twist. We thus note that (p · ερ) terms in the tensor structures will not contribute to the

cross section since when summed over the transverse polarizations at the dominant twist

they will produce terms involving the scalar product of p either with a transverse vector

or with itself, which is null in both cases.

In a similar way we obtain the expressions for the remaining independent diagrams:

A1, A2, A3, A4, A5, B2, B3, B4, B5 in the chiral-even sector and A3, A4 and B5 in the

chiral-odd sector. We show these results in appendix A.

The integral with respect to z is trivially performed in the case of a DA expanded in

the basis of Gegenbauer polynomials. The expressions for the case of two asymptotical DAs

φ‖ and φ⊥, which we only consider in the present article, are given explicitly in appendix B,

and expressed as linear combination of building blocks.

The integration with respect to x, for a given set of GPDs, (which can be our model

described in section 3 or any other model), is then reduced to the numerical evaluation of

these building block integrals.

4.2 Square of M‖ and M⊥

In the forward limit ∆⊥ = 0 = P⊥, one can show that the squares of M‖ and of M⊥ read

after summing over nucleon helicities:

Mq
‖M

q′∗
‖ ≡

∑

λ′, λ

Mq
‖(λ, λ

′)Mq′∗
‖ (λ, λ′) (4.19)

= 8(1− ξ2)
(

Hq(ξ, t)Hq′∗(ξ, t) + H̃q(ξ, t)H̃q′∗(ξ, t)
)

−4 ξ2
(

Eq(ξ, t)Eq′∗(ξ, t) + Ẽq(ξ, t)Ẽq′∗(ξ, t)
)

−8 ξ2
(

Hq(ξ, t)Eq′∗(ξ, t) +Hq′∗(ξ, t)Eq(ξ, t) + H̃q(ξ, t)Ẽq′∗(ξ, t) + H̃q′∗(ξ, t)Ẽq(ξ, t)
)

,

and

Mq
⊥M

q′∗
⊥ ≡

∑

λ′, λ

Mq
⊥(λ, λ

′)Mq′∗
⊥ (λ, λ′) (4.20)

= 8

[

−(1−ξ2)Hq i
T (ξ, t)Hq′j ∗

T (ξ, t)− ξ2

1−ξ2
[ξ Eq i

T (ξ, t)−Ẽq i
T (ξ, t)][ξ Eq′j∗

T (ξ, t)−Ẽq′j∗
T (ξ, t)]

+ ξ
{

Hqi
T (ξ, t)[ξ E

q′j
T (ξ, t)− Ẽq′j

T (ξ, t)]∗ +Hq′i∗
T (ξ, t)[ξ Eqj

T (ξ, t)− Ẽqj
T (ξ, t)]

}]

g⊥ij .
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For moderately small values of ξ, these become:

Mq
‖M

q′∗
‖ = 8

(

Hq(ξ, t)Hq′∗(ξ, t) + H̃q(ξ, t) H̃q′∗(ξ, t)
)

, (4.21)

Mq
⊥M

q′∗
⊥ = −8Hq i

T (ξ, t)Hq′j ∗
T (ξ, t) g⊥ij . (4.22)

Hence we will restrict ourselves to Hq, H̃q and Hq
T to perform our estimates of the cross

section.4

5 Unpolarized differential cross section and rate estimates

5.1 From amplitudes to cross sections

We isolate the tensor structures of the form factors as

Hq(ξ, t) = Hq
A(ξ, t)TA +Hq

B(ξ, t)TB , (5.1)

H̃q(ξ, t) = H̃q
A(ξ, t)TA5

+ H̃q
B(ξ, t)TB5

, (5.2)

Hq i
T (ξ, t) = Hq

TA
(ξ, t)T i

A⊥ +Hq
TB

(ξ, t)T i
B⊥. (5.3)

These coefficients can be expressed in terms of the sum over diagrams of the integral of the

product of their traces, of GPDs and DAs, as defined and given explicitly in appendix B.

They reads

Hq
A =

1

s
Cq CEN q

A , (5.4)

Hq
B =

1

s2
Cq CEN q

B , (5.5)

H̃q
A5

=
1

s3
Cq CEN q

A5
, (5.6)

H̃q
B5

=
1

s3
Cq CEN q

B5
, (5.7)

and

Hq
T A =

1

s3
Cq CON q

T A , (5.8)

Hq
T B =

1

s3
Cq CON q

T B . (5.9)

For the specific case of our process, it is convenient to define the total form factors as

follows:

H(ξ, t) ≡ Hu(ξ, t)−Hd(ξ, t) , (5.10)

H̃(ξ, t) ≡ H̃u(ξ, t)− H̃d(ξ, t) , (5.11)

Hi
T (ξ, t) ≡ Hu i

T (ξ, t)−Hd i
T (ξ, t) , (5.12)

4In practice, we keep the first line in the r.h.s. of eq. (4.19) and the first term in the r.h.s. of eq. (4.20).

– 16 –



J
H
E
P
0
2
(
2
0
1
7
)
0
5
4

from which we isolate the tensor structures

H(ξ, t) = HA(ξ, t)TA +HB(ξ, t)TB , (5.13)

H̃(ξ, t) = H̃A5
(ξ, t)TA5

+ H̃B5
(ξ, t)TB5

, (5.14)

Hi
T (ξ, t) = HTA

(ξ, t)T i
A⊥ +HTB

(ξ, t)T i
B⊥. (5.15)

In this paper, we are interested in the unpolarized cross section. As a result, we will

need the squared form factors after summation over all the polarizations (outgoing γ and

ρ, incoming γ):

|H(ξ, t)|2 ≡
∑

λkλq

H(ξ, t, λk, λq)H(ξ, t, λk, λq) (5.16)

= 2|HA(ξ, t)|2 + p4⊥|HB(ξ, t)|2 + p2⊥ [HA(ξ, t)H∗
B(ξ, t) +H∗

A(ξ, t)HB(ξ, t)] ,

|H̃(ξ, t)|2 ≡
∑

λkλq

H̃(ξ, t, λk, λq) H̃∗(ξ, t, λk, λq) (5.17)

=
s2p4⊥
4

(

|H̃A5
(ξ, t)|2 + |H̃B5

(ξ, t)|2
)

,

|HT (ξ, t)|2 ≡ −g⊥i j

∑

λkλqλρ

Hi
T (ξ, t, λk, λq, λρ)Hj∗

T (ξ, t, λk, λq, λρ) (5.18)

= 512ξ2s4
(

α4|HTA
(ξ, t)|2 + |HTB

(ξ, t)|2
)

.

We now define the averaged amplitude squared |M|2, which includes the factor 1/4

coming from the averaging over the polarizations of the initial particles. Collecting all

prefactors (including a factor of 22 for the missing half of the set of diagrams and a factor

of 1/2 from the square of the ρ0 wave function, see eq. (4.1)), which reads

1

s2
228(1− ξ2)

(

Cq CE(OD)
)2 1

23
,

we have the net result (factorizing out the coefficient for the u−quark), for the chiral-even

case

|MCE |2 = 4

s2
(1− ξ2)

(

CuCE
)2

{

2

∣

∣

∣

∣

Nu
A − 1

4
Nd

A

∣

∣

∣

∣

2

+
p4⊥
s

2 ∣
∣

∣

∣

Nu
B − 1

4
Nd

B

∣

∣

∣

∣

2

(5.19)

+
p2⊥
s

([

Nu
A − 1

4
Nd

A

] [

Nu
B − 1

4
Nd

B

]∗
+ c.c.

)

+
p4⊥
4s2

∣

∣

∣

∣

Ñu
A − 1

4
Ñd

A

∣

∣

∣

∣

2

+
p4⊥
4s2

∣

∣

∣

∣

Ñu
B − 1

4
Ñd

B

∣

∣

∣

∣

2
}

,

while for the chiral-odd case, we get

|MCO|2 = 2048

s2
ξ2(1− ξ2)

(

CuCO
)2

{

α4

∣

∣

∣

∣

Nu
T A − 1

4
Nd

T A

∣

∣

∣

∣

2

+

∣

∣

∣

∣

Nu
T B − 1

4
Nd

T B

∣

∣

∣

∣

2
}

. (5.20)

The differential cross section as a function of t, M2
γρ, −u′ then reads

dσ

dt du′ dM2
γρ

∣

∣

∣

∣

−t=(−t)min

=
|M|2

32S2
γNM2

γρ(2π)
3
. (5.21)
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Figure 6. Differential cross section for a photon and a longitudinally polarized ρ meson production,

for the proton (left) and the neutron (right), at M2
γρ = 4 GeV2. Both vector and axial GPDs are

included. In black (middle curves) the contributions of both u and d quarks, in blue (top curves)

the contribution of the u quark, and in green (bottom curves) the contribution of the d quark.

Solid: “valence” model, dotted: “standard” model. This figure shows the dominance of the u-quark

contribution due to the charge effect. Note that the interference between u−quark and d−quark

contributions is important and negative.

5.2 Numerical evaluation of the scattering amplitudes and of cross sections

Above, we have reduced the calculation of the cross sections, see eq. (5.21), to the numerical

evaluation of the coefficients (B.41), (B.42), (B.22), (B.23), (B.24), (B.25). These coeffi-

cients are expressed as linear combinations of numerical integrals, listed in appendix B.

Our central set of curves, displayed below, is obtained for SγN = 20 GeV2, with M2
γρ

varying in the range 2.10 GeV2 < M2
γρ < 9.47 GeV2 (this latter value comes from the van-

ishing of the phase-space in −t, as shown in appendix D, see eq. (D.9)) with a 0.1 GeV2 step.

For each of these M2
γρ values, we chose 100 values of −u′, linearly varying from

(−u′)min = 1 GeV2 up to (−u′)maxMax as defined by eq. (D.5).

For each of these couples of values of (M2
γρ,−u′ , ) we compute each of the numerical

coefficients Nu
A, N

d
A, N

u
B, N

d
B and Ñu

A, Ñ
d
A, Ñ

u
B, Ñ

d
B for the chiral-even case, as well as the

coefficients Nu
T A, N

d
T A, N

u
T B, N

d
T B for the chiral-odd case, using the sets of GPDs indexed

by M2
γρ and computed as explained in section 3.2.

This whole set of dimensionless numerical coefficients allows us to perform the various

phenomenological studies discussed in the next subsections.

5.3 Fully differential cross sections

Let us first discuss chiral-even results, showing in parallel the proton and neutron target

cases.

We first analyze the various contributions to the differential cross section in the specific

kinematics: M2
γρ = 4GeV2, SγN = 20 GeV2, −t = (−t)min as a function of −u′. The

dependency with respect to SγN will be discussed in section 5.5.
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Figure 7. Differential cross section for a photon and a longitudinally polarized ρ meson production,

for the proton (left) and the neutron (right), at M2
γρ = 4 GeV2. Both u and d quark contributions

are included. In black (two top curves) the contributions of both vector and axial amplitudes, in

blue (middle curve) the contribution of the vector amplitude, and in green (two bottom curves)

the contribution of the axial amplitude. Solid: “valence” model, dotted: “standard” model. This

figure shows the dominance of the vector GPD contributions. There is no interference between the

vector and axial amplitudes.
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Figure 8. Differential cross section for a photon and a longitudinally polarized ρ meson production,

for the proton (left) and the neutron (right), as a function of −u′, for M2
γρ = 4 GeV2. The various

curves differ with respect to the ansätze for the PDFs q, and thus for the GPDsHu andHd: GRV-98

(solid black), MSTW2008lo (long-dashed blue), MSTW2008nnlo (short-dashed red), ABM11nnlo

(dotted-dashed green), CT10nnlo (dotted brown).
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Figure 9. Differential cross section for a photon and a longitudinally polarized ρ meson production,

for the proton (left) and the neutron (right), as a function of −u′, for M2
γρ = 3, 4, 5, 6 GeV2 (resp.

in black, red, blue, green, from top to down). Solid: “valence” model, dotted: “standard” model.

In figure 6, we show the relative contributions of the u− and d−quark GPDs (adding

the vector and axial contributions), which interfere in a destructive way because of the

flavor structure of the ρ0 = uū−dd̄√
2

. The d−quark contribution is of course more important

for the neutron target case.

In figure 7, we show the relative contributions of the GPDs H and H̃ involving vector

and axial correlators. The vector contribution dominates. The two parameterizations of

the axial GPD H̃q(x, ξ, t) give similar results for proton target and slightly different results

for neutron target, the one corresponding to the unbroken sea (“standard”) scenario being

less negligible than the other one (“valence”). As a simple calculation shows, there is no

interference effect between H and H̃ contributions due to lack of a sufficient number of

transverse momenta in the tensor structures.

In figure 8 we display the effect on the differential cross section of changing the ansätze

for the PDFs q, and thus for the GPDsHu andHd. For H̃u and H̃d we rely on the “valence”

scenario for ∆q. This figure shows that the effect is moderate, of the order of 10%. In the

rest of this paper we will neglect this variation, and we will only use the uncertainty on H̃

to get an order of magnitude of the precision of our predictions for the cross-sections.

Figure 9 shows the dependence on M2
γρ. The production of the γρ pair with a large

value of M2
γρ is severely suppressed as anticipated. However, the −u′ range allowed by our

kinematical requirements is narrower for smaller values of M2
γρ. The two curves for each

value of M2
γρ correspond to the two parameterizations of H̃(x, ξ, t), the lines corresponding

to the unbroken sea scenario lying above the other one.
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Figure 10. Differential cross section dσ/dM2
γρ for a photon and a longitudinally polarized ρ meson

production, on a proton (left) or neutron (right) target. The values of SγN vary in the set 8, 10,

12, 14, 16, 18, 20 GeV2. (from 8: left, brown to 20: right, blue), covering the JLab energy range.

We use here the “valence” scenario.

5.4 Single differential cross sections

To get an estimate of the total rate of events of interest for our analysis, we first get the

M2
γρ dependence of the differential cross section integrated over u′ and t,

dσ

dM2
γρ

=

∫ (−t)max

(−t)min

d(−t)

∫ (−u′)max

(−u′)min

d(−u′) F 2
H(t)× dσ

dt du′dM2
γρ

∣

∣

∣

∣

−t=(−t)min

. (5.22)

Since this is mostly an order of magnitude estimate, we use a simple universal dipole

factorized t−dependence of GPDs,

FH(t) =
C2

(t− C)2
, (5.23)

with C = 0.71 GeV2. For a more precise study dedicated to an impact picture of the nu-

cleon [36–41], a more sophisticated approach [42] should be used. The domain of integration

over u′ and t is discussed in detail in appendix D.

The obtained differential cross section dσ/dM2
γρ is shown in figure 10 for various values

of SγN covering the JLab-12 energy range. These cross sections show a maximum around

M2
γρ ≈ 3 GeV2, for most energy values.

5.5 Integrated cross sections and variation with respect to SγN

For SγN = 20 GeV2, the integration over M2
γρ of our above results within our allowed

kinematical region, here 2.10 GeV2 < M2
γρ < 9.47 GeV2 (see appendix D), allows

to obtain the cross sections σproton
odd ≃ 0.54 pb and σproton

even ≃ 0.76 nb for the proton, and

σneutron
odd ≃ 0.42 pb and σneutron

even ≃ 0.084 nb for the neutron.

The variation with respect to SγN could be obtained by following the whole chain of

steps described above. However, this can be obtained almost directly. Our aim is now to

show that the only knowledge of the set of numerical results computed for a given value
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of SγN , which we take in practice as SγN = 20 GeV2, is sufficient to deduce a whole set of

results for any arbitrary smaller values of S̃γN . The key points are the following.

First, the amplitudes only depend on α, ξ and on the GPDs (which are computed

as grids indexed by ξ). Since α = −u′/M2
γρ , it is thus possible to use exactly the set of

already computed amplitudes if one select the same set of (α, ξ)

Second, one should note that to a given value of

ξ =
M2

γρ

2(SγN −M2)−M2
γρ

(5.24)

corresponds an infinite set of couples of values (M2
γρ, SγN ) .

In practice, we use our set of results obtained for SγN = 20 GeV2 , indexed by M2
γρ

and −u′.
Then, choosing a new value of S̃γN , we obtain a set of values of M̃2

γρ indexed by the

set of values of M2
γρ (which vary from 2.2 up to 10GeV2, with a 0.1GeV2 step), through

the relation

M̃2
γρ = M2

γρ

S̃γN −M2

SγN −M2
, (5.25)

which is deduced from eq. (5.24), and for each of these M̃2
γρ a set of values of −ũ′ , using

the relation

− ũ′ =
M̃2

γρ

M2
γρ

(−u′) . (5.26)

which gives the indexation of allowed values of −ũ′ as function of known values of (−u′).
It is now easy to check that this mapping from a given SγN to a lower S̃γN provides a

set of (M̃2
γρ,−ũ′) which exhaust the required domain.

Consider first the range in M̃2
γρ. From eq. (D.3), which defines the minimal value of

M2
γρ, independent of SγN , this value is mapped to a smaller value than required, when

passing from SγN to S̃γN . From eq. (D.9), it is possible to show that M2
γρMax is mapped to

a value M̃2
γρMax slightly larger than the new required value M ′2

γρMax (this comes from the

little dependency of M̄ with respect to SγN ). Thus, the mapping covers the whole required

domain in M̃2
γρ (with a negligible loss of precision since a few points are mapped outside

the domain and thus cut).

Now, let us consider the range in −u′. Again, since the minimal value (−u′)min is

fixed, this value is mapped to a smaller value than required, when passing from SγN to

S̃γN . Concerning the maximal value (−u′)maxMax, from eq. (D.5) it is a linear function of

M2
γρ of the form

(−u′)maxMax = −A+M2
γρ , (5.27)

with A > 0. The mapping of M2
γρ leads to the maximal required value

(−u′)′maxMax = −A+ M̃2
γρ . (5.28)

But the mapping in −u′ will transform (−u′)maxMax to

(−ũ′)maxMax =
M̃2

γρ

M2
γρ

(−A+M2
γρ) = −A

M̃2
γρ

M2
γρ

+ M̃2
γρ , (5.29)
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Figure 11. Integrated cross section for a photon and a longitudinally polarized ρmeson production,

on a proton (left) or neutron (right) target. The solid red curves correspond to the “valence” scenario

while the dotted blue curves correspond to the “standard” one.

which shows that the maximal value (−ũ′)maxMax of (−ũ′) obtained from the mapping is

larger than the needed (−u′)′maxMax, since −A < −A
M̃2

γρ

M2
γρ

< 0.

We have thus shown that one can obtain the dependency of amplitudes and thus of cross

sections for the whole range in SγN from a single set of computation (at SγN = 20 GeV2),

thus avoiding the use of a very large amount of CPU time.

Then, for the obtained cross section which was obtained at a given value of S̃γN , the

integration over the (−t,−u′) phase-space and then over M2
γρ is performed similarly to

SγN = 20 GeV2 case. One finally gets the integrated cross section shown in figure 11 for

both the proton and neutron target, and for both parameterization of the axial GPDs.5

These cross sections prove that our process is measurable in the typical kinematical condi-

tions and integrated luminosity of a JLab experiment. Counting rates on a proton target

are predicted to be one order of magnitude larger than on a neutron target.

5.6 Results for the chiral-odd case

Let us now pass to the chiral-odd case, where a transversely polarized ρ meson is produced

together with the photon. This process now probes the chiral-odd transversity quark

distributions which are connected to the transversity PDFs.

In order to evaluate the theoretical uncertainty in the chiral-odd sector, for each of

the two parameterizations of the transversity PDFs, we use a set of 1500 trials with their

value of the χ2 test, as provided by the authors of ref. [35], between −2σ and +2σ. Their

9-parameters χ2 distribution (see the appendix of ref. [43] for details) is given by

Pχ2(x) =
e−x/2x7/2

105
√
2π

(5.30)

We further renormalize this distribution in order to include on one hand the fact that the

1500 trials only cover the [−2σ,+2σ] interval, and on the other hand discretization cor-

5A quadratic extrapolation is performed for the small domain above SγN = 20 GeV2.
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Figure 12. Differential cross section for a photon and a transversally polarized ρmeson production,

for the proton (left) and the neutron (right), as a function of −u′, for M2
γρ = 3, 4, 5, 6 GeV2 (resp. in

black, red, blue, green, from left to right). The error bands on the l.h.s. panel (proton) correspond to

the procedure discussed in the text. For the neutron, we only show the results for the “valence” case.

rections. We then create a histogram of these configurations, with a distribution weighted

by the above described renormalized χ2 distribution. This weighted histogram allows us

to finally compute the −2σ and +2σ values of the cross-section. We perform this analysis

at −u′ = 1 GeV2 and for three typical values of M2
γρ (2.2, 4, 6 GeV2), for the “standard”

scenario. We then extract the two typical configurations which gives cross-section close

to the −2σ and +2σ values, which we now use both for the “standard” and “valence”

scenarios in order to evaluate the typical theoretical uncertainty.

Figure 12 shows the M2
γρ dependence of this cross section, both for the proton and

the neutron. Similarly to the chiral-even case, the production of the γρ pair with a large

value of M2
γρ is severely suppressed. Similarly, the −u′ range allowed by our kinematical

requirements is narrower for smaller values of M2
γρ. Comparing the chiral-even case, see

figures 6, 7, 9 and the chiral-odd case, see figure 12, one should note the very different

behavior of the differential cross section when varying −u′. In the case of a proton probe,

we show in figure 12 (left) as error bands the maximal and minimal values of the cross-

section (the maximal values are obtained with the “standard” trial at +2σ and the minimal

values with the “valence” trial at −2σ).

Similarly to the chiral-even case, we perform the integration in the (−t,−u′) phase-

space. The obtained differential cross section dσodd/dM
2
γρ is shown in figure 13 for SγN =

20 GeV2, with the different sets of results depending on the sets of transversity PDFs which

we use, as explained above.

In figure 14, we show the differential cross section dσodd/dM
2
γρ for various values of

SγN covering the JLab-12 energy range. These cross sections show a maximum around a

similar range of M2
γρ ≈ 3 GeV2, for most energy values.

Finally, the dependency of the integrated cross section with respect to SγN is shown

in figure 15, both for proton and neutron, for the two “valence” and “standard” scenarios.
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Figure 13. Differential cross section dσ/dM2
γρ for a photon and a transversally polarized ρ meson

production on a proton target for SγN = 20 GeV2. The various curves differ with respect to the

ansätze for the PDFs δq used to build the GPDHT . The dotted curves correspond to the “standard”

polarized PDFs while the solid curves use the “valence” polarized PDFs. The deep-blue and red

curves are central values while the light-blue and orange ones are the results obtained at ±2σ.
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Figure 14. Differential cross section dσ/dM2
γρ for a photon and a transversally polarized ρ meson

production on a proton target. The values of SγN vary in the set 8, 10, 12, 14, 16, 18, 20 GeV2.

(from 8: left, brown to 20: right, blue), covering the JLab energy range. We use here the “valence”

scenario.

6 Counting rates

Using the Weizsäcker-Williams distribution, one can obtain counting rates. This distribu-

tion is given by [44, 45]

f(x) =
αem

2π







2m2
ex

(

1

Q2
max

− 1− x

m2
ex

2

)

+

(

(1− x)2 + 1
)

ln Q2
max(1−x)
m2

ex
2

x







, (6.1)

– 25 –



J
H
E
P
0
2
(
2
0
1
7
)
0
5
4

5 10 15 20

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

SγN (GeV2)

σodd (pb)

5 10 15 20

0 .1

0 .2

0 .3

0 .4

SγN (GeV2)

σodd (pb)

Figure 15. Integrated cross section for a photon and a transverse ρ meson production, on a

proton (left) or neutron (right) target, as a function of SγN . The solid red curves correspond to the

“valence” scenario while the dotted blue curves correspond to the “standard” one.

where x is the fraction of energy lost by the incoming electron, me is the electron mass and

Q2
max is the typical maximal value of the virtuality of the echanged photon, which we take

to be 0.1GeV2. Using the expression for x as a function of the incoming electron energy Ee

x[SγN ] =
SγN −M2

2EeM
, (6.2)

one can easily obtain integrated cross sections at the level of the eN process, using the

relation

σeN =

∫

σγN (x) f(x) dx =

∫ SγN max

SγN crit

1

2EeM
σγN (x[SγN ]) f(x[SγN ]) dSγN . (6.3)

The shape of the integrand

F (SγN ) =
1

2EeM
σγN (x[SγN ]) f(x[SγN ]) (6.4)

of eq. (6.3) is shown in figure 16.

Up to now we discussed photoproduction of γρ pair without paying attention to the ori-

gin of the quasi-real initial photon. If it is emitted by a lepton beam, like in electroproduc-

tion of photon via DVCS, one should also consider Bethe-Heitler-type processes, in which

the final real photon is emitted by the lepton beam. Let us however note that this mecha-

nism involves an off-shell photon of momentum q, since in this case q2 = (pρ+∆)2 ≈ −2ξsαρ

is large. Thus the Bethe-Heitler mechanism involves scattering amplitudes with four hard

propagators, whereas the photoproduction mechanism considered so far involves only three

hard propagators. We therefore expect the Bethe-Heitler contribution to be suppressed. A

more precise discussion is left for the future.

At this point, we did not include any experimental constraint on the angular coverage

of the final state particles. We discuss this issue in appendix E, taking the constraints of

JLab Hall B and showing that this does not affect our predictions. We also show that a
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Figure 16. Shape of the integrand of σeN , as a function of the invariant mass of the hadronic

produced state, on a proton target. Left: longitudinally polarized ρ meson production. Right:

transverse ρ meson production. In solid-red: “valence”. In dotted-blue: “standard”.

binning in the outgoing photon angle could help to enhance the chiral-odd versus chiral-

even ratio, in particular for observables sensitive to the interference of the two amplitudes,

which are beyond the scope of the present paper.

We can now give our predictions for the counting rates. With an expected luminosity

L = 100 nb−1s−1 we obtain for 100 days of run: 7.5 103 ρT and 6.8 106 ρL .

7 Conclusion

The analysis of the process γN → γρ0N ′ in the generalized Bjorken kinematics where

GPD factorization is expected to hold in a collinear QCD approach has shown interesting

features.

Firstly, although any helicity state of the vector meson is populated at the same level

in the twist expansion of the amplitude, the production of longitudinally polarized vector

mesons turns out to be numerically dominant. This mostly comes from the difference in

the normalization of chiral odd versus chiral even GPDs, as shown in our modelization

(see figures 2–4). If our model underestimates the chiral odd GPDs (which might well be

the case, since the constraints on the transversity distributions are still quite indirect), the

data rates for ρT production will be higher.

Secondly, the magnitude of the cross section is large enough for the process to be

analyzed in a quite detailed way by near-future experiments at JLab with photon beams

originating from the 12GeV electron beam. Detectors in Hall B, C and D seem to be

perfectly suited for this study. A more detailed study is needed to decide on the feasibility

of the experiment when taking into account of all detection efficiencies.

We restricted our analysis to unpolarized cross sections; this may be complemented by

a computation of various polarization observables.
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A NLO calculation should first confirm the validity of the factorization hypothesis for

this process, and estimate the effects on the amplitude. Let us stress that, contrary to

the DVCS (and TCS) case where gluon contributions turn out to be important at this

level [23, 46], the charge conjugation property of the process studied here protects us from

these contributions. This does not exempt us to perform such a next to leading order

computation, in the spirit of the study of refs. [47, 48] in the γγ channel, but this may help

NLO corrections to be under control without the necessity of a resummation procedure.

To conclude, the cross section of our process is a factor 400 more than the γP → Pe+e−

process, for similar values of the hard scale, for which experimental proposals have been

approved at JLab, Thus, the study of our process appears feasible experimentally and

promises to bring new important constraints on GPD physics.

We would like to mention that a similar study could be performed in principle in the

Compass experiment at CERN where SγN ∼ 200GeV2 and at LHC in ultraperipheral colli-

sions [49], as well as in future electron proton collider projects like EIC [50] and LHeC [51].
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Passek-Kumerički, Franck Sabatié and Daniel Tapia-Takaki. This work is partly sup-

ported by grant No 2015/17/B/ST2/01838 by the National Science Center in Poland, by

the French grant ANR PARTONS (Grant No. ANR-12-MONU-0008-01), by the COPIN-

IN2P3 agreement, by the Labex P2IO and by the Polish-French collaboration agreement

Polonium.

A Contributions of the various diagrams

For completeness, we present here the formulae for the contributions of the various diagrams

of figure 5.

A.1 Chiral-even sector

A.1.1 Vector case

trVD [A1] = trD

[

p̂ρε̂
∗
k

zp̂ρ + k̂

(zpρ + k)2 + iǫ
ε̂q

zp̂ρ + k̂ − q̂

(zpρ + k − q)2 + iǫ
γµ p̂ γµ

1

(−z̄pρ − (x− ξ)p)2 + iǫ

]

=
8z̄sᾱ

[

2z−1
α (εq⊥ · pρ⊥)(ε∗k⊥ · pρ⊥)− sξ(εq⊥ · ε∗k⊥)

]

((zpρ + k)2 + iǫ)((zpρ + k − q)2 + iǫ)((−z̄pρ − (x− ξ)p)2 + iǫ)
(A.1)

=
2 [αξsTA − (z − z̄)TB]

αᾱξ2s2zz̄ (x− ξ + iǫ)
,

trVD [A2] = trD

[

p̂ρε̂q
zp̂ρ − q̂

(zpρ − q)2 + iǫ
ε̂∗k

zp̂ρ + k̂ − q̂

(zpρ + k − q)2 + iǫ
γµ p̂ γµ

1

(−z̄pρ − (x− ξ)p)2 + iǫ

]
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=
8z̄sᾱ

[

2z−1
α (εq⊥ · pρ⊥)(ε∗k⊥ · pρ⊥) + sξα(εq⊥ · ε∗k⊥)

]

((zpρ − q)2 + iǫ)((zpρ + k − q)2 + iǫ)((−z̄pρ − (x− ξ)p)2 + iǫ)
(A.2)

=
2
[

α2ξsTA + (z − z̄)TB

]

α2ᾱξ2s2zz̄ (x− ξ + iǫ)
,

trVD [A3] = trD

[

p̂ρε̂q
zp̂ρ − q̂

(zpρ − q)2 + iǫ
γµ

(x+ ξ)p̂− k̂

((x+ ξ)p− k)2 + iǫ
ε̂∗k p̂ γµ

1

(z̄pρ + (x− ξ)p)2 + iǫ

]

=
8sα

[

− z
α(εq⊥ · pρ⊥) (ε∗k⊥ · pρ⊥)− sξ(εq⊥ · ε∗k⊥)

]

((zpρ − q)2 + iǫ)(((x+ ξ)p− k)2 + iǫ)((z̄pρ + (x− ξ)p)2 + iǫ)
(A.3)

=
−4 [αξsTA + zTB]

α2ᾱξs2zz̄ (x+ ξ − iǫ) (x− ξ + iǫ)
,

trVD [A4] =trD

[

p̂ρε̂q
zp̂ρ − q̂

(zpρ − q)2 + iǫ
γµp̂ε̂∗k

k̂ + (x− ξ)p̂

(k + (x− ξ)p)2 + iǫ
γµ

1

(zpρ − q − (x+ ξ)p)2+iǫ

]

=
8s [−z̄ (εq⊥ · pρ⊥) (ε∗k⊥ · pρ⊥)− sξ ααρ (εq⊥ · ε∗k⊥)]

((zpρ − q)2 + iǫ)((k + (x− ξ)p)2 + iǫ)((zpρ − q − (x+ ξ)p)2 + iǫ)
(A.4)

=
4 [αᾱξsTA + z̄TB]

α2ξs2z (x− ξ + iǫ) [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
,

trVD [A5] = trD

[

p̂ρε̂q
zp̂ρ − q̂

(zpρ − q)2 + iǫ
γµp̂γµ

−z̄p̂ρ − k̂

(−z̄pρ − k)2 + iǫ
ε∗k

1

(zpρ − q − (x+ ξ)p)2 + iǫ

]

=
8s

[

(z̄−z)(zᾱ−1)
α (εq⊥ · pρ⊥) (ε∗k⊥ · pρ⊥) + sξ α (εq⊥ · ε∗k⊥)

]

((zpρ − q)2 + iǫ)((−z̄pρ − k)2 + iǫ)((zpρ − q − (x+ ξ)p)2 + iǫ)
(A.5)

=
2
[

−α2ξsTA + (1− 2z) (1− ᾱz)TB

]

α2ξ2s2zz̄ [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
,

trVD [B2]

= trD

[

p̂ργ
µ q̂ + (x+ ξ)p̂− k̂

(q+(x+ξ)p−k)2+iǫ
ε̂∗k

q̂ + (x+ ξ)p̂

(q+(x+ξ)p)2+iǫ
ε̂q p̂ γµ

1

(−z̄pρ−(x−ξ)p)2+iǫ

]

=
4s2(x− ξ)ᾱ(εq⊥ · ε∗k⊥)

(q + (x+ ξ)p− k)2 + iǫ)((q + (x+ ξ)p)2 + iǫ)((−z̄pρ − (x− ξ)p)2 + iǫ)
(A.6)

=
4TA

ᾱz̄s (x+ ξ + iǫ) (x− ξ + iǫ)
,

trVD [B3]

= trD

[

p̂ργ
µ q̂ + (x+ ξ)p̂− k̂

(q+(x+ξ)p−k)2+iǫ
ε̂q

(x+ ξ)p̂− k̂

((x+ξ)p−k)2+iǫ
ε̂∗k p̂ γµ

1

(−z̄pρ−(x−ξ)p)2+iǫ

]

= − 4s2ᾱα(x− ξ)(εq⊥ · ε∗k⊥)
((q + (x+ ξ)p− k)2 + iǫ)(((x+ ξ)p− k)2 + iǫ)((−z̄pρ − (x− ξ)p)2 + iǫ)

(A.7)

=
4TA

ᾱz̄s (x+ ξ − iǫ) (x− ξ + iǫ)
,
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trVD [B4]

= trD

[

p̂ργ
µ q̂ + (x+ ξ)p̂

(q+(x+ξ)p)2+iǫ
ε̂qp̂ε̂

∗
k

(x− ξ)p̂+ k̂

((x−ξ)p+k)2+iǫ
γµ

1

(z̄pρ+k+(x−ξ)p)2+iǫ

]

=
8s2ξα(εq⊥ · ε∗k⊥)

((q + (x+ ξ)p)2 + iǫ)(((x− ξ)p+ k)2 + iǫ)((z̄pρ + k + (x− ξ)p)2 + iǫ)
(A.8)

=
8ξTA

(x− ξ + iǫ) (x+ ξ + iǫ) s [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
,

trVD [B5]

= trD

[

p̂ργ
µ q̂ + (x+ ξ)p̂

(q + (x+ ξ)p)2 + iǫ
ε̂qp̂γµ

−z̄p̂ρ − k̂

(−z̄pρ − k)2 + iǫ
ε̂∗k

1

(z̄pρ + k + (x− ξ)p)2 + iǫ

]

=
8s

[

z
α (εq⊥ · pρ⊥) (ε∗k⊥ · pρ⊥) + sξαρ (εq⊥ · ε∗k⊥)

]

((q + (x+ ξ)p)2 + iǫ)((−z̄pρ − k)2 + iǫ)((z̄pρ + k + (x− ξ)p)2 + iǫ)
, (A.9)

=
4 [αᾱξsTA + zTB]

αξs2z̄ (x+ ξ + iǫ) [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
.

A.1.2 Axial case

trAD [A1]

= trD

[

p̂ρε̂
∗
k

zp̂ρ + k̂

(zpρ + k)2 + iǫ
ε̂q

zp̂ρ + k̂ − q̂

(zpρ + k − q)2 + iǫ
γµ p̂ γ5 γµ

1

(−z̄pρ − (x− ξ)p)2 + iǫ

]

=
8i z̄α

[

(1− 2α)(εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ + (ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥
]

((zpρ + k)2 + iǫ)((zpρ + k − q)2 + iǫ)((−z̄pρ − (x− ξ)p)2 + iǫ)

=
2i [TA5

− (α− ᾱ)TB5
]

αᾱ2ξ2s3zz̄ (x− ξ + iǫ)
, (A.10)

trAD [A2]

= trD

[

p̂ρε̂q
zp̂ρ − q̂

(zpρ − q)2 + iǫ
ε̂∗k

zp̂ρ + k̂ − q̂

(zpρ + k − q)2 + iǫ
γµ p̂ γ5 γµ

1

(−z̄pρ − (x− ξ)p)2 + iǫ

]

= − 8iz̄
[

(εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ − 2−α
α (ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥

]

((zpρ − q)2 + iǫ)((zpρ + k − q)2 + iǫ)((−z̄pρ − (x− ξ)p)2 + iǫ)

=
2i [(α− 2)TA5

+ αTB5
]

α2ᾱ2ξ2s3zz̄ (x− ξ + iǫ)
, (A.11)

trAD [A3]

= trD

[

p̂ρε̂q
zp̂ρ − q̂

(zpρ − q)2 + iǫ
γµ

(x+ ξ)p̂− k̂

((x+ ξ)p− k)2 + iǫ
ε̂∗k p̂ γ

5 γµ
1

(z̄pρ + (x− ξ)p)2 + iǫ

]

=
8i

[(

−2z + 1
αρ

)

(εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ − 1
αρ

(ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥
]

((zpρ − q)2 + iǫ)(((x+ ξ)p− k)2 + iǫ)((z̄pρ + (x− ξ)p)2 + iǫ)

=
4i [TA5

− (1− 2ᾱz)TB5
]

α2ᾱ2ξs3zz̄ (x− ξ + iǫ) (x+ ξ − iǫ)
, (A.12)
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trAD [A4]

= trD

[

p̂ρε̂q
zp̂ρ − q̂

(zpρ − q)2 + iǫ
γµp̂γ5ε̂∗k

k̂ + (x− ξ)p̂

(k + (x− ξ)p)2 + iǫ
γµ

1

(zpρ − q − (x+ ξ)p)2 + iǫ

]

=
8i

[

(1− 2z) (εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ + (ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥
]

((zpρ − q)2 + iǫ)((k + (x− ξ)p)2 + iǫ)((zpρ − q − (x+ ξ)p)2 + iǫ)

=
4i [TA5

+ (1− 2z)TB5
]

α2ξs3z (x− ξ + iǫ) [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
, (A.13)

trAD [A5]

= trD

[

p̂ρε̂q
zp̂ρ − q̂

(zpρ − q)2 + iǫ
γµp̂ γ5 γµ

−z̄p̂ρ − k̂

(−z̄pρ − k)2 + iǫ
ε∗k

1

(zpρ − q − (x+ ξ)p)2 + iǫ

]

=
8i

[

2z(1−α)−1
1−α (εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ + 1+(1−α)(1−2z)

α(1−α) (ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥
]

((zpρ − q)2 + iǫ)((−z̄pρ − k)2 + iǫ)((zpρ − q − (x+ ξ)p)2 + iǫ)

=
2i [(2− α− 2ᾱz)TA5

− α (1− 2ᾱz)TB5
]

α2ᾱξ2s3zz̄ [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
, (A.14)

trAD [B2] = trD

[

p̂ρ γ
µ q̂ + (x+ ξ)p̂− k̂

(q + (x+ ξ)p− k)2 + iǫ
ε̂∗k

q̂ + (x+ ξ)p̂

(q + (x+ ξ)p)2 + iǫ
ε̂q p̂ γ

5 γµ

× 1

(−z̄pρ − (x− ξ)p)2 + iǫ

]

=
4i x−ξ

ξα

[

(εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ − (ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥
]

((q + (x+ ξ)p− k)2 + iǫ)((q + (x+ ξ)p)2 + iǫ)((−z̄pρ − (x− ξ)p)2 + iǫ)

=
4i [TA5

− TB5
]

αᾱ2ξs3z̄ (x− ξ + iǫ) (x+ ξ + iǫ)
, (A.15)

trAD [B3] = trD

[

p̂ρ γ
µ q̂ + (x+ ξ)p̂− k̂

(q + (x+ ξ)p− k)2 + iǫ
ε̂q

(x+ ξ)p̂− k̂

((x+ ξ)p− k)2 + iǫ
ε̂∗k p̂ γ

5 γµ

× 1

(−z̄pρ − (x− ξ)p)2 + iǫ

]

=
4i x−ξ

ξ

[

(εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ − (ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥
]

((q + (x+ ξ)p− k)2 + iǫ)(((x+ ξ)p− k)2 + iǫ)((−z̄pρ − (x− ξ)p)2 + iǫ)

=
−4i [TA5

− TB5
]

αᾱ2ξs3z̄ (x− ξ + iǫ) (x+ ξ − iǫ)
, (A.16)

trAD [B4] = trD

[

p̂ργ
µ q̂ + (x+ ξ)p̂

(q + (x+ ξ)p)2 + iǫ
ε̂qp̂ γ

5 ε̂∗k
(x− ξ)p̂+ k̂

((x− ξ)p+ k)2 + iǫ
γµ

× 1

(z̄pρ + k + (x− ξ)p)2 + iǫ

]

=
8i

1−α

[

(εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥ − (ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥
]

((q + (x+ ξ)p)2 + iǫ)(((x− ξ)p+ k)2 + iǫ)((z̄pρ + k + (x− ξ)p)2 + iǫ)
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=
8i [TA5

− TB5
]

αᾱs3 (x− ξ + iǫ) (x+ ξ + iǫ) [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
, (A.17)

trAD [B5] = trD

[

p̂ργ
µ q̂ + (x+ ξ)p̂

(q + (x+ ξ)p)2 + iǫ
ε̂qp̂γ

5γµ
−z̄p̂ρ − k̂

(−z̄pρ − k)2 + iǫ
ε̂∗k

× 1

(z̄pρ + k + (x− ξ)p)2 + iǫ

]

= −8i

α

[

(2z̄ − 1) (ε∗k⊥ · pρ⊥) ǫp n pρ⊥ εq⊥ − (εq⊥ · pρ⊥) ǫp n pρ⊥ ε∗k⊥
]

((q + (x+ ξ)p)2 + iǫ)((−z̄pρ − k)2 + iǫ)((z̄pρ + k + (x− ξ)p)2 + iǫ)

=
4i [(1− 2z)TA5

− TB5
]

αξs3z̄ (x+ ξ + iǫ) [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
. (A.18)

A.2 Chiral-odd sector

trCO
D [A3]j

= trD

[

p̂ρε̂
∗
ρε̂q

zp̂ρ − q̂

(zpρ−q)2+iǫ
γµ

(x+ ξ)p̂− k̂

((x+ξ)p−k)2+iǫ
ε̂∗k p̂ γ⊥ j γµ

1

(z̄pρ+(x−ξ)p)2+iǫ

]

=
16

[

(p · k) ε∗k⊥j

(

(εq · pρ) (q · ε∗ρ)− (q · pρ) (εq · ε∗ρ)
)

− ǫpρ ε
∗
ρ q εq ǫp ν k ε∗kg⊥νj

]

(((x+ ξ)p− k)2 + iǫ)2 ((zpρ − q)2 + iǫ)2 ((z̄ pρ + (x− ξ)p)2 + iǫ)2
(A.19)

=
TA⊥j

2α2ᾱs3ξzz̄ (x− ξ + iǫ) (x+ ξ − iǫ)

trCO
D [A4]j

= trD

[

p̂ρε̂
∗
ρε̂q

zp̂ρ − q̂

(zpρ−q)2+iǫ
γµp̂γ⊥ j ε̂

∗
k

k̂ + (x− ξ)p̂

(k+(x−ξ)p)2+iǫ
γµ

1

(zpρ−q−(x+ξ)p)2+iǫ

]

=
16

[

(p · k) ε∗k⊥j

(

(εq · pρ) (q · ε∗ρ)− (q · pρ) (εq · ε∗ρ)
)

− ǫpρ ε
∗
ρ q εq ǫp ν k ε∗kg⊥νj

]

((k + (x− ξ)p)2 + iǫ)2 ((zpρ − q)2 + iǫ)2 (((x+ ξ)p− zpρ + q)2 + iǫ)2
(A.20)

= − TA⊥j

2α2ξs3z (x− ξ + iǫ) [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]

trCO
D [B5]j =

trD

[

p̂ρε̂
∗
ρ γ

µ q̂ + (x+ ξ)p̂

(q+(x+ξ)p)2+iǫ
ε̂qp̂γ⊥ jγµ

−z̄p̂ρ − k̂

(−z̄pρ−k)2+iǫ
ε̂∗k

1

(z̄pρ+k+(x−ξ)p)2+iǫ

]

= 2
4s εq⊥ j

(

(pρ · ε∗k) (ε∗ρ · k)− sξ (ε∗k · ε∗ρ)
)

− ǫk ε∗k pρ ε∗ρ ǫq εq p νg⊥νj

((−z̄pρ − k)2 + iǫ) ((zpρ − q − (x− ξ)p)2 + iǫ)((q + (x+ ξ)p)2 + iǫ)
(A.21)

=
TB⊥j

2ξs3z̄ (x+ ξ + iǫ) [(x+ ξ + iǫ)− z (2αξ + ᾱ (x+ ξ + iǫ))]
.
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B Integration over z and x

B.1 Building block integrals for the numerical integration over x

Here, we list the building block integrals which are involved in the numerical evaluation of

the scattering amplitudes. Consider a generic GPD f. We define

Ia[f ] =

∫ 1

−1

1

(−ξ + x+ iǫ)(2ξ + ᾱ(−ξ + x+ iǫ))
f(x, ξ) dx , (B.1)

Ib[f ] =

∫ 1

−1

1

(2ξ + (1− α)(−ξ + x+ iǫ))2
f(x, ξ) dx , (B.2)

Ic[f ] =

∫ 1

−1

ln
(

ξ+x+iǫ
α(−ξ+x+iǫ)

)

(2ξ + ᾱ(−ξ + x+ iǫ))3
f(x, ξ) dx , (B.3)

Id[f ] =

∫ 1

−1

ln
(

ξ+x+iǫ
α(−ξ+x+iǫ)

)

(2ξ + ᾱ(−ξ + x+ iǫ))2
f(x, ξ) dx , (B.4)

Ie[f ] =

∫ 1

−1

1

−ξ + x+ iǫ
f(x, ξ) dx , (B.5)

If [f ] =

∫ 1

−1

1

ξ + x+ iǫ
f(x, ξ) dx , (B.6)

Ig[f ] =

∫ 1

−1

1

ξ + x− iǫ
f(x, ξ) dx , (B.7)

Ih[f ] =

∫ 1

−1

ln
(

ξ+x+iǫ
α(−ξ+x+iǫ)

)

2ξ + ᾱ(−ξ + x+ iǫ)
f(x, ξ) dx , (B.8)

Ii[f ] =

∫ 1

−1

1

2ξ + ᾱ(−ξ + x+ iǫ)
f(x, ξ) dx , (B.9)

Ij [f ] =

∫ 1

−1

1

(−ξ + x+ iǫ)(ξ + x+ iǫ) (2ξ + ᾱ(−ξ + x+ iǫ))
f(x, ξ) dx , (B.10)

Il[f ] =

∫ 1

−1

1

(ξ + x+ iǫ) (2ξ + ᾱ(−ξ + x+ iǫ))
f(x, ξ) dx , (B.11)

Ik[f ] =

∫ 1

−1

1

(ξ + x+ iǫ) (2ξ + ᾱ(−ξ + x+ iǫ))2
f(x, ξ) dx . (B.12)

Each of these integrals are finite and are evaluated numerically, using our models for

the various involved GPDs. After computing this set of integrals, the evaluation of the

scattering amplitude is straightforward using the decomposition given in the two next

subsections. Below, we will not indicate the function f , since it is obvious from the context.

B.2 Chiral-odd case

For the chiral-odd case, diagrams A3 and A4 contribute to the structure T
i
A⊥ while diagrams

B1 and B5 contribute to the structure T i
B⊥. Thus, writing

trCO
D [A3]

i + trCO
D [A4]

i = TCO
A T i

A⊥ (B.13)
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and

trCO
D [B1]

i + trCO
D [B5]

i = TCO
B T i

B⊥ , (B.14)

we get

TCO
A φ(z) =

1

s3

[

3(1− z)

α2ξ(ξ − x− iǫ)(α(−ξ + x+ iǫ) + (1− z)(2ξ + (1− α)(−ξ + x+ iǫ)))

− 3

αᾱ2ξ(ξ − x− iǫ)(ξ + x− iǫ)

]

(B.15)

and

TCO
B φ(z) =

1

s3

[

− 3

(1− α)ξ(ξ − x− iǫ)(ξ + x+ iǫ)

+
3z

ξ(ξ + x+ iǫ)(α(−ξ + x+ iǫ) + (1− z)(2ξ + (1− α)(−ξ + x+ iǫ)))

]

. (B.16)

The integral with respect to z is trivially performed in the case of a DA expanded in the

basis of Gegenbauer polynomials. We restrict ourselves to the case of an asymptotic DA

φ(z) = 6zz̄ for which one gets

∫ 1

0
TCO
A φ(z) dz =

1

s3

[

− 3

αᾱ2ξ(ξ − x− iǫ)(ξ + x− iǫ)
(B.17)

+
3

α2ξ(ξ − x− iǫ)(2ξ + (1− α)(−ξ + x+ iǫ))
+

3 ln
(

ξ+x+iǫ
α(−ξ+x+iǫ)

)

αξ(2ξ + (1− α)(−ξ + x+ iǫ))2



 ,

and

∫ 1

0
TCO
B φ(z) dz =

1

s3

[

− 3

(1− α)ξ(ξ − x− iǫ)(ξ + x+ iǫ)
(B.18)

− 3

ξ(ξ + x+ iǫ)(2ξ + (1− α)(−ξ + x+ iǫ))
+

3 ln
(

ξ+x+iǫ
α(−ξ+x+iǫ)

)

ξ(2ξ + (1− α)(−ξ + x+ iǫ))2



 .

Let us note that the last term in the previous expressions (B.17) and (B.18) might seem

to have a double pole when x = −1+α
ᾱ ξ − iǫ. However the logarithm cancels under such

conditions, so this pole is actually a simple pole.

Writing the integrals with respect to x of the product of (B.17) and (B.18) with the

GPD Hq
T (xξ) in terms of building block integrals, we have the dimensionless coefficients

N q
T A ≡ s3

∫ 1

−1

∫ 1

0
TCO
A φ(z) dz HT (x, ξ) dx = − 3

α2ξ
Ia+

3

αξ
Id+

3

2α2ᾱξ2
(Ie−Ig) , (B.19)

and

N q
T B ≡ s3

∫ 1

−1

∫ 1

0
TCO
B φ(z) dz HT (x, ξ) dx = −3

ξ
Il +

3

ξ
Id +

3

2ᾱξ2
(Ie − If ) . (B.20)
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B.3 Chiral-even case

For the chiral-even case, we only present the result in terms of building block integrals

after integration over z and integration over x when multiplied by GPDs.

B.3.1 Vector part

From the symmetry of φ(z), the integration over z of the product of diagrams A1 and A2

with φ(z) leads to vanishing TB parts (their TB components are antisymmetric) and to

identical TA parts.

We decompose the trace involved in a diagram diag as

trVD[diag] = T V
A [diag]TA + T V

B [diag]TB , (B.21)

and we denote the dimensionless coefficients

N q
A[diag] ≡ s

∫ 1

−1

∫ 1

0
T V
A [diag]φ(z) dz H(x, ξ) dx , (B.22)

N q
B[diag] ≡ s2

∫ 1

−1

∫ 1

0
T V
B [diag]φ(z) dz H(x, ξ) dx . (B.23)

For further use, we define the coefficient obtained when summing over the set of diagrams

Ak and Bk

N q
A ≡

∑

diag

N q
A[diag] (B.24)

and

N q
B ≡

∑

diag

N q
B[diag] . (B.25)

We get for diagrams Ak

N q
A[A1] = N q

A[A2] =
2

ᾱξ
Ie , (B.26)

N q
A[A3] = − 2

αᾱξ
(Ie − Ig) , (B.27)

N q
A[A4] =

4ᾱ

α
(Ia − αId) , (B.28)

N q
A[A5] = −2

ξ
Ih (B.29)

and

N q
B[A3] = − 1

α2ᾱξ2
(Ie − Ig) , (B.30)

N q
B[A4] =

2

α2ξ
Ia −

4

αξ
Ib −

8

ᾱ
Ic +

4

ᾱξ
Id , (B.31)

N q
B[A5] =

8

αξ
Ib +

16

ᾱ
Ic −

4(1 + α)

αᾱξ
Id . (B.32)
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For diagrams Bk we obtain for the TA part

N q
A[B1] = −2α

ᾱξ
(Ie − If ) , (B.33)

N q
A[B2] =

1

ᾱξ
(Ie − If ) , (B.34)

N q
A[B3] =

1

ᾱξ
(Ie − Ig) , (B.35)

N q
A[B4] = 4ξ(Ij + 2αIk − 2αIc) , (B.36)

N q
A[B5] = 4ᾱ(Id − Il) , (B.37)

and for the non-vanishing TB part

N q
B[B1] =

1

ᾱαξ2
(Ie − If ) , (B.38)

N q
B[B5] = − 6

αξ
Il + 8Ik −

4

ξ
Ib −

8

ᾱ
Ic +

4

αᾱξ
Id . (B.39)

B.3.2 Axial part

We decompose the trace involved in a diagram diag as

trAD[diag] = TA
A5

[diag]TA5
+ TA

B5
[diag]TB5

, (B.40)

and we denote the dimensionless coefficients

Ñ q
A5

[diag] ≡ s3
∫ 1

−1

∫ 1

0
TA
A5

[diag]φ(z) dz H̃q(x, ξ) dx , (B.41)

Ñ q
B5

[diag] ≡ s3
∫ 1

−1

∫ 1

0
TA
B5

[diag]φ(z) dz H̃q(x, ξ) dx . (B.42)

Similarly to the vector case, we define the coefficient obtained when summing over the set

of diagrams Ak and Bk

Ñ q
A5

≡
∑

diag

Ñ q
A5

[diag] (B.43)

and

Ñ q
B5

≡
∑

diag

Ñ q
B5

[diag] . (B.44)

We get for diagrams Ak

Ñ q
A5

[A1] = − 2i

αᾱ2ξ2
Ie , (B.45)

Ñ q
A5

[A2] =
2i(2− α)

α2ᾱ2ξ2
Ie , (B.46)

Ñ q
A5

[A3] = − 2i

α2ᾱ2ξ2
(Ie − Ig) , (B.47)

Ñ q
A5

[A4] = − 4i

α2ξ
(Ia − αId) , (B.48)

Ñ q
A5

[A5] = − 8i

αᾱξ
Id +

2i

αᾱξ2
Ih −

4i

α2ξ2
Ii (B.49)
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and

Ñ q
B5

[A1] =
2i(1− 2α)

αᾱ2ξ2
Ie , (B.50)

Ñ q
B5

[A2] =
2i(1− 2α)

αᾱ2ξ2
Ie , (B.51)

Ñ q
B5

[A3] = − 2i

αᾱ2ξ2
(Ie − Ig) , (B.52)

Ñ q
B5

[A4] = − 8i

αξ
Ib −

16i

ᾱ
Ic +

4i(1 + α)

αᾱξ
Id , (B.53)

Ñ q
B5

[A5] = − 8i

ᾱξ
Id +

2i

αᾱξ2
Ih −

4i

αξ2
Ii . (B.54)

For diagrams Bk we obtain for the TA5
part

Ñ q
A5

[B1] =
2i

αᾱ2ξ2
(Ie − If ) , (B.55)

Ñ q
A5

[B2] = − i

αᾱ2ξ2
(Ie − If ) , (B.56)

Ñ q
A5

[B3] =
1

2ξ
(Ie − Ig) , (B.57)

Ñ q
A5

[B4] = − 4i

αᾱ
Ij −

8i

ᾱ
Ik +

8i

ᾱ
Ic , (B.58)

Ñ q
A5

[B5] = − 8i

αξ
Ib −

16i

ᾱ
Ic +

4i

ᾱξ
Id +

4i

αᾱξ
Id , (B.59)

and for the TB5
part

Ñ q
B5

[B1] =
2i

ᾱ2ξ2
(Ie − If ) , (B.60)

Ñ q
B5

[B2] = − i

αᾱ2ξ2
(Ie − If ) , (B.61)

Ñ q
B5

[B3] =
i

αᾱ2ξ2
(Ie − Ig) , (B.62)

Ñ q
B5

[B4] = Ñ q
A5

[B4] , (B.63)

Ñ q
B5

[B5] = − 4i

αξ
(Id − Il) . (B.64)

C Some details on kinematics

In this section we give further useful expressions for kinematics.

C.1 Exact kinematics

Combining eqs. (2.11) and (2.12) one gets

M2
γρ − t = 2ξs

(

1− 2ξM2

s(1− ξ2)

)

+
4ξ2M2

1− ξ2
= 2ξs . (C.1)
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From eq. (2.10), one gets

s =
SγN −M2

1 + ξ
, (C.2)

so that we finally obtain

τ ≡
M2

γρ − t

SγN −M2
=

2ξ

1 + ξ
, (C.3)

and thus

ξ =
τ

2− τ
. (C.4)

C.2 Exact kinematics for ∆⊥ = 0

In the case ∆⊥ = 0 , we now provide the exact formulas in order to get the set of parameters

s, ξ, α, αρ, ~p
2, (−t)min as functions of Mγρ, SγN ,−u′ .

In the limit ∆⊥ = 0, eq. (2.12) reads, using eq. (C.2),

M̄2
γρ =

2ξ

1 + ξ

(

1− 2ξ

1− ξ
M̄2

)

(C.5)

with M̄2 = M2/(SγN − M2) and M̄2
γρ = M2

γρ/(SγN − M2). Thus, ξ is solution of the

quadratic equation

ξ2(M̄2
γρ − 2− 4M̄2) + 2ξ − M̄2

γρ = 0 (C.6)

the solution to be kept being

ξ =
−1 +

√

1 + M̄2
γρ(M̄

2
γρ − 2− 4M̄2)

M̄2
γρ − 2− 4M̄2

. (C.7)

The value of (−t)min is obtained by setting ~∆t = 0 in eq. (2.11), i.e.

(−t)min =
4ξ2M2

1− ξ2
. (C.8)

Combined with eqs. (C.4) and (C.3) one easily see that (−t)min is obtained from the solution

of

T̄ 2(1 + M̄2) + T̄ (2M̄2 M̄2
γρ + M̄2

γρ − 1) + M̄2 M̄4
γρ = 0 (C.9)

with T̄ = (−t)min/(SγN −M2), the solution to be kept being

(−t)min =
1− M̄2

γρ(1 + 2M̄2)−
√

1 + M̄2
γρ(M̄

2
γρ − 2− 4M̄2)

2(1 + M̄2)
(SγN −M2) . (C.10)

From eq. (2.14) we have

~p 2
t = −m2

ρ + αρ(m
2
ρ − u′) (C.11)

so that using eq. (2.8) which now reads

2 ξ =
~p 2
t

s α
+

~p 2
t +m2

ρ

s αρ
, (C.12)
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we obtain

2 ξ = −αρ

α

u′

s
− 1− αρ

αs
m2

ρ −
u′

s
+

mρ

s
. (C.13)

eq. (2.9) reads

αρ = 1− α− 2 ξ M2

s (1− ξ2)
. (C.14)

so that

α =
1

2ξs

(

−u′ − 2 ξ M2

s (1− ξ2)
(−u′ +m2

ρ)

)

. (C.15)

Thus, computing ξ through eq. (C.7) and then s through eq. (C.2), eq. (C.15) allows to

compute the value of α . The value of αρ is then obtained using eq. (C.14). Finally, ~p 2
t is

computed using eq. (C.11).

C.3 Approximated kinematics in the Bjorken limit

In this limit, M̄γρ and SγN are parametrically large, and s is of the order of SγN . Neglecting
~∆2

t , m
2
ρ, t and M2 in front of s, (except in the definition of τ where we keep as usual M2

in the denominator of eq. (C.3)), we thus have

M2
γρ ≈ 2ξs ≈ ~p2t

αᾱ
, (C.16)

αρ ≈ 1− α ≡ ᾱ , (C.17)

ξ =
τ

2− τ
, τ ≈

M2
γρ

SγN −M2
, (C.18)

−t′ ≈ ᾱM2
γρ , −u′ ≈ αM2

γρ . (C.19)

The skewedness ξ thus reads

ξ =
M2

γρ

2SγN − 2M2 −M2
γρ

(C.20)

and the parameter s is given, using eq. (C.2), by

s = SγN −M2 −
M2

γρ

2
. (C.21)

D Phase space integration

D.1 Phase space evolution

The phase space integration in the (−t,−u′) plane should take care of several cuts. This

phase space evolves with increasing M2
γρ from a triangle to a trapezoid, as shown in fig-

ure 17. These two cases and the corresponding parameters are displayed in figures 18

and 19.

Let us discuss these various cuts with some details. First, since we rely on factorization

at large angle, we enforce the two constraints −u′ > (−u′)min , and −t′ > (−t′)min , and
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Figure 17. Evolution of the phase space for Mγρ = 2.2 GeV2 (up left), M2
γρ = 2.5 GeV2 (up

center), Mγρ = 3 GeV2 (up right), Mγρ = 5 GeV2 (down left), Mγρ = 8 GeV2 (down center),

Mγρ = 9 GeV2 (down right).
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Figure 18. Triangle-like phase space, illustrated for the case of Mγρ = 2.5 GeV2.

take (−u′)min = (−t′)min = 1 GeV2 . The first constraint is the red line in figures 18 and 19,

while the second, using the relation M2
γρ + t′ + u′ = t+m2

ρ, is given by

− u′(−t) = −t−m2
ρ +M2

γρ − (−t′)min , (D.1)

and shown as a blue line.

The variable (−t) varies from (−t)min, determined by kinematics, up to a maximal

value (−t)max which we fix to be (−t)max = 0.5 GeV2 , these two boundaries being shown

in green in figure 19.
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The value of (−t)min is given by eq. (C.10). In the domain of M2
γρ for which the phase-

space is a triangle, as illustrated in figure 18, the minimal value of −t is actually above

(−t)min. For a given value of M2
γρ , this minimal value of −t is given, using eq. (D.1), by

(−t)inf = m2
ρ −M2

γρ + (−t′)min + (−u′)min , (D.2)

with (−t)min 6 (−t)inf .

This constraint on −t leads to a minimal value of M2
γρ , denoted as M2

γρ crit , when

(−t)inf = (−t)max , which thus reads

M2
γρ crit = (−u′)min + (−t′)min +m2

ρ − (−t)max . (D.3)

With our chosen values of (−u′)min, (−t′)min and (−t′)max we have M2
γρ crit ≃ 2.10 GeV2 ,

below which the phase-space is empty. We note that this value, independent of SγN ,

ensures that the s−channel Mandelstam variable M2
γρ > M2

γρ crit is indeed large enough as

it should be for large angle scattering.

For the purpose of integration, we define, for −(u′)min 6 −u′ ,

(−t)min(−u′) = m2
ρ −M2

γρ + (−t′)min − u′ . (D.4)

We denote the maximal value of −u′ as (−u′)maxMax , attained when −t = (−t)max , and

given by

(−u′)maxMax = (−t)max −m2
ρ +M2

γρ − (−t′)min , (D.5)

see figure 18.

The phase-space becomes a trapezoid when (−t)inf = (−t)min , i.e. according to

eq. (D.2) when

M2
γρ = −(−t)min + (−t′)min + (−u′)min +m2

ρ . (D.6)

Combined with eq. (C.9), this leads to

M2
γρ trans = (SγN −M2) m̄2 1− m̄2(1 + M̄2)

1− m̄2
, (D.7)

where

m̄2 =
(−u′)min + (−t′)min +m2

ρ

SγN −M2
. (D.8)

With our choice of parameters, we getM2
γρ trans ≃ 2.58 GeV2 in the case of SγN = 20 GeV2 .

Above this value, the phase-space is a trapezoid, illustrated in figure 19. This trapezoid

reduces to an empty domain when (−t)min = (−t)max . From the solution of eq. (C.9), this

occurs for

M2
γρMax = (SγN −M2)

−(1 + 2M̄2)(−t̄)max +
√

(−t̄)max((−t̄)max + 4M̄2)

2M̄2
, (D.9)

with M̄2 = M2/(SγN − M2) and (−t̄)max = (−t)max/(SγN − M2) . With our choice of

parameters, we get M2
γρMax ≃ 9.47 GeV2 in the case of SγN = 20 GeV2 . This value

decreases with decreasing values of SγN .
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Figure 19. Trapezoid-like phase space, illustrated for the case M2
γρ = 4 GeV2 and SγN = 20 GeV2.

The minimal value of SγN is obtained from the constraint M2
γρ crit = M2

γρMax and

equals SγNcrit ≃ 5.87 GeV2 .

Finally, let us briefly discuss the invariant mass M2
ρN ′ , which should be restricted to

be far above any possible resonance. Using eq. (2.15), for a given value of SγN , a careful

study of the allowed phase space shows that M2
ρN ′ is minimal when −u′ = (−u′)maxMax and

M2
γρ = M2

γρMax, and for ~∆t and ~pt anti collinear, with |~∆t| being the value corresponding to

−t = (−t)max . This minimal value increases with SγN . Its minimal value is thus obtained

when SγN = SγNcrit, this value being M2
ρN ′Min ≃ 3.4 GeV2 which is far above the resonance

region.

D.2 Method for the phase space integration

Using the above described phase-space, the integrated cross section reads

dσ

dM2
γρ

= θ(M2
γρ crit < M2

γρ < M2
γρ trans) (D.10)

×
∫ (−u′)maxMax

(−u′)min

d(−u′)
∫ (−t)max

(−t)min(−u′)
d(−t)F (t)2

dσ

dM2
γρd(−u′)d(−t)

∣

∣

∣

∣

(−t)min

+ θ(M2
γρ trans < M2

γρ < M2
γρMax)

×
{

∫ (−u′)maxMin

(−u′)min

d(−u′)
∫ (−t)max

(−t)min

d(−t)F (t)2
dσ

dM2
γρd(−u′)d(−t)

∣

∣

∣

∣

(−t)min

+

∫ (−u′)maxMax

(−u′)maxMin

d(−u′)
∫ (−t)max

(−t)min(−u′)
d(−t)F (t)2

dσ

dM2
γρd(−u′)d(−t)

∣

∣

∣

∣

(−t)min

}

.

Using our explicit dipole ansatz for F (t), see eq. (5.23), we obtain

dσ

dM2
γρ

=
C4

3

[

θ(M2
γρ crit < M2

γρ < M2
γρ trans) (D.11)

×
∫ (−u′)maxMax

(−u′)min

d(−u′)

[

1

((−t)max − C)3
− 1

((−t)min(−u′)− C)3

]

dσ

dM2
γρd(−u′)d(−t)

∣

∣

∣

∣

(−t)min
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Figure 20. Angular distribution in the chiral-even case. Up, left: SγN = 10 GeV2, for M2
γρ =

3 GeV2 (solid blue) and M2
γρ = 4 GeV2 (dotted red). Up, right: SγN = 15 GeV2, for M2

γρ =

3 GeV2 (solid blue), M2
γρ = 4 GeV2 (dotted red) and M2

γρ = 5 GeV2 (dashed green). Down:

SγN = 20 GeV2, for M2
γρ = 3 GeV2 (solid blue), M2

γρ = 4 GeV2 (dotted red) and M2
γρ = 5 GeV2

(dashed green).

+ θ(M2
γρ trans < M2

γρ < M2
γρMax)

×
{

[

1

((−t)max − C)3
− 1

((−t)min − C)3

]
∫ (−u′)maxMin

(−u′)min

d(−u′)
dσ

dM2
γρd(−u′)d(−t)

∣

∣

∣

∣

(−t)min

+

∫ (−u′)maxMax

(−u′)maxMin

d(−u′)

[

1

((−t)max−C)3
− 1

((−t)min(−u′)−C)3

]

dσ

dM2
γρd(−u′)d(−t)

∣

∣

∣

∣

(−t)min

}]

,

which is our building formula for the numerical evaluation of integrated cross sections.

E Angular cut over the outgoing photon

In order to take into account limitations of detection of the produced photon, it is necessary

to know the photon scattering angle in the rest frame of the nucleon target. The incoming

nucleon momentum pµ1 in eq. (2.6) and the one in its rest frame pµ1rf = (M, 0, 0, 0) are

related by the longitudinal boost along z axis characterized by the rapidity ζ such that, in
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Figure 21. Angular distribution in the chiral-odd case. Up, left: SγN = 10 GeV2, for M2
γρ =

3 GeV2 (solid blue) and M2
γρ = 4 GeV2 (dotted red). Up, right: SγN = 15 GeV2, for M2

γρ =

3.5 GeV2 (solid blue), M2
γρ = 5 GeV2 (dotted red) and M2

γρ = 6.5 GeV2 (dashed green). Down:

SγN = 20 GeV2, for M2
γρ = 4 GeV2 (solid blue), M2

γρ = 6 GeV2 (dotted red) and M2
γρ = 8 GeV2

(dashed green).

the Bjorken limit,

cosh ζ =
1

2

[

M√
s(1 + ξ)

+

√
s(1 + ξ)

M

]

. (E.1)

The incoming photon flies almost towards the −z axis, in the light-cone and in the rest

frame, so that the scattering angle θ of the produced photon in the nucleon rest frame with

respect to this direction satisfies

tan θ = − 2Ms(1 + ξ) ‖ ~pt − ~∆t

2 ‖
−α(1 + ξ)2s2 + (~pt − ~∆t

2 )2M2
. (E.2)

Using the relation α = M2
γρ/(−u′), see eq. (C.19), one gets from this expression tan θ as a

function of −u′, which we formally write

tan θ = f(−u′) . (E.3)
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Figure 22. The differential cross section dσeven

dM2
γρ

. Solid red: no angular cut. Other curves show

the effect of an upper angular cut θ for the out-going γ: 35◦ (dashed blue), 30◦ (dotted green),

25◦ (dashed-dotted brown), 20◦ (long-dashed magenta), 15◦ (short-dashed purple) and 10◦ (dotted

black). Up, left: SγN = 10 GeV2. Up, right: SγN = 15 GeV2. Down: SγN = 20 GeV2.

From this relation, θ being positive, one should take

for tan θ > 0, θ = arctan(tan θ), (E.4)

for tan θ < 0, θ = π + arctan(tan θ) , (E.5)

where tan θ is given by eq. (E.2).

For simplicity, we now perform our analysis in the case ~∆t = 0, and thus write

tan θ = − 2Ms(1 + ξ) pt
−α(1 + ξ)2s2 + ~p 2

t M
2
, (E.6)

where pt =‖~pt ‖ .

Using the formulas given in section C.3, one can compute α as a function of θ . One

gets

for tan θ > 0, α =
(1 + ξ + τ̃) τ̃ tan2 θ + a

(

1 +
√
1 + tan2 θ

)

(1 + ξ + τ̃)2 tan2 θ + 2a
, (E.7)

for tan θ < 0, α =
(1 + ξ + τ̃) τ̃ tan2 θ + a

(

1−
√
1 + tan2 θ

)

(1 + ξ + τ̃)2 tan2 θ + 2a
, (E.8)
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Figure 23. The differential cross section dσodd

dM2
γρ

. Solid red: no angular cut. Other curves show

the effect of an upper angular cut θ for the out-going γ: 35◦ (dashed blue), 30◦ (dotted green),

25◦ (dashed-dotted brown), 20◦ (long-dashed magenta), 15◦ (short-dashed purple) and 10◦ (dotted

black). Up, left: SγN = 10 GeV2. Up, right: SγN = 15 GeV2. Down: SγN = 20 GeV2.

where

a =
4M2

γρ

s
, (E.9)

τ̃ =
2ξ

1 + ξ

M2
γρ

s
= τ

M2
γρ

s
, (E.10)

thus providing −u′ as a function of θ using −u′ = αM2
γρ, see eq. (C.19).

The angular distribution of the produced photon can easily be obtained from the

differential cross-section by using the relation

dθ

d(−u′)
=

f ′(−u′)
1 + f2(−u′)

(E.11)

so that we get
1

σ

dσ

dθ
=

1

σ

dσ

d(−u′)
d(−u′)
dθ

=
1

σ

dσ

d(−u′)
1 + f2(−u′[θ])
f ′(−u′[θ])

. (E.12)

The obtained angular distribution is shown in figure 20 for the chiral-even case, and in

figure 21 for the chiral-odd case. In the chiral-even case, the obtained angular distribution
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is an increasing function of θ, while in the chiral-odd case, it decreases with increasing θ.

In both cases, the distributions are dominated by moderate values of θ.

In practice, at JLab, in Hall B, the outgoing photon could be detected with an angle

between 5◦ and 35◦ from the incoming beam.

The effect of an upper angular cut can be seen in figure 22 for the chiral-even case,

and in figure 23 for the chiral-odd case. As seen from figures 20 and 21, it mainly affects

the low SγN domain. In particular, the effect of the JLab 35◦ upper cut remains negligible

as shown in figures 22 and 23, both for the chiral-even and chiral-odd cases.

One should note that using cuts on θ, it is possible to reduce dramatically the contri-

bution of the chiral-even contribution, in particular in the region of SγN around 20GeV2,

while moderately reducing the chiral-odd contribution. Putting additional cuts on M2
γρ,

like M2
γρ () > 6 GeV2, allows to increase the ratio odd versus even from ∼ 1/900 to ∼

1/40, keeping about 3% of the chiral-odd contribution, for typically SγN between 18GeV2

and the maximal value 21.5GeV2. This in principle would lead, dealing with observables

sensitive to the interference between the chiral-odd and the chiral-even contributions, to a

relative signal of the order of 15%.
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