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Abstract—Coordinating decisions in large-scale systems is ac-
knowledged as one of the most challenging aspects of autonomic
computing. If control theory is already pushed to its limits
by the inevitable decentralised nature of such systems, going
large-scale makes things even harder. In this paper, we propose
a decentralised token-based scheme for coordinating shared
resources allocation in large-scale autonomic systems. In this
scheme, each token represents an exclusive access to a share of
the resource. Tokens are used and exchanged among autonomic
managers to limit their decisions to the resource capacity the
tokens they hold at this moment represent. Our token-based
protocol is meant to provide statistical guarantees on the average
total resource usage and the average lateness of node actions due
to the coordination. It exposes a set of parameters which we have
explored to characterise its fairness and global resource usage
on a use case in geotracking. Experiments with the coordination
of 10.000 autonomic managers have shown very good results for
large spectrum of parameter values and system’s regimes.

I. INTRODUCTION

The enormous growth in complexity of computer systems
has pushed IBM to propose a comprehensive effort, called
autonomic computing, to automate their management [1]. In
IBM’s vision, autonomic managers implement the well-known
MAPE-k control loop from its architectural blueprint [1].
Issues relevant to the implementation of isolated autonomic
managers are now well-studied, but as computer systems are
more and more decentralised, coordination is needed between
autonomic managers that adapt dependent managed elements
[2]–[4]. To sustain large-scale, new schemes are needed that
allow a large number of autonomic managers to coordinate
effectively with each others. Kephart pointed out that coordi-
nation in large-scale autonomic systems is one of the hardest
challenges in this field [5].

Known patterns in distributed decision-making do not scale
as they would require an ever longer diffusion of information
over an ever larger set of autonomic managers. Contrary to
other contexts, time is a crucial issue in autonomic computing,
as decisions are part of feedback control loops that must
strictly follow the dynamics of the system. In control theory,
the stability and the controllability properties crucially depend
on timely decisions [6]. Making available the necessary infor-
mation in bounded time to all of the autonomic managers is
therefore crucial to the overall behavior of the system.

In this paper, we address the problem of coordinating
decisions that are system-wide implicitly dependent, the con-

sumption of a central shared resource. The objective is to make
sure that autonomic managers take decisions at the pace of
changes in the need of their managed elements while the total
amount of required resource never exceeds its total capacity.
The coordination must provide for statistical guarantees on
the resource usage and on its fair distribution during the
whole execution of the system. Coordination can be made
to emerge [7]–[9] from local decisions, but broadcasting the
current levels of resource usage of all managed elements to
every autonomic manager would inevitably breach the time
constraints of local control loops as the system scales.

We rather propose a token-based scheme, inspired from de-
centralised mutual exclusion algorithms [10]. The total amount
of available resource is divided up in tokens that represent an
exclusive right to use the corresponding amount of resource.
Autonomic managers are organized into an overlay network
[11] over which tokens circulate using random walks [10].
When an autonomic manager takes a decision that implies a
raise in resource consumption, it first limits it to the amount
represented by tokens it holds and then try to acquire new
tokens to raise it further. When the autonomic manager takes
a decision that lowers the consumption, tokens are reinjected
in the overlay network for other autonomic managers.

Fair distribution of the resource among autonomic managers
and the best possible global usage of the shared resource
are properties highly influenced both by the density of the
overlay network and by the fluidity in the flow of tokens. The
first issue was addressed in [12]. In this paper, we explore
in depth the second issue, and we propose a scheme exposing
relevant parameters and show how to set their values to balance
the above objectives and to scale. We report on experiments
on systems of 10.000 autonomic managers that validate the
approach and provide insights to tune the parameters to get
the best possible coordination.

The rest of the paper is organized as follows. Section II cov-
ers the design of our scheme and the related work. Section III
digs into the token-based scheme itself, while Section IV
presents the experimental results. A conclusion ends the paper.

II. COORDINATING DECISIONS IN AUTONOMIC SYSTEMS

A. Coordination

Large-scale coordination of autonomic managers can be
seen as a dynamic distributed decision-making problem. Cen-



tralised solutions obviously do not scale. To scale, decisions
must be made locally, and then coordinated by disseminating
the information to every decision-making sites. But collect-
ing locally all of the information at decision-time does not
scale when the pace of decision-making is faster than the
time required for the collection. Asynchronous collection of
information from the decision-making do not scale either when
the time for information to travel from its generating site to
the one needing it exceeds the deadlines of local decisions
it impacts. In autonomic computing, where decisions must
obey strict deadlines, the decoupling must ensure the local
availablility and freshness of data within strict time constraints.

In order to scale, autonomic manager coordination must rely
on the smallest amount and most locally possible exchanged
information. Token-based coordination (e.g. [10]) takes an
interesting stance at the information dissemination problem by
reversing viewpoints: in a coordination for resource sharing,
instead of disseminating the resource usage from all the nodes
to every others, a token represents a share of the resource than
no other peers can be currently using. Hence, the capture of a
token ensures the exclusive access to that share of the resource
and for as long as the peer keeps it.

To get good resource usage and fairness, autonomic man-
agers must be forced to release tokens after use and released
ones be acquired as soon as possible by autonomic managers
that need them. The latter issue is addressed by organizing
autonomic managers in an overlay network [11] specifically
designed for each kind of target systems, allowing to efficiently
move released tokens to the autonomic managers that need
them. To force token release, the system must impose rules for
capturing, keeping and releasing tokens to every autonomic
managers. In real systems, indeed, careful monitoring and
penalties should discourage autonomic managers not doing so.

To sum up, the general token-based approach to large-scale
coordination decomposes into three steps:

1) Define a suitable semantics of tokens with regards to the
local decision-making processes.

2) Link autonomic managers through a specific overlay net-
work and adopt a suitable token communication policy.

3) Make the local decision-making able to execute within
its deadlines, on the basis of tokens received prior to
each decision-making instant.

In the rest of the paper, we apply this idea to a use case in
geotracking systems. The issues and our solutions to construct
an overlay network appropriate for this use case have been
proposed ealier [12]. Section III covers the issues revolving
around the design of a token-based protocol providing the
necessary information to a local decision-making algorithm.

B. A use case in geotracking

Our use case considers the geotracking of large fleets of
trucks coming from the French ANR project SALTY [13].
Geotracking is now crucial to several industries, as logistics, to
optimise the management of fleets and to cater for security in
high-risk transportation (currency, radioactive material, etc.).
Typically, geotracking is used to follow trucks as to provide

users with alerts as soon as they exit a predefined corridor or,
perhaps more commonly, when approaching logistic bases to
trigger resource allocation (doors, personal) for their arrival.

In this context, we strive to set in real-time the delays be-
tween position sendings for each of the GPS. Making the least
possible sendings while achieving the geotracking objectives
is important to lower the costs for users. But another objective
comes from the specifics of the project. Our industrial partner
offers value-added services by making its customers receive
their alerts through a unique centralised position processor
called GeoHub (the term belongs to Deveryware). We have
leveraged the issue of maintaining the quality of service of
this position processor at constant level, by making it a large-
scale coordination problem defined as follows: How to set the
delays between position sendings for each truck’s GPS in such
a way that the overall frequency of position receptions on the
processor never exceeds its maximum processing capacity?

Operators of fleets have trucks with GPS sending positions
to GeoHub through GSM. They are followed by geotracking
applications, seen as managed elements, receiving alerts from
the GeoHub upon position receptions and evaluations. We
put over these applications autonomic managers that also
receives positions from the GeoHub and state information from
applications to choose the delay to the next position sending;
such orders also go through GeoHub to the GPS. When no
imminent alert is expected, longer delays are chosen, but when
trucks approach a trigger, shorter ones are chosen to catch the
potential alert within the required precision.

To enforce the GeoHub quality of service, autonomic man-
agers use tokens having a fixed period between successive
usages representing a share of the overall GeoHub processing
capacity. When deciding for a delay to their next position
sending, autonomic managers cap it to the earliest next time
of usage of a token they hold at decision-time, but they can
revise this decision if a better suited token can be acquired
before the sending is done (see Section III for details).

C. Related work

Coordination in large-scale distributed systems has attracted
much attention during the last decades. Today, perhaps the
most promising approaches are bio-inspired algorithms where
global behavior emerges from purely local decisions [7]; some
applications have been conceptually explored [9] and only
recently experimented for the first time in autonomic com-
puting [14]. Crucially depending on information flows [15],
emergence approaches for large-scale autonomic computing
are also limited by the convergence delays in the broadcasting
of information and in reaching an overall stability [16], [17].
Indeed, these approaches still require a lot of experiments, to
which our work claims to contribute.

Louleiro et al. [18] address a large-scale resource allocation
problem closely related to ours. In their setting, entities need
shared resources to process their workload, and their relative
importance is modeled by utility functions of all workloads.
Autonomic managers gather each others workloads, and when
the workload of an entity raises, its autonomic manager uses



its utility function to find the right decision. The authors use an
epidemic protocol [16] to broadcast the individual workloads
to all entities. Simulated on overlay networks of 500 entities,
with degrees between 5 and 7, their approach requires more
than 10 cycles of message exchanges between all of the
nodes to propagate the information over the whole network.
The number of cycles can be diminished by augmenting the
degrees, but the number of messages per cycle would also
augment. Picard et al. [19] propose a similar solution for
distributed constraint satisfaction, without experimenting a
dynamic version of the problem though.

Other works on protocols for resource discovery in grids
have shown that broadcasting approaches have an exponential
complexity in the number of messages [20], [21]. Clearly,
obeying strict timing constraints when scaling requires a
stronger decoupling between local decision-making and infor-
mation dissemination. Our contribution is therefore to study
and experiment with new approaches towards this goal.

Few related works address decision-making in the context
of large-scale decentralised control where the system has strict
timing constraints. Decentralised, networked control is still an
open problem in control theory [22], even at the small-scale.
Nevertheless, efforts to coordinate decisions in distributed
autonomic systems have been made. IBM’s teams have tackled
the problem of energy management in data centers, but for
small-scale systems only [2]. From these experiments, Kephart
[5] argued recently that scaling is still a central challenge.
Work from Oliveira et al. [4] on synchronising autonomic
control loops also targets the small-scale and does not take
into account the timing issues of control. Many of the other
works published recently are in the same vein [3], [23], [24].

Coordination in general has been studied in many fields,
among which multi-agents systems (MAS), to such an extent
that it is impossible to cover all of them. Compared to our
proposal, most of these works address relatively small-scale
systems or do not consider the timing issues of control [25].
For example, Gerber and Jung [26] consider a solution where
local decisions are taken without delays, but use a global
reasoning coordinating them that would hardly scale. Rustogi
and Singh [27], as us, use local decision-making and show that
giving locally more global information does not always lead
to better decisions, concurring to more decoupling between
local decision-making and information dissemination.

In the field of decision-making, reinforcement learning for
multiple decision-makers has also been studied as coordination
mechanism, but only for a few decision-makers [28]. More
recently, collaborative reinforcement learning (CRL) [29]–
[31] over larger sets of decision-makers has been proposed,
but scaling still requires experiments, as the current works
still consider a few tens of them only. However, CRL remains
a very interesting approach, as it promises to completely de-
couple coordination acts from coordination policy computing,
hence making possible zero-delay local decisions.

To summarize, our contribution is the design and the imple-
mentation of new approaches and techniques for decentralized
decision-making subject to time constraints, more or less strict.

III. TOKEN-BASED COORDINATION

A. General model and issues
Based on our overlay network algorithms introduced in [12],

nodes exchange tokens controlling the (quantitative) access to
the central shared resource, the GeoHub. As the decisions of
the different autonomic managers do not depend upon any
other managers but upon the whole, the overlay network can
be random. As individual autonomic managers do not know to
which autonomic manager its released tokens should be sent,
tokens circulate on the overlay network by random walks i.e.,
a token message does not identify its destination but is rather
sent to a randomly selected neighbour which either captures
it for its own usage or immediately releases it and sends it
again to a randomly selected neighbour among its own ones.
Each token corresponds to the same rate of position sendings.
To enforce its rate, the token has a period pj and an earliest
time of next utilisation tu; each time t ≥ tu a token is used
to enable a position sending, its tu is reset to t+ pj .

Token-based algorithms have been used to solve a dis-
tributed version of the k-mutual exclusion problem [10] i.e.,
at most k processors can enter their critical section at any
time. Tokens circulate using random walks over a network
of processes, and the processes must capture a token to enter
their critical section. Our scheme and some of our solutions are
inspired from these, though the scale of the considered systems
are different. Also, tokens in k-mutual exclusion schemes
represent a binary access right with k � N in general,
while in ours they represent a quantity of resource. Hence our
scheme typically use much more tokens and acquiring another
one after a capture makes sense, e.g. if it allows to make
the sending earlier, contrary to mutual exclusion. Therefore,
properties and parameters of the algorithms are quite different
and as such, need new experiments.

The lack of space in this short paper forces us not to address
issues related to failures in the network, but we did tackle crash
failures and to some extent transient ones.

B. Coordination algorithms
The coordination decomposes in two main coordinated

decision-making: handling position receptions and handling
token arrivals. The coordinated decision-making occurs first
when a position is received from the GPS of the truck through
GeoHub, at which time the local decision-making process
proposes a delay to the next position sending according to
the needs of the geotracking applications and tries to plan it
if the necessary token is available. When a token arrive, the
autonomic manager must decide if it can capture or reemit
it, and in the case of capture, plan a new position sending
according to the most recently required time for it. To min-
imise the waiting time for a token when an autonomic manager
needs one and one is available somewhere, we propose to use
a unique parameter to control their fluidity, namely the time
period τj during which a token can be kept before using it. The
larger τj is, the more likely a token can be kept or captured.

Figure 1 illustrates the different important instants for some
illustrative scenario. At time tid, a position is received and the
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Fig. 1. Main instants when deciding and handling arriving tokens.

local decision-making proposes a delay for the next position
sending that should occur at ti+1

s . The coordinated decision is
then to plan the next sending at ti+1

d ≥ ti+1
s that corresponds

to the tu of the token the autonomic manager holds, if any.
Figure 1 shows a scenario where the autonomic manager holds
a token α with tαu > ti+1

s , so ti+1
d ← tαu and therefore

ti+1
d > ti+1

s . Later on, when a token σ arrives at tσa , the
autonomic manager captures it only if the conditions over τj
hold and if it can use it to advance or better match ti+1

d . The
presented scenario illustrates the case where ta ≤ ti+1

s ≤
tσa + τj and tσu ≤ tσa + τj , which implies that the token can be
used to advance ti+1

d , hence it can be captured. Pragmatically,
modifying ti+1

d involves sending an order to the GPS through
the GeoHub, hence the change must worth this effort (and
respect a minimal delay). This requirement is formulated as
the constraints ti+1

s + ε ≤ ti+1
d − δ and tu ≤ ti+1

d − δ for
some predefined ε and δ representing the shortest delay for
modification and the smallest allowed one.

Figure 3 shows the coordinated decision at position recep-
tion time. First (2), the token previously captured to “cover”
the current sending is marked as used by resetting its tαu to
tid + pj . Next, the token is looked up to see if it must be
released. It will be kept only if it can be used for the next
required sending (4-6), i.e. if the token can be used and the
next sending planned within the next τj period of time, or more
formally if tαu ≤ tid + τj ∧ ti+1

s ≤ tid + τj . If the token is kept
(5), the next position sending can be planned (6). Otherwise,
the autonomic manager will have to wait for the arrival of
another, capturable token (line 9). Line 6 also shows how
the pragmatical parameter ε is used to force the next position
sending to occur in at least ε seconds. Figure 4 shows the
coordinated decision at token arrival time. To capture a token,
the autonomic manager must need one and/or be able to use
it during the next τj period. Hence, the following conditions
must be obeyed to replan the next sending:

• ti+1
s ≤ ti+1

d − δ i.e., sending previously planned at ti+1
d

is allowed to be replanned;
• tσa + ε ≤ ti+1

d − δ i.e., replanning is feasible;
• tσu ≤ tσa + τj i.e., the token can be used within τj ;
• tσu ≤ ti+1

d − δ i.e., be used for that replanning;
• ti+1

s ≤ tσa + τj i.e., next sending can occur before τj .

IV. EXPERIMENTAL RESULTS

A. Experimental setup

Because controlled field experiments with real trucks was
just too complex and costly, our experimental setup uses a

τj : maximum keep time of a token before usage
fj : tokens’ position sending frequency
pj : the period of tokens (pj = 1/fj)
ε : minimal delay between a decision and the sending
δ : minimal modification in the time of the next

sending justifying its change
tju : earliest time for the next utilisation of token j
tid : time of the ith local decision

ti+1
s : requested time for the next position sending
ti+1
d : decided time for the next position sending

Fig. 2. Common data (algorithms of figures 3 and 4)

1: α← the token captured for this sending
2: tαu ← tid+pj {mark the token for the current sending}
3: {look to release the token, if required}
4: if tαu ≤ tid + τj ∧ ti+1

s ≤ tid + τj then
5: keep the token α
6: ti+1

d ← max(ti+1
s , tαu , t

i
d + ε) {next sending}

7: else
8: release the token α
9: ti+1

d ←∞ {no token left, so no next sending}
10: end if

Fig. 3. Position sending at tid with token α

1: if ti+1
s ≤ ti+1

d −δ ∧ tσa + ε ≤ ti+1
d −δ ∧ tσu ≤ tσa +τj

∧ tσu ≤ ti+1
d −δ ∧ ti+1

s ≤ tσa+τj then
2: if a token has been captured since tid then
3: release the previous token
4: end if
5: keep the token σ
6: ti+1

d ← max(ti+1
s , tσu, t

σ
a + ε)

7: else
8: release the token σ
9: end if

Fig. 4. Token σ arrival at tσa

discrete-event simulation of the GeoHub to receive requests
for position sendings from autonomic managers and push them
data at the requested moment. Pushed data is a forecast delay
until their next potential geotracking alert i.e., random numbers
generated in such a way to control the overall level of resource
required and see how well the coordination is doing with it.

Autonomic managers are implemented as concurrent dis-
tributed components in Java/RMI. In the runs which results
are reported here, 10.000 autonomic managers were distributed
among 50 JVM (Oracle Java7u51 on Mac0s X 10.9), them-
selves running on 5 computers (Mac mini, 2.6GHz Intel i7,
16Gb 1600MHz DDR3) connected through Ethernet. Another
computer (Mac pro mid-2012, with 2×2.4GHz Intel Xeon,
24Gb 1333MHz DDR3 ECC) runs the GeoHub simulator.

Thanks to our previous overlay network management algo-
rithms, the network topology was very stable from runs to
runs, each autonomic managers having an average of 15.5
neighbours, with a standard deviation of 1.5.
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Fig. 5. Mean latenesses distribution for k = 800 and τj = 12, 16, 18, 20, 24, x goes from 40 to 450 seconds of lateness and y from 0 to 2000 autonomic
managers.

B. The core experiments

The core experiments were targeting two major questions:
is the token-based coordination effective and fair enough, and
can we characterise to some extent the spectrum of parameters
that work well? Effectiveness was assessed as the average
global resource usage as well as its standard deviation. Fair-
ness was assessed by measuring for each autonomic manager
the average lateness in its position sendings (i.e. the delay
between the requested time and the actual time of sending),
and then we have looked at the distribution, the mean and the
standard deviation of these average latenesses.

We have evaluated three main system’s regimes: overloaded,
even and underloaded. In each of them, the capacity of
the Geohub has been fixed at 50 positions processed per
second (pps). In the overloaded case, each autonomic manager
requires one position sending with delays being randomly
generated using a N(100, 50) distribution. This gives an
average global pressure of 100 pps, near twice the capacity.
The even scenario uses a N(200, 100) distribution, exhibiting
a global pressure of 50 pps, equal to its capacity, while the
underloaded uses a N(300, 150), giving a pressure of 33.3 pps.

As the number of tokens can influence the coordination,
we have experimented with 400, 800, 1200 and 1600 tokens,
giving token periods pj = 8, 16, 24 and 32 seconds. Our
previous work [12] has shown through simulations that the
coordination works well when τj ≈ pj . So experiments used
as values of τj roughly 0.75pj , pj , 1.125pj , 1.25pj and 1.5pj .
Each run lasted 1.5 hours. To compute the distribution of
the rate of positions actually processed, we have measured
it by periods of 30 seconds and then computed the average
and standard deviation of these values. To compute the mean
of lateness means, we have computed the mean for each
autonomic manager, and then we have computed the mean
of these means and the standard deviation.

Results of the 60 runs show that good results are obtained

for values of τj between pj and 1.5pj , but slightly dropping
as τj increases over 1.25pj . The influence of the number of
tokens appears less important, but a too low or a too large
number of tokens does not seem to help, especially for small
τj . Under the overloaded scenario, the global usage of the
resource can be very close to the optimal 50 pps (99.56% for
1600 tokens and τj = 32 s. Coarsely speaking, we obtained
a resource usage between 95% and 99.5% for 16 ≤ τj ≤ 48
with the proper setting of the number of tokens between 800
and 1600 in each case.

The distribution of the mean latenesses also show a very
good fairness, though it should be enhanced and finding new
criteria for capturing tokens that would decrease the standard
deviation and increase the fairness is certainly a goal for future
research. Figure 5 shows the distributions for 800 tokens for
the different τj . The mean lateness ranges from 40 to 450
seconds. For larger τj the distributions are very similar and
relatively grouped, while for the smaller ones they tend to be
less grouped, with the one for τj ≤ 16 having a somewhat
longer tails, hence favouring τj > pj .

The even and underloaded scenarios make it easier to assess
the loss of resource imposed by the algorithm. In the even sce-
nario, we can see a larger standard deviation in global resource
usage and a larger relative standard deviation in the mean of
mean latenesses. This is due to the fact that when the pressure
on the central resource is no longer controlled, when under 50,
the full randomness of the requested positions shows directly.
This is even more the case in the underloaded scenario, where
basically no control is imposed by the tokens, but only a lower
performance due to the potential unavailability of tokens at the
right moment. Hence the means in these two cases are more
important than the standard deviations. And we can observe
that in the underloaded scenario, the mean resource usage and
the mean of mean lateness are close to 33.3 and 0, showing a
low impact of the token-based scheme per se.



V. CONCLUSION

In this paper, we have presented a new token-based scheme
for large-scale coordination in decision-making for autonomic
systems that provides for statistical guarantees on the quality
and fairness of the coordination. The coordination addresses
the fair distribution of a central resource of limited capacity
among autonomic managers adapting managed elements in
a way that changes their resource consumption. In our geo-
tracking use case, it allows more precisely to coordinate the
decisions of autonomic managers adapting the rate of position
sendings for their managed element while making sure that the
overall rate of position processing does not exceed the total
processing capacity. This capacity is divided up into tokens
of fixed period circulating by random walks on an overlay
networks of autonomic managers. When autonomic managers
need to plan the next position sending for their managed
element, they must hold or capture the necessary tokens.

Our main contributions lie in the quantitative nature of
tokens experimented in our coordination scheme, in a novel
simple local rule to capture and release tokens, and in large-
scale experiments on systems of 10.000 autonomic managers.
Contrary to token-based distributed k-mutual exclusion where
tokens represent a binary access right, our tokens represent
available shares of quantitative resources. After experiments
showing that fluidity in the circulation of tokens is essential
to a good coordination, we have proposed a simple parameter
τj to control it. τj is the delay during which a token can be
kept before using it to access the resource. Experiments on
our geotracking use case have shown that, on an overloaded
scenario, our scheme can achieve as much as 98–99% in the
global usage of the shared resource with a standard deviation
of less than 1%. Fairness is also very good, the ratio standard
deviation over average being kept under 25%. Overall, very
good coordination results are obtained for a wide spectrum of
parameter values and system’s regimes.
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