A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex
Nicolas Renier, Chloé Dominici, Reha Erzurumlu, Claudius F. Kratochwil, Filippo Rijli, Patricia Gaspar, Alain Chédotal

To cite this version:
Nicolas Renier, Chloé Dominici, Reha Erzurumlu, Claudius F. Kratochwil, Filippo Rijli, et al.. A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex. eLife, eLife Sciences Publication, 2017, 6, pp.e23494. 10.7554/eLife.23494. hal-01502314

HAL Id: hal-01502314
https://hal.sorbonne-universite.fr/hal-01502314
Submitted on 5 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex.

Nicolas Renier¹,‡, Chloé Dominici¹, Reha S. Erzurumlu², Claudius F. Kratochwil³,#, Filippo M. Rijli³,⁴, Patricia Gaspar⁵ & Alain Chédotal¹,†

¹ Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France.
² Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201-1075, USA
³ Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
⁴ University of Basel, 4003 Basel, Switzerland
⁵ INSERM, U839, Institut du Fer à Moulin, Paris, F-75005, France
‡ Present address: ICM – Brain and Spine Institute, Hôpital de la Pitié-Salpétrie, 47 Bd de l'Hôpital, 75013 Paris, France
Present address: Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
† Correspondence should be addressed to Alain Chédotal, E-mail: alain.chedotal@inserm.fr, or Nicolas Renier, Email: nicolas.renier@icm-institute.org
Abstract

In mammals, tactile information is mapped topographically onto the contralateral side of the brain in the primary somatosensory cortex (S1). Here we describe that in Robo3 mouse mutants a sizeable fraction of the trigemino-thalamic inputs project ipsilaterally rather than contralaterally. The resulting mixture of crossed and uncrossed sensory inputs creates bilateral whisker maps in the thalamus and cortex. Surprisingly, these maps are segregated resulting in a duplication of whisker representations and a doubling of the number of barrels without changes of the S1 size. Sensory deprivation shows competitive interactions between the ipsi/contralateral whisker maps. This study reveals that the somatosensory system can form a somatotopic map to integrate bilateral sensory inputs but organizes the maps in a different way than in the visual, or auditory systems. Therefore, while the molecular pre-patterning constrains their orientation and position, the preservation of the continuity of inputs defines the layout of the somatosensory maps.
Introduction

Sensory maps in the brain need to integrate physical (topographic) and functional constraints. According to the type of sensory modality, these constraints are differently accommodated. In the somatosensory system, the sensory receptors of the periphery establish topographic replicas in the different brain relay stations, in brainstem, thalamus and cortex, with a size that is roughly proportional to functional importance of the sensory element represented (Penfield and Boldrey, 1937; Woolsey and Van der Loos, 1970).

While some of the main construction principles of these maps have been elucidated implying a collaboration of morphogenetic gradients and neural activity (Fukuchi-Shimogori and Grove, 2003; Pfeiffenberger et al., 2005; Rash and Grove, 2006), a point of continued controversy is the degree to which the initial clustering and topographical arrangement of axons carrying the inputs plays a role in map layout (Erzurumlu and Gaspar, 2012).

The contributions of molecular pre-patterning versus nearest-neighbor clustering can be tested in bilateral sensory maps that integrate bilateral signals where the inputs come from each side of the body and therefore arrive via separate routes. Manipulating the laterality of inputs can also be a way to probe the mechanisms of bilateral integration during map-building. This has been tested previously in the visual system (Rebsam et al., 2009). However, the natural overlap of the receptive fields for a portion of retinal ganglion cells between the left and right eyes could also constrain the topographic organization of the binocular visual cortex. Thus experiments done in the visual system do not allow easy disambiguation of the different mechanisms at play during the establishment of the map. Evidently, there is no such continuity and...
overlap between the somatosensory receptive fields of the left and right sides of the body. Therefore, if genetic patterning were the main factor controlling the integration of bilateral sensory processing in the cortex, one would expect that changing the laterality of a fraction of somatosensory inputs would create an equivalent of a “binocular” region in the somatosensory cortex. To the opposite, if the map-building rules maintains nearest-neighbor’s interactions, one would expect that such manipulation would result in a fully segregated representation of bilateral inputs in the cortex. Here we examined the effect of partial uncrossing of presynaptic afferents to the somatosensory thalamus in the whisker to barrel pathway of mice.

The sensory afferents from the whisker follicles first synapse in the brainstem trigeminal complex and second order neurons in the principal sensory nucleus of the trigeminal nerve (PrV) carry the whisker-specific inputs to the contralateral ventroposteromedial nucleus (VPM) of the thalamus (Figure 1A; reviewed in (Erzurumlu et al., 2010)). In the present study we focused on a conditional mouse mutant in which Robo3, an axon guidance receptor necessary for the crossing of commissural axons (Sabatier et al., 2004) is inactivated in rhombomere 3 (Renier et al., 2010), the origin of most whisker-specific PrV neurons (Oury et al., 2006). The conditional lack of Robo3 only caused a partial crossing defect of trigemino-thalamic axons. Consequently, conditional Robo3 mutants had bilateral sensory afferents in the brainstem to neocortex portion of the whisker-barrel pathway. We found that this resulted in the appearance of two functional whisker maps in the thalamic relay, VPM, and the barrel cortex, each receiving inputs from a different side of the animal’s face. Most interestingly, these maps were entirely segregated, both being confined to the cortical space normally allocated to the facial whisker representation, retaining a correct orientation, and topographic organization. These results suggest that the
mechanisms shaping the topographic representation of the somatosensory map respect the nearest-neighbor continuity of the peripheral receptors topography, within the position and orientation constrains set by the molecular pre-patterning gradients in the thalamus and cortex.

Results

Genetic perturbation of midline crossing signals and emergence of bilateral somatosensory maps.

We analyzed the whisker to barrel projection in a previously characterized mouse line (Renier et al., 2010) in which the Robo3 gene has been specifically knocked out in rhombomeres 3 (r3) and r5, using the Krox20 promoter (Krox20:Cre;Robo3lox/lox, named Robo3R3-5-cKO thereafter, while Krox20:Cre;Robo3lox/+ are named Robo3R3-5-Het). During development, Robo3 is transiently expressed in r3 neurons, with an expression that stops shortly after axon crossing, suggesting that it does not play a role in later stages of development such as axon targeting (Badura et al., 2013; Michalski et al., 2013; Renier et al., 2010). As expected, in situ hybridization confirmed that Robo3 expression is deleted from r3 in 12 days old (E12) Robo3R3-5-cKO embryos (Figure 1B, n= 3/3).

To visualize the trigemino-thalamic pathway, we crossed Robo3R3-5-cKO mice to Tau-lox-Stop-lox-mGFP-IRES-nls-lacZ mice (TauGFP) (Hippenmeyer et al., 2005). In E12 controls many GFP+ axons cross the midline at the r3 and r5 level (Figure 1B-D). The βGal nuclear reporter showed a dense distribution of Krox20+ cell bodies in the ventral region of the PrV nucleus as expected from previous fate-mapping experiments (Oury et al., 2006). In the Robo3R3-5-cKO;TauGFP, the distribution of βgal+ neurons, and organization of barrelettes was normal, indicating that ROBO3
deletion did not alter the development of the PrV nucleus (Figure 1C and Figure 1-figure supplement 1). By contrast, most of the GFP-labelled axons arising from the PrV failed to cross, although they still projected rostrally towards the forebrain (Figure 1B-D; n=3/3). At E13, coronal sections at the level of r3 showed that the density of GFP+ commissural axons at the ventral midline was strongly reduced in the Robo3R3-5-cKO;TauGFP but also indicated that a subset of axons still crosses (Figure 1B). Double staining for NeuN and the nuclear cre reporter β-gal in adult sections of Robo3R3-5-Het;TauGFP mice (Figure 1-figure supplement 1; n=5) showed that 88% NeuN+ neurons in the ventral part of PrV express βgal but that a small subset of the NeuN+ PrV neurons (10.7± 1.5%) was not βgal+ and probably did not express Cre recombinase.

As ephrins and their receptors have been shown to control the targeting and orientation of thalamocortical projections for visual or somatosensory axons (Dufour et al., 2003; Pfeiffenberger et al., 2005), we checked the pattern of ephrin-A5 mRNA expression at P0 in controls and Robo3R3-5-cKO mutants by in-situ hybridization. The expression gradients of ephrin-A5 in the cortex and thalamus were not noticeably different in the mutants compared to controls (Figure 1E, (n=2)) suggesting that the deletion of Robo3 in the brainstem did not affect the expression of patterning cues in the thalamus and cortex.

3D imaging of the trajectory of the trigemino-thalamic (TT) tract from the brainstem to the thalamus using iDISCO (Renier et al., 2014) (Figure 2A) revealed that at P4, the GFP+ axons had a similar trajectory in the TT tract in both the control and mutant mice (n=5), although the tract appeared slightly more defasciculated in the mutants. GFP+ axon terminals arborized in the VPM in both control and mutant mice and formed barreloids (Figure 2A, B; Video 1). In all mutants and controls (n=14 for each
genotype), the r3-derived GFP+ (r3-GFP+) axons projected to the dorsolateral VPM containing the barreloids (Figure 2B). An abnormal organization of the whisker barreloids was noted in the mutant VPM. In controls, all the barreloid rows coincided with a dense r3-GFP+ axon territory (Figure 2B; n=4/4), whereas in mutants two distinct zones were observed (n=4/4): a lateral VPM domain containing a high density of GFP+ axons and a medial VPM domain with only sparse patches of GFP+ axons (Figure 2B). These two VPM domains contained barreloids as noted with cytochrome oxidase staining and were of comparable surface area in coronal sections through the middle of the VPM (0.19±0.006 mm² for the lateral dense GFP+ domain and 0.18±0.003 mm² for the medial patches of GFP+ domain, P=0.46). Moreover, they were separated by a cytochrome oxidase-free septum. These observations suggested that in the Robo3R3-5-cKO mice, the VPM became split into two separate domains, each with a different barreloid patterning (although the lateral one contains the highest density of the r3-derived projections, and the larger barreloids).

We anterogradely traced the PrV to VPM projections in P4 Robo3R3-5-cKO mice using carbocyanine dyes. In control mice the PrV-VPM projection was completely crossed whereas in mutants the VPM received a bilateral innervation from the PrV (Figure 2C). Moreover, the position, shape and size of the traced projections in the VPM was reminiscent of the two domains described previously, suggesting that in the mutants, the dense GFP+ lateral region might correspond to abnormal ipsilateral projections from the PrV, while the medial patches might be originating from the contralateral side.

These observations indicate that the mutant VPM receives segregated ipsilateral and contralateral trigemino-thalamic inputs. Retrograde injections from the VPM labeled
cell bodies on both contralateral and ipsilateral trigeminal PrV nuclei in Robo3R3-5-cKO mutants (3.3 times (n=3) more cell bodies were labeled ipsilaterally than contralaterally) (Figure 2D; n=4/4). Interestingly, the neurons projecting ipsilaterally and contralaterally were mixed in the ventral PrV in the Robo3R3-5-cKO mutants, in contrast with the segregation of their projections seen with the anterograde tracings.

Overall these data suggest that a large fraction of the rhombomere 3-derived trigemino-thalamic axons project ipsilaterally in Robo3R3-5-cKO mutants but that some still project contralaterally either because Cre recombination was incomplete or occurred after crossing.

It is possible that the timing of arrival of the ascending axons in the VPM could participate in the segregation of the ipsilateral and contralateral domains because of their shorter path in the mutants. Ipsilateral axons in mutants may reach the VPM first and occupy the dorso-lateral quadrant of the VPM normally populated by the larger barreloids in controls. We looked at the development of the trigemino-thalamic (TT) tract at E15.5 in Robo3R3-5-cKO;TauGFP mutant embryos, when axons from the PrV have not yet reached their targets in the VPM (Figure 2-figure supplement 1A, n=3) (Kivrak and Erzurumlu, 2013). In this line, both ipsilateral and contralateral PrV projections to the VPM are GFP+. To selectively label contralateral PrV axons, we injected DiI unilaterally into the PrV. In the TT tract, red axons (DiI+ only), yellow axons (double positive for GFP and DiI), and green axons (GFP+) were organized in a medial to lateral gradient (Figure 2-figure supplement 1A, n=3), suggesting that ipsilateral and contralateral axons in the TT tract might be pre-sorted before reaching their target. Ipsilateral (green only) axons were always seen next to contralateral axons (red and yellow) in the TT tract up to the rostral-most sections containing the endings/growth cones of the developing axons. Therefore, ipsilateral axons had no
measurable lead over contralateral axons before reaching the VPM at this stage. Indeed, in both *Robo3R3-5-Het;TauGFP* and *Robo3R3-5-cKO;TauGFP* mutants E18 embryos, the TT have reached the VPM and its terminals fill the whole dorsal region (Kivrak and Erzurumlu, 2013) (*Figure 2-figure supplement 1B*, n=3). However, the precise timing of arrival for the contralateral and ipsilateral axons in the mutant VPM is difficult to assess. While we did not find evidence for a delayed arrival of the contralateral TT projections in the VPM, we cannot rule out that ipsilateral projections reach their targets earlier and hence have a competitive advantage to innervate the VPM.

To determine the 3D organization of the VPM map in the *Robo3R3-5-cKO* mutants, and the origin of the GFP+ patches, we performed whole-mount imaging of brains from *Robo3R3-5-cKO;TauGFP* mutants and heterozygous controls at P8 using iDISCO (*Figure 3*) (Belle et al., 2014; Renier et al., 2014). A suitable angle was determined for the optimal projection of the barreloids in the thalamic whisker map onto a plane: 3D datasets where oriented at a 45° oblique angle from both coronal and horizontal planes (*Figure 3A, Figure 3-figure supplement 1A and Video 2*). In the *Robo3R3-5-cKO;TauGFP* mutants, the GFP dense and patched regions were manually segmented to show their respective 3D domains. In both regions, barreloids were organized in rows reminiscent of the control VPM map (*Figure 3A and Figure 3-figure supplement 1B*, n=3).

To determine whether each region corresponded to a distinct whisker map we performed unilateral lesions of the infraorbital nerve (ION) at P0 and the GFP+ projections in the VPM were imaged at P8. In control mice, the unilateral ION lesions caused a fusion of the barreloids in the contralateral VPM (*Figure 3B and Figure 3-figure supplement 1C;* n=3). In mutants barreloid-fusion was found in both the
ipsilateral and the contralateral VPM: ipsilaterally, in the GFP-dense region, and contralaterally in the GFP-patched region (Figure 3B, n=5). This indicated that, as suggested by the tracing experiments, the GFP dense region in the VPM receives ipsilateral inputs from the PrV, whereas the GFP-patched region receives contralateral inputs. This also demonstrated that the GFP-patched region carries somatosensory inputs from the infraorbital branch of the trigeminal nerve. Moreover, in addition to the fusion of the barreloids, the thalamic map that sustained sensory deprivation was reduced in size, while the adjacent non-deprived map was enlarged (Figure 3C, n=5). This showed that sensory-activity-based competition defines the final space allocated to each map in the mutant VPM.

To verify whether both maps in the VPM received inputs from the periphery, we performed an intact brain c-Fos immunolabeling in control and mutant mice whose whiskers were shaved on the left side, and b, d rows were spared on the right side (n=3). The intact brain immunolabeling gave us the opportunity to navigate the complex 3D organization of the VPM using arbitrary oblique projection planes (Figure 4A). In controls, two bands of c-Fos+ cells were seen contralateral to the spared whiskers, revealing the B and D rows barreloids (Figure 4B). In Robo3R3-5-cKO mice, a dual band pattern in the VPM was seen on both sides of the brain. In the ipsilateral VPM, the bands were visible on the same intersecting plane as controls. On the contralateral VPM, the bands of activity were visible on a a more medial plane, at the edge of the VPM annotation.

Overall these experiments provide a model for the organization of the VPM in Robo3R3-5-cKO mutant mice (Figure 3D and Figure 4C). In the mutant VPM, sensory inputs from the ipsilateral PrV establish a dorsolateral map, with dense projections. Adjacent to this map, inputs from the contralateral PrV project to the dorso-medial
VPM as discrete patches. These 2 thalamic maps are organized in rows, reminiscent of the normal thalamic map. Our finding that whisker stimulation triggers activity-related expression in the 2 VPM maps in the mutant suggests that the barreloid organization is functional (Figure 4C).

Formation of bifacial cortical maps

Next, we determined how the VPM organization in the mutant influences the formation of the somatosensory map in the cerebral cortex. Tangential sections through layer 4 were stained for cytochrome oxidase and Vglut2 immunoreactivity to label thalamocortical afferents (Nahmani and Erisir, 2005) (Figure 5A and Figure 5-figure supplement 1A). A striking abnormality in the layout of thalamic afferents was noted in the posteromedial barrel subfield (PMBSF, which corresponds to the representation of the large whiskers) of S1 in Robo3R3-5-cKO mice (n=5/5; Figure 5A). Large barrels were extra-numerous (52±2 barrels in mutant PMBSF vs. 33±0 in controls), and were reduced in size (0.04mm² ± 0.01 per barrel in mutants, compared to 0.09mm²±0.02 in controls, P<0.0001). Moreover, they were arranged into 8 rather than the usual 5 whisker rows, with a clear delineation of two separate cortical zones, a central zone, and a peripheral zone, each containing distinct barrel rows (Figure 5A and Figure 5-figure supplement 1-3). These abnormalities were similar in both hemispheres and at all ages analyzed (with only slight individual variations; n=25/25; Figure 5-figure supplement 1-3). To map the functional whisker representation in this unusual map, we monitored the activation of the immediate early gene c-Fos following a one-hour exposure to an enriched sensory environment (Staiger et al., 2000). In mice with unilateral trimming of the whiskers (Figure 5B) strong c-Fos labeling is normally observed only in the S1 contralateral to the intact whiskers. In
Robo3R3-5-cKO mice with unilateral whisker trimming, c-Fos was activated in the PMBSF of both hemispheres (Figure 5B). Contralateral to the intact whiskers, c-Fos activation was visible in the peripheral barrel rows (contra domain; Figure 5B). Ipsilateral to the intact whiskers, a mirror image was noted with c-Fos activation in the central barrel rows (Ipsi domain; Figure 5B). In both contralateral and ipsilateral patterns, c-Fos+ cells were detected in all layers from the columns of the stimulated barrels (Figure 5B-figure supplement 3B). These results showed that in Robo3R3-5-cKO mice, the crossed and uncrossed trigemino-thalamic inputs are mapped as two segregated domains, the ipsilateral one nested within the contralateral map (Figure 5B).

Orientation and polarity of the maps.

The segregation of the two maps led to the question of its topographic organization. Two scenarios are possible: i) the thalamic afferents follow topographic molecular guidance cues expressed in the cortex, with complementary receptor expression in the thalamus; in this case one would expect that neighboring whiskers of the ipsi- and contralateral map lie in register with one another; ii) the thalamic afferents are clustered following sensory activity-based rules leading functionally coordinated afferents to cluster together; in this scenario, the topographical rule of near neighbors would prevail over molecular gradients. To analyze the topographic alignment of the crossed and uncrossed somatosensory maps we monitored c-Fos expression in S1 after clipping all whiskers except one row or one arc of whiskers on one side (Figure 5C and data not shown). When the 5 posterior most whiskers of the whisker pad (A1-E1; Figure 5C) were left intact in control mice, this resulted in the activation of c-Fos in a caudal arc of 5 barrels exclusively in the contralateral S1 (Figure 5C). Likewise,
when the second whisker row (B1-B4; Figure 5C) was left intact, the corresponding row of barrels was activated in the contralateral S1 (Figure 5C). In mutants, c-Fos activation was bilateral, with a labeling in both the central (ipsi) and peripheral (contra) PMBSF domains (Figure 5C). The general orientation of the two nested maps was similar and resembled that of control mice likely due to the patterning activity of morphogens that determine the polarity of the map (Fukuchi-Shimogori and Grove, 2001; 2003). However, unlike the visual or auditory bilateral maps, we observed that there were discontinuities in the organization of the bilateral somatotopic map, such as a lack of topographic proximity of the ipsi/contra representation for a given barrel or barrel row. Rather, there appeared to be a clear separation and independence of the ipsi- and contralateral inputs. Taken together, these results favor the hypothesis that nearest-neighbor’s interactions prevail to some extent over the molecular pre-patterning to organize a continuous representation of the periphery for each map. However, the molecular gradients still contribute to maintain the general orientation of the maps.

Competition between ipsi- and contralateral inputs for cortical space

The space occupied by the barrel map was not increased in mutants (2.32±0.05 mm² in controls vs 1.90±0.12 mm² in mutants, P=0.04) unlike in other mouse models with duplication of the S1 map where a second S1 map is formed at the expense of other cortical areas (Fukuchi-Shimogori and Grove, 2001; 2003). This suggested that the ipsi- and contralateral thalamic inputs compete to occupy a defined cortical space in S1. Accordingly, individual barrels in mutants were roughly half the size (44±2%) of controls. As with the VPM, we looked again at the consequences of unilateral deprivation of whisker inputs induced by a neonatal (P1) lesion of the ION (Waite and
Cragg, 1982). In control mice, barrel-fusion was observed in the S1 contralateral to the lesion (Figure 6A; n=3/3). In mutants, barrels fused in the maps corresponding to the ipsi- and contralateral representations of the lesioned whisker pad (Figure 6A; n=5/5). Furthermore, the representation of the unlesioned side expanded at the expense of the fused-map. This suggests that there is a sensory activity-dependent competition for cortical space between the ipsilateral and contralateral sensory inputs in the mutant S1.

Finally, we checked whether the ipsilateral and contralateral maps were functionally isolated. We took advantage of the ClearMap pipeline (Renier et al., 2016) to compare c-Fos activity patterns in the whole brain in an unbiased way, in the unilateral whisker stimulation protocol (n=3 per group) (Figure 7A and Figure 7-figure supplement 1). We looked for brain regions that exhibited left-right differences that were opposite in controls and mutants. As expected, the barrel cortex and VPM exhibited statistically significant differences between the shaved and stimulated sides of the brain, that were opposite between controls and mutants (Figure 7A). Of note, the column of activity detected in d-row registered precisely in the same position in control and mutants, showing that the absolute position of the d row in the brain is the same in the aberrant ipsilateral map of the mutant mice than in controls. We then isolated c-Fos+ cells from the upper cortical layers (n=4). In upper layers, contrary to layer 4, activity patterns are not restricted to the stimulated barrels (Figure 7B), but expand over adjacent barrels, due to downstream cortical integration (Kaliszewska et al., 2012; Peron et al., 2015). We looked at the effect of a patterned sensory deprivation created by trimming rows b and d on one side and shaving all whiskers on the other side. Expansion of c-Fos+ cells was observed
within both maps between activated rows in the upper cortical layers 2-3 (**Figure 7B**), but not across the boundaries of each map. This suggests that the ipsilateral and contralateral whisker maps have little to no direct horizontal integration in the upper cortical layers.

Discussion

Here we show that uncrossing a sizeable fraction of the trigemino-thalamic axon tracts results in an unexpected anatomical and functional organization in the thalamus and neocortex: a duplication of the facial whisker representation with two segregated maps sharing the same cortical space allotted to somatosensory function. If the targeting of the ascending axons was solely organized in a point-to-point manner by patterning gradients in the thalamus and cortex, this genetic manipulation should have resulted in the formation of an interspersed “biwhisker” representation of the whiskers in both thalamic and cortical relays. Instead, we observed a complete segregation of the ipsi and contralateral whisker maps, each map following the spatial continuity of inputs from the whiskers. However each map retained a correct orientation and topographic organization. This shows that genetic pre-patterning and the preservation of the continuity of inputs interact to control respectively the position and layout of the somatosensory maps. The absence of left-right mixing of inputs in the Robo3^{R3.5-RL-CKO} mutant somatosensory cortex also suggests that the mechanisms allowing the integration of bilateral inputs in the visual cortex might be absent in the somatosensory cortex.

The effect of uncrossing commissures has been studied in the same conditional Robo3 mutant in other systems: the olivo-cerebellar projections (Badura et al., 2013)
and the auditory projections from the cochlear nucleus to the medium nucleus of the trapezoid body (Michalski et al., 2013). In these two studies, it was found that affecting the laterality of the projections did not affect the topographic targeting of the uncrossed axons. However, in the case of the calyx of Held, the maturation of the uncrossed synapses was delayed (Michalski et al., 2013). It is unclear whether midline crossing changes the molecular expression profile of the axons to promote the synaptic maturation or whether this is an indirect effect of an incorrect integration within an otherwise normal network. It would be important to check the physiological properties of the ipsilateral map, especially because this new model provides the opportunity to study the cortical integration of an abnormal circuit.

The absence of bilateral integration between the two maps in the cortex of Robo3 mutants strikingly differs from what is observed in the binocular region of the visual cortex (Sato and Stryker, 2008). The particular organization of the two embedded whisker maps emphasizes an important characteristic of the somatosensory system which combines two different mapping rules, the first being the continuous topographic representation of the body surface, the second being an organization into distinct functional units. The organization of bilaterality in the somatosensory cortex happens differently when forced in the Robo3^{R3-5-CKO} mice than in the normal visual cortex. This raises the tantalizing possibility that specific molecular and activity-based mechanisms absent from the somatosensory system have appeared in the visual system to promote the integration of bilateral information in the cortex, and could therefore be an evolutionary mechanism governing how sensory information is processed in Bilateria.

Orientation of representations and cortical plasticity
Contrary to previous observations of experimental map duplication (Fukuchi-Shimogori and Grove, 2001) the present orientation of the two whisker maps was similar in the general rostrocaudal and mediolateral axes, indicating that matching gradients of guidance molecules and their receptors was most likely unchanged, which was confirmed for ephrin-A5 (Figure 1E). This contrasts with the mirror image organization of the sensory maps obtained when inducing novel sources of molecular gradients in the somatosensory cortex (Fukuchi-Shimogori and Grove, 2001). This also contrasts with observations of map duplication in the visual system, caused by a change in the retinal axon crossing at the midline (Petros et al., 2008; Rebsam et al., 2009), by lack of one eye (Trevelyan et al., 2007) or by lack of one hemisphere (Muckli et al., 2009).

The normal orientation of the ipsilateral map in the mutants is surprising. One might have expected that switching laterality of the normally crossed projections would flip the axis of the ipsilateral map from the contralateral map to account for the chiral organization of the left and right sides of the face. As both maps in the mutants respect the normal orientation, the ascending tract from the ipsilateral side may either undergo a torsion en route to the VPM to correct the orientation based on molecular gradients present in the lemniscal pathway. Alternatively, the correction of the orientation may occur only at the target site in the VPM based on the gradients of expression of Eph receptors/ephrin ligands in a process akin to the visual tectum (Feldheim et al., 1998; Tessier-Lavigne, 1995). If true, this hypothesis implicates the presence of additional mechanisms of axonal pruning and refinement as seen during the post-targeting development of visual projections (Nakamura and O'Leary, 1989; Simon et al., 2012) to correct the final orientation of the ipsilateral map.
In conclusion, although the initial wiring of the brain largely relies on genetically encoded processes, our results further illustrate the remarkable plasticity of the mammalian brain and its ability to accommodate changes in afferent wiring in evolution to create new maps and bilateral representations, and also its ability, in the context of developmental brain disorders, to compensate for major axon guidance defects that otherwise would lead to severe brain dysfunction (Jen et al., 2004; Muckli et al., 2009; Williams et al., 1994).

Materials and Methods

Mice

All animal procedures were carried out in accordance to institutional guidelines (UPMC, Charles Darwin ethic committe and INSERM). Mice were anesthetized with Ketamine (Virbac) and Xylazine (Rompun). The day of vaginal plug is embryonic day 0 (E0) and the day of birth corresponds to postnatal day 0 (P0).

The Robo3 conditional knockout, Krox20:Cre knock-in and TauGFP lines were previously described (Hippenmeyer et al., 2005; Renier et al., 2010; Voiculescu et al., 2000). Unless otherwise mentioned, controls were Robo3lox/lox or Krox20:Cre;Robo3lox/+ animals. Double heterozygotes were always similar to wild-type mice. Mice were genotyped by PCR.

The following primers were used for genotyping: the conditional Robo3 allele, 5'-CCA AGG AAA AAC TTG AGG TTG CAG CTA G-3' and 5'-GAT TAG TAG GGG AGG TGA GAC ATA GGG-3', the Krox20:Cre allele, 5'-AGT CCA TAT ATG GGC AGC GAC-3' and 5'-ATC AGT GCG TTC GAA CGC TA-3', the TauGFP allele, 5'-GAG GGC GAT GCC ACC TAC GGC AAG-3' and 5'-CTC AGG GCG GAC TGG GTG CTC AGG-3'.

All PCR run have 34 cycles with an annealing temperature of 58°C.
In the TauGFP line, upon Cre recombination in neurons, the Stop cassette is excised leading to the permanent expression of a myristoylated GFP in axons and of β-galactosidase in nuclei (Hippenmeyer et al., 2005).

Histology and immunocytochemistry

Mice were perfused transcardially with a 4% PFA in 0.12 mM phosphate buffer. Cortices were flattened between microscope slides and post-fixed in 4% PFA and vibratome (Leica) sectioned at 50µm. Hindbrains and thalamus were post-fixed in 4% PFA, cryoprotected in 30% sucrose and sectioned at 35µm with a freezing microtome (Microm).

For cytochrome oxidase staining (Melzer et al., 1994), sections were incubated at room temperature for 24 hours in 10% sucrose, 0.3g/L cytochrome C from equine heart (Sigma), 0.02g/L catalase from bovine liver (Sigma) and 0.25g/L DAB (Sigma). The endogenous fluorescence of the GFP in Krox20:Cre;TauGFP was not affected after the treatment and could be imaged on the same sections, however the GFP signal was further enhanced by immunostaining.

For immunohistochemistry, neonatal and adult brains were processed as described previously (Marillat et al., 2002). The following primary antibodies were used: guinea pig anti-Vglut2 (1:1000, Millipore AB-2251), rabbit anti-βGal (1:1000, 55976 Cappel), rabbit anti-c-Fos (1:1000, sc-52 Santa-Cruz on sections, or 1:2000, 226-003 Synaptic Systems, for iDISCO+ studies), rabbit anti-GFP (1:300, A11122 Invitrogen on sections), chicken anti-GFP (1:800, ab13970 Abcam on sections or 1:2000, GFP-1020 Aves for iDISCO studies). The following secondary antibodies were used on sections: Donkey anti-mouse, anti-rabbit and anti-guinea pig coupled to CY3 or CY5 (1:600, Jackson Laboratories), donkey anti-mouse, anti-rabbit and anti-chicken.
coupled to Alexa Fluor 488, 568 or 657 (1:600, Invitrogen) for sections and iDISCO studies. Sections counterstained with Hoechst 33258 (10 µg/mL, Sigma)

Sections were examined with a fluorescent microscope (DM6000, Leica) equipped with a CoolSnapHQ camera (Roper Scientific), a confocal microscope (FV1000, Olympus), or a slide scanner (Nanozoomer, Hamamatsu).

iDISCO+ processing and light sheet microscopy

Adult mice or P4, P8 pups were euthanized with a rising gradient of CO₂ and fixed with an intracardiac perfusion of 4% PFA in PBS. All harvested samples were post-fixed overnight at 4°C in 4% PFA in PBS.

Fixed samples were washed in PBS for 1h twice, then in 20% methanol (in ddH₂O) for 1h, 40% methanol for 1h, 60% methanol for 1h, 80% methanol for 1h, and 100% Methanol for 1h twice. Samples were then bleached with 5% H₂O₂ (1 volume of 30% H₂O₂ for 5 volumes of methanol, ice cold) at 4°C overnight. After bleaching, samples were re-equilibrated at room temperature slowly and re-hydrated in 80% methanol in H₂O for 1h, 60% methanol / H₂O for 1h, 40% methanol / H₂O for 1h, 20% methanol / H₂O for 1h, and finally in PBS / 0.2% TritonX-100 for 1h twice.

Pre-treated samples were then incubated in PBS / 0.2% TritonX-100 / 20% DMSO / 0.3M glycine at 37°C for 36h, then blocked in PBS / 0.2% TritonX-100 / 10% DMSO / 6% donkey serum at 37°C for 2 days. Samples were then incubated in primary antibodies: chicken anti-GFP (1:2000, Aves GFP-1020), rabbit anti-c-Fos (1:2000, Synaptic Systems, 226-003) in PBS-Tween 0.2% with heparin 10µg/mL (PTwH) / 5% DMSO / 3% donkey serum at 37°C for 4 to 7 days. Samples were then washed in PTwH for 24h (5 changes of the PTwH solution over that time), then incubated in secondary antibody donkey anti-rabbit-Alexa647 from Invitrogen or donkey anti-
chicken from Jackson Immunoresearch at 1:500 in PTwH / 3% donkey serum) at 37°C for 4 to 7 days. Samples were finally washed in PTwH for 1d before clearing and imaging. Immunolabeled brains were dehydrated in 20% methanol (in ddH2O) for 1h, 40% methanol / H2O for 1h, 60% methanol / H2O for 1h, 80% methanol / H2O for 1h, and 100% Methanol for 1h twice. Samples were incubated overnight in 1 volume of methanol / 2 volumes of dichloromethane (DCM, Sigma 270997-12X100ML) until they sank at the bottom of the vial (plastic Eppendorf tubes were used throughout the process). The methanol was then washed for 20min twice in 100% DCM. Finally, samples were incubated (without shaking) in DiBenzyl Ether (DBE, Sigma 108014-1KG) until clear (about 30min) and then stored in DBE at room temperature. Cleared samples were imaged in sagittal orientation (right lateral side up) on a light-sheet microscope (Ultramicroscope II, LaVision Biotec) equipped with a sCMOS camera (Andor Neo) and a 2X/0.5 objective lens (MVPLAPO 2x) equipped with a 6mm working distance dipping cap. Version v144 of the Imspector Microscope controller software was used. The microscope is equipped with LED lasers (488nm and 640nm) with 3 fixed light sheet generating lenses. Scans were made at the 0.8X zoom magnification (1.6X effective magnification), with a light sheet numerical aperture of 0.1. Emission filters used are 525/50 and 680/30. The samples were scanned with a step-size of 3µm using the continuous light sheet scanning method with the included contrast blending algorithm for the 640nm channel (20 acquisitions per plane with a 50ms exposure), and without horizontal scanning for the 480nm channel (50ms exposure). To speed up the acquisitions, both channels where acquired in two separate scans. Maximum 3D projections in Figure 2A and all panels of Figure 3, 4 and 7B were performed using Imaris (Bitplane, http://www.bitplane.com/imaris/imaris), and
generated from manual 3D segmentation of the raw data using the surface tool. ClearMap (Renier et al., 2016) (https://www.idisco.info) was used to quantify and register c-Fos+ cells in Figure 7A. Parameters were set as previously described, and automated isolation of the cortex was done using the scripts available online.

In situ hybridization

Antisense riboprobes were labeled with digoxigenin-11-D-UTP (Roche Diagnostics) as described previously (Marillat et al., 2002) by in vitro transcription of mouse cDNAs encoding robo3 or an exon specific probe of robo3 targeting the floxed region (Renier et al., 2010).

Dil tracing

4% PFA fixed P4 pups were injected with small crystals of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil, Invitrogen) and 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (DiA, Invitrogen) using glass micropipettes. For anterograde tracing, the dye crystals were injected unilaterally in the PrV. For retrograde tracing of the PrV nuclei, the cortices were removed to expose the thalamus and Dil or DiA crystals were at the level of the VPM. Brains were kept at 37°C for 4 weeks. Brains were cut in 80 µm sections with a vibratome (Leica) and counterstained with Hoechst.

Infraorbital nerve lesions

P0-P1 pups were cold anesthetized, and an incision was made between the whisker pad and the eye. The nerve was cut with scissors under a dissecting scope. The pups were allowed to recover for 10 days and then perfused.
c-Fos expression and whisker activity

P20-P30 mice were anesthetized with ketamine, and all whiskers were trimmed on the left side. In different experiments, either all whiskers were spared on the right side, or only selected whisker rows or arcs were spared. Mice were allowed to recover from anesthesia for 6 to 12 hours, and then left alone in a large (1m x 60cm) “enriched” cage in the dark for 1 hour before being perfused and processed for c-Fos immunostaining.

Quantifications and statistical analysis

Areas were calculated with NDPview (Hamamatsu) from cytochrome oxidase staining at P10 or Vglut2 stainings when done in adults. For quantification of map areas from P10 flattened cortices, the surface in controls was limited to the first 4 barrels in row a, 4 in row b, 6 in row c, 7 in row d and 8 in row e. In Krox20:Cre;Robo3lox/lox mutants, the central (ipsi) map area comprises the domain bordered by a thick Vglut2-negative boundary. The peripheral (contra) map area was limited to the barrels located immediately above and below the border of the central ipsi map. To determine individual barrel areas in adults, only the largest unambiguous barrels were measured (first 3 barrels for rows e,d,c and first barrels for rows a and b). Areas where assessed on the tangential section showing the most complete map of the PMBSF.

The areas of the VPM nucleus were calculated with NDPview from frontal sections of P4 Krox20:Cre;TauGFP mice stained with cytochrome oxidase and immunostained for GFP, at a mid-level of the VPM, where the barreloids organization was the most obvious.
Results are presented as means ± SEM. Differences of the means between two sample sets were assessed by two-tailed non-parametric Mann-Whitney test. Statistics were carried out with Prism (Graphpad software).

Acknowledgements

We thank P. Charnay for providing the Krox20:Cre line, and S. Arber for the TauGFP mice. We also thank N. Narboux-Nème for technical help. FMR laboratory was supported by the Swiss National Science Foundation (31003A_149573) and the Novartis Research Foundation. The teams of AC and PG are part of the Ecole des Neurosciences de Paris training network.

Competing interests

We declare no competing interests

References

Feldheim, D.A., Vanderhaeghen, P., Hansen, M.J., Frisén, J., Lu, Q., Barbacid, M.,

Figure 1. Rewiring of r3 and r5 derived hindbrain projections to midbrain/forebrain projections in Robo3R3-5-cKO mice.

(A) Schematic representation of the mouse whisker to barrel somatosensory pathway. (B) Top panels: in situ hybridization (ish) with a robo3 probe on coronal sections at rhombomeres 3 and 2 (r3, r2) level in E12 embryos. No staining is observed in Robo3R3-5-cKO mice in r3. Trigeminal ganglion (V) neurons do not express Robo3. Bottom panels: coronal sections at r3 level in E13 Robo3R3-5-Het;TauGFP or Robo3R3-5-cKO;TauGFP embryos stained for GFP. GFP+ commissures are strongly reduced in mutants, but a few axons are still crossing (arrows). (C) Cytochrome oxidase staining (Cyt. ox.), and βGal, GFP co-immunostaining of coronal sections of P4 Robo3R3-5-Het;TauGFP or Robo3R3-5-cKO;TauGFP brains at the level of the brainstem principal trigeminal nucleus (PrV), showing the barrelettes. Rows a to e are indicated. The barrelette patterns and βGal+ cells distribution is similar in control and Robo3R3-5-cKO mutant mice. aVCN: anterior ventral cochlear nucleus. (D) flat-mount view and scheme of the hindbrain of E12 Robo3R3-5-Het;TauGFP or Robo3R3-5-cKO;TauGFP brains. Commissures are strongly reduced at r3 and r5 levels in mutants but a subset of axons still cross in r3 (arrowheads). GFP+ axons still project rostrally towards the midbrain. (E) Coronal sections at the level of the forebrain VPM thalamic nucleus and barrel cortex of P0 controls or Robo3R3-5-cKO brains hybridized with an ephrin-A5 probe, showing the expression gradients of the molecule, which are unaffected by the conditional deletion of the Robo3.

Scale bars are 400µm, except ish and Cyt. ox (100µm) and E (500µm).

Figure 2. Organization of the projections to the VPM

(A) Whole-mount immunostaining for GFP in Robo3R3-5-Het;TauGFP and Robo3R3-5-cKO;TauGFP P4 brains cleared with iDISCO. Dorsal projections (left) and lateral projections (right) are shown for each case. The Trigemino Thalamic tract has been color-coded in gray, while the rest of the GFP signal is in green. (B) Coronal sections of P4 mouse brain through the sensory thalamus (VPM) stained for cytochrome oxidase. In Robo3R3-5-Het;TauGFP mice, GFP+ axons project to the barreloid area of the VPM. In Robo3R3-5-cKO;TauGFP mice barreloids are found in two regions, a lateral one containing most of the GFP+ axons and a medial one (arrows) containing only a few patches of GFP axons. (C) P4 mice injected bilaterally with DiI and DiA at the level of the PrV nucleus. Sections were collected at the level of the VPM. In controls, the PrV-VPM projection is entirely crossed. In mutants, the VPM receives bilateral inputs from the ipsilateral and contralateral PrV. (D) P4 hindbrain cross sections at the level of the PrV in controls and mutants after unilateral injections of DiA and DiI in the VPM (depicted in the schematics). In controls, PrV trigemino-thalamic projection neurons are labeled by the dye injected in the contralateral VPM. In mutants, the dorsal PrV also has only contralaterally labeled neurons, whereas the ventral PrV contains interspersed ipsilaterally and contralaterally labeled neurons.

Scale bars are 300µm.

Figure 3. Structure of the VPM maps revealed by ION lesions
Whole-mount scans of 3DISCO cleared P8 Robo3R3-5-Het;TauGFP and Robo3R3-5-cKO;TauGFP brains immunostained for GFP. Optical sections and 3D oblique projections are presented. (A) Control and mutant brains, ION intact. The oblique projection reveals the topographic barreloid organization in controls (left panels) or mutants (right panels). In the mutant, the dense and patched domains of GFP+ axons (green and red respectively) were manually segmented. (B) Mutant brains, unilateral ION lesions. The data are presented as in A. On the side contralateral to the lesion, the barreloids in the patched projection map (red) are fused (n=3), while the topographic organization of the barreloids in the dense GFP+ domain is still visible (green). The opposite is seen on the side ipsilateral to the lesion: the dense domain of GFP+ axons (green) reveals a fused map while rows of barreloids are visible in the patched domain (red). (C) Expansion and retraction of the VPM domains in P8 Robo3R3-5-cKO;TauGFP brains after lesions. (D) Model of the VPM organization in mutant mice deduced from the lesions experiments. Scale bars are 300µm.

Figure 4. Bilateral inputs to the VPM in Robo3R3-5-cKO mice
Whole brain iDISCO+ scans from adult mice immunolabeled for c-Fos. The whiskers were shaved on the left side, and B, D rows were spared on the right side. A Presentation of the projection plane used in the following panels: a 45° oblique (from both coronal and sagittal) 50µm projection plane was positioned to intersect with the VPM annotation (in red). B Details of the c-Fos pattern in the VPM of Robo3R3-5-Het and Robo3R3-5-cKO mice on each side. In controls, two bands of c-Fos+ cells were seen on the side contralateral to the spared whiskers, revealing the B and D rows of barreloids. In Robo3R3-5-cKO mice, a dual band pattern in the VPM was seen on both sides of the brain. On the ipsilateral side, the bands were visible on the same intersecting plane as in controls. On the contralateral side, the bands of activity were visible on a plane more medial, at the edge of the VPM annotation. C Representation of the VPM organization in the Robo3R3-5-cKO mice. Scale bars are 500µm.

Figure 5. Bilateral inputs to the barrel cortex in Robo3R3-5-cKO mice
(A) tangential sections through the barrel cortex from P10 mice stained for anti-Vglut2. Barrels are more numerous and smaller in mutants. (B) Tangential sections through Flat-mounted cortices at the level of the barrel cortex in whisker-deprived adult mice immunostained for Vglut2 and c-Fos. In controls, c-Fos+ cell density is high in the barrel cortex contralateral to the intact whiskers and low on the ipsilateral side. In Robo3R3-5-cKO mutants, c-Fos expression is induced bilaterally in complementary domains on either side of the cortex, ipsilateral and contralateral to the stimulated side. (C) Interpretation of the results from (B). (D) Tangential sections through Flat-mounted cortices at the level of the barrel cortex, in whisker-deprived adult mice immunostained for Vglut2 and c-Fos. The left side of the face were fully shaved, while only the first arc (left panels) or b row (right panels) were spared on the right side. Only the contralateral sides are shown for controls. Mutants show bilateral patterns of c-Fos (E) Schematic representation of the whisker map deduced from c-Fos activation patterns. (F) General model for the wiring of the Robo3R3-5-cKO mutant mice. Scale bars are 200µm.

Figure 6 Activity-dependent competition between ipsilateral and contralateral inputs in mutant barrel cortex
Tangential sections of controls or Robo3R3-5-cKO flat-mounted P10 cortices stained for cytochrome oxidase in control conditions or after unilateral lesion of the infraorbital nerve (ION) at P1. In Robo3R3-5-Het controls, the barrels do not form in S1 contralateral to the lesion, whereas a normal map is seen on the ipsilateral side. In Robo3R3-5-cKO mutants, contralateral to the lesion, barrels form in the domain processing ipsilateral inputs and ipsilateral to the lesion a barreless region is noted in the domain processing ipsilateral inputs. The size of the ipsilateral map is indicated to compare with the maps in unlesioned mutants and controls. Quantification of the surface occupied by the large-whiskers barrels is shown on the right side. Scale bars are 200µm.

Figure 7 Cortical integration of sensory information

(A) ClearMap analysis of the c-Fos patterns in iDISCO+ cleared brains in control and mutant mice after 1h of exploration of a new environment (n=3 for each group). The whiskers were shaved on the left side, and b, d rows were spared on the right side. Heatmaps present averaged c-Fos+ cell densities on both sides for 3 brains for each group, and the p-values maps present the voxels statistically different between the left and right sides, in green when the left side is more active, in red when the right side is more active. At the level of the barrel cortex, as expected the activation was reversed between control and mutant maps in both the VPM and cortex, at the level of the d row (arrowheads). (B) iDISCO+ whole-mount c-Fos immunostaining and imaging of adult brains after unilateral stimulation of the rows a, c and e, manually segmented by cortical layers. The pattern in the lower right panel shows the spread of c-Fos+ cells between active rows, but no spill-over of activity from the contralateral map to the adjacent ipsilateral map (arrows show blank rows in layers 2/3). Scale bars are 400µm.
Figure 1-figure supplement 1
Normal organization of the principal trigeminal nucleus (PrV) in Robo3R3-5-cKO mice

(A) Cytochrome oxidase staining of coronal sections of P4 brains at the level of the PrV, showing the barrellettes. Rows a to e are indicated. The barrellette pattern is similar in control and Robo3R3-5-cKO mutant mice. MV: Trigeminal motor nucleus, d: dorsal PrV, v: ventral PrV. (B) Coronal sections at the level of the PrV in adults Robo3R3-5-Het; TauGFP, stained with anti NeuN and anti βGal. βGal- and NeuN+ cells can be found in the ventral PrV (arrowheads).

Scale bars, 400µm and 100µm (A); 200µm and 50µm (B)

Figure 2-figure supplement 1
Tract organization and timing of arrival of Ipsilateral and contralateral projections from the Principal Trigeminal Nucleus (PrV) to the thalamus in the Robo3R3-5-cKO embryos.

(A) Coronal sections of E15.5 Robo3R3-5-cKO; tauGFP embryos (n=3) at the rostral-most level where the axon bundle of the trigemino-thalamic tract (TT) is visible, in the developing thalamus. Contralateral projections from the PrV are labeled with DiI, and r3-PrV axons (ipsi and contra) are labeled with GFP. A medio-lateral gradient of DiI+, Dil+/GFP+ and GFP+ axons is seen in the tract, suggesting that contra- and ipsilateral axons are pre-organized in the tract before reaching the thalamus. Moreover, both contralateral and ipsilateral axons are seen at the end of the developing TT, suggesting an absence of a significant delay in the development of the contralateral tract compared to the ipsilateral tract. (B) Coronal sections of E18 controls and Robo3R3-5-cKO; tauGFP embryos (n=3) at the level of the VPM, shortly after the arrival of the TT axons from the PrV. In the mutants, GFP+ terminals in both the dense and sparse clusters are visible, suggesting that both ipsi- and contralateral populations of PrV axons are present early in the developing VPM.

Scale bars are 100µm.

Figure 3-figure supplement 1

(A) Detail of the projection plane used to reveal the VPM topography in whole-mount GFP labeled P8 brains cleared with 3DISCO. (B) Detail of the manual 3D color-coding used in Robo3R3-5-cKO; TauGFP mutant mice to highlight the different domains of the VPM, based on the pattern of GFP+ terminals (dense or patched). (C) Effect of a neonatal lesion of the infraorbital nerve (ION) in controls Robo3R3-5-Het; TauGFP mice. Barreloids are visible on the side ipsilateral to the lesion, but not on the side contralateral where they are indicated as “fused”.

Scale bars are 300µm.

Figure 5-figure supplement 1
Tangential sections through cortical layer 4 in adult flat-mounted cortices of control and Robo3R3-5-cKO mutant mice stained for Vglut2. Both left and right sides are shown. In mutant animals, the organization of the barrels is similar, but variations on the shape of the inner maps are seen from animal to animal, and also between left and right sides. Scale bars are 500µm.

Figure 5-figure supplement 2
Quantification of the surface of major barrels from tangential sections through cortical layer 4 in P30 control and Robo3R3-5-cKO mutant mice.

Figure 5-figure supplement 3

(A) Tangential sections through cortical layer 4 in P10 flat-mounted cortices of control and Robo3R3-5-cKO mutant mice stained for cytochrome oxidase (Cyt. ox.). The black dashed outline shows the presence of 2 domains in the mutant map, delimited by a cytochrome oxidase-free band. **(B)** Coronal sections through adult brains at the level of the barrel cortex in whisker-deprived mice immunostained for c-Fos and Hoechst. Barrels in layer 4 are indicated. In controls, c-Fos+ cell density is high in the barrel cortex contralateral to the intact whiskers and low on the ipsilateral side. In Robo3R3-5-cKO mutants, c-Fos expression is induced bilaterally in complementary domains on either side of the cortex, ipsilateral and contralateral to the stimulated side. Of note, the bilateral activation of c-Fos in mutants is visible across all cortical layers. Scale bars are 200µm.

Figure 7-figure supplement 1

ClearMap analysis of the c-Fos patterns in iDISCO+ cleared brains in control and mutant mice after 1h of exploration of a new environment (n=3 for each group). Projections of the dorsal cortex are shown. The mice whiskers were shaved on the left side, and B, D rows were spared on the right side. Heatmaps present averaged c-Fos+ cell densities on both sides for 3 brains for each group, and the p-values maps present the voxels statistically different between the left and right sides, in green when the left side is more active, in red when the right side is more active. Scale bars are 2mm.

Video 1. Rhombomere 3 projections from the brainstem to the VPM

Whole-mount immunostaining for GFP in Robo3R3-5-Het;TauGFP P4 brains cleared with 3DISCO. The GFP is showed in green, and the trigemino-thalamic tract has been color-coded in gray.

Video 2. Segmentation of the VPM in Robo3R3-5-Het;TauGFP mutants

Whole-mount immunostaining for GFP in Robo3R3-5-Het;TauGFP P8 brains cleared with 3DISCO. The GFP dense cluster is segmented in green, and the GFP+ patches are color-coded in red.
A

Robo3R3-S-Het
cortical l4 tangential sections
Vglut2
cortical l4 tangential sections

Robo3R3-S-cKO
cortical l4 tangential sections

B

Robo3R3-S-Het
cortical l4 tangential sections
Vglut2

Robo3R3-S-cKO
cortical l4 tangential sections

C

Robo3R3-S-Het
contra inputs

Robo3R3-S-cKO
contra inputs

D

Robo3R3-S-Het
ipsilateral to the spared whiskers side

Robo3R3-S-cKO
ipsilateral to the spared whiskers side

E

Robo3R3-S-Het
arc 1 stimulation
b row stimulation

Robo3R3-S-cKO
arc 1 stimulation
b row stimulation

F

Robo3R3-S-Het

Robo3R3-S-cKO

TG
ION
thalamus
VPM
brainstem
PrV

ION
thalamus
VPM
brainstem
PrV

A
iDISCO+ whole-mount - ClearMap analysis

- **right side:** b, d rows spared
- **left side:** shaved side

25\(\mu\)m ABA annotation coronal plane 228

- **Robo3\(^{R3.5}\)-Het**
 - n=3, average c-Fos+ cells map
 - barrel cortex
 - VPM

- **Robo3\(^{R3.5}\)-cKO**
 - p-values maps
 - (\(p < 0.01\)) higher on the left side
 - (\(p < 0.01\)) higher on the right side

B
Robo3\(^{R3.5}\)-cKO

- **iDISCO+ whole-mount - Imaris render**
 - a, c, e rows spared
 - shaved side

- **layer 4 autofluorescence**
- **3D proj. layer 4**
- **3D proj. layers 2/3**

- **c-Fos**
Figure A: Rojo3R3.5-cKO; TauGFP
- PrV unilateral injection
- Dil tract

Figure B: Rojo3R3.5-Het; TauGFP vs Rojo3R3.5-cKO; TauGFP
- GFP+ cell bodies
- GFP+ axons
- VPM

Rostralmost coronal section containing labeled axons in the lemniscal bundle

Images shown for E15.5 and E18.
vGlut2

Robo3^{R3-5}-Het

left side right side left side right side

adult

left side right side left side right side

Robo3^{R3-5}-cKO

left side right side left side right side

left side right side left side right side
Delta

Gamma

Beta

Alpha

A1

B1

C1

C2

C3

D1

D2

D3

E1

E2

E3

Adapted from: [Reference]
cortical projection, 25μm ABA annotation

Robo3^{R3.5}-Het
n=3, average c-Fos+ cells map

Robo3^{R3.5}-cKO

right side:
rows spared

left side:
shaved side

(p < 0.01) higher on the left side
(p < 0.01) higher on the right side