R. A. Davidoff, The pyramidal tract, Neurology, vol.40, issue.2, pp.332-339, 1990.
DOI : 10.1212/WNL.40.2.332

R. S. Heffner and R. B. Masterton, The Role of the Corticospinal Tract in the Evolution of Human Digital Dexterity, Brain, Behavior and Evolution, vol.23, issue.3-4, pp.165-183, 1983.
DOI : 10.1159/000121494

S. Vulliemoz, O. Raineteau, and D. Jabaudon, Reaching beyond the midline: why are human brains cross wired?, The Lancet Neurology, vol.4, issue.2, pp.87-99, 2005.
DOI : 10.1016/S1474-4422(05)00990-7

A. Chedotal, Further tales of the midline, Current Opinion in Neurobiology, vol.21, issue.1, pp.68-75, 2011.
DOI : 10.1016/j.conb.2010.07.008

H. Nawabi and V. Castellani, Axonal commissures in the central nervous system: how to cross the midline?, Cellular and Molecular Life Sciences, vol.59, issue.5, pp.2539-2553, 2011.
DOI : 10.1007/s00018-011-0691-9

URL : https://hal.archives-ouvertes.fr/hal-00709856

K. Keino-masu, Deleted in Colorectal Cancer (DCC) Encodes a Netrin Receptor, Cell, vol.87, issue.2, pp.175-185, 1996.
DOI : 10.1016/S0092-8674(00)81336-7

URL : http://doi.org/10.1016/s0092-8674(00)81336-7

A. Fazeli, Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene, Nature, vol.386, issue.6627, pp.796-804, 1997.
DOI : 10.1038/386796a0

J. H. Finger, The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons, J Neurosci, vol.22, pp.10346-10356, 2002.

T. Fothergill, Netrin-DCC Signaling Regulates Corpus Callosum Formation Through Attraction of Pioneering Axons and by Modulating Slit2-Mediated Repulsion, Cerebral Cortex, vol.24, issue.5, pp.1138-1151, 2014.
DOI : 10.1093/cercor/bhs395

M. Belle, A simple method for 3D analysis of immunolabeled axonal tracts in a transparent nervous system. Cell Rep, pp.1191-1201, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01083957

S. Marcos, S. Backer, F. Causeret, M. Tessier-lavigne, and E. Bloch-gallego, 410 | DOI:10.1038/s41598-017-00514-z 11 Differential roles of Netrin-1 and its receptor DCC in inferior olivary neuron migration, Mol Cell Neurosci, vol.7, issue.41, pp.429-439, 2009.

R. Bernhardt and N. , DCC mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function, Developmental Biology, vol.366, issue.2, pp.279-289, 2012.
DOI : 10.1016/j.ydbio.2012.03.017

T. Shu, K. M. Valentino, C. Seaman, H. M. Cooper, and L. J. Richards, Expression of the Netrin-1 receptor, deleted in colorectal cancer (DCC), is largely confined to projecting neurons in the developing forebrain, The Journal of Comparative Neurology, vol.17, issue.2, pp.201-212, 2000.
DOI : 10.1002/(SICI)1096-9861(20000110)416:2<201::AID-CNE6>3.0.CO;2-Z

A. Meneret, Congenital mirror movements: Mutational analysis of RAD51 and DCC in 26 cases, Neurology, vol.82, issue.22, 1999.
DOI : 10.1212/WNL.0000000000000477

M. Srour, Mutations in DCC Cause Congenital Mirror Movements, Science, vol.428, issue.1, p.592, 2010.
DOI : 10.1038/386796a0

C. Depienne, A novel DCC mutation and genetic heterogeneity in congenital mirror movements, Neurology, vol.76, issue.3, pp.260-264, 2011.
DOI : 10.1212/WNL.0b013e318207b1e0

C. Gallea, RAD51 deficiency disrupts the corticospinal lateralization of motor control, Brain, vol.136, issue.11, pp.3333-3346, 2013.
DOI : 10.1093/brain/awt258

Q. Welniarz, I. Dusart, C. Gallea, and E. Roze, One hand clapping: lateralization of motor control, Frontiers in Neuroanatomy, vol.175, issue.9, 2015.
DOI : 10.1007/s00221-006-0570-z

URL : https://hal.archives-ouvertes.fr/hal-01221688

J. Peng and F. Charron, Lateralization of motor control in the human nervous system: genetics of mirror movements, Current Opinion in Neurobiology, vol.23, issue.1, pp.109-118, 2013.
DOI : 10.1016/j.conb.2012.08.007

M. Cincotta, Abnormal projection of corticospinal tracts in a patient with congenital mirror movements, Neurophysiologie Clinique/Clinical Neurophysiology, vol.24, issue.6, pp.427-434, 1994.
DOI : 10.1016/S0987-7053(05)80075-9

M. Cincotta, Separate ipsilateral and contralateral corticospinal projections in congenital mirror movements: Neurophysiological evidence and significance for motor rehabilitation, Movement Disorders, vol.49, issue.11, pp.1294-1300, 2003.
DOI : 10.1002/mds.10545

A. Borgheresi, Congenital mirror movements in Parkinson's disease: Clinical and neurophysiological observations, Movement Disorders, vol.25, issue.10, pp.1520-1523, 2010.
DOI : 10.1002/mds.23142

L. Borgius, Spinal Glutamatergic Neurons Defined by EphA4 Signaling Are Essential Components of Normal Locomotor Circuits, Journal of Neuroscience, vol.34, issue.11, pp.3841-3853, 2014.
DOI : 10.1523/JNEUROSCI.4992-13.2014

N. Serradj, EphA4-Mediated Ipsilateral Corticospinal Tract Misprojections Are Necessary for Bilateral Voluntary Movements But Not Bilateral Stereotypic Locomotion, Journal of Neuroscience, vol.34, issue.15, pp.5211-5221, 2014.
DOI : 10.1523/JNEUROSCI.4848-13.2014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983801

K. M. Friel, P. T. Williams, N. Serradj, S. Chakrabarty, and J. H. Martin, Activity-Based Therapies for Repair of the Corticospinal System Injured during Development, Frontiers in Neurology, vol.34, issue.7, 2014.
DOI : 10.1523/JNEUROSCI.3315-13.2014

P. Krimpenfort, Deleted in colorectal carcinoma suppresses metastasis in p53-deficient mammary tumours, Nature, vol.83, issue.7386, pp.538-541, 2012.
DOI : 10.1038/nature10790

J. A. Gorski, Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage, J Neurosci, vol.22, pp.6309-6314, 2002.

H. S. Ozaki and D. Wahlsten, Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse, The Journal of Comparative Neurology, vol.74, issue.2, pp.197-206, 1998.
DOI : 10.1002/(SICI)1096-9861(19981019)400:2<197::AID-CNE3>3.0.CO;2-4

S. Gianino, Postnatal growth of corticospinal axons in the spinal cord of developing mice, Developmental Brain Research, vol.112, issue.2, pp.189-204, 1999.
DOI : 10.1016/S0165-3806(98)00168-0

B. G. Rash and L. J. Richards, A role for cingulate pioneering axons in the development of the corpus callosum, The Journal of Comparative Neurology, vol.124, issue.2, pp.147-157, 2001.
DOI : 10.1002/cne.1170

S. Hippenmeyer, A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling, PLoS Biology, vol.108, issue.5, p.159, 2005.
DOI : 10.1371/journal.pbio.0030159.sg005

M. Mori, A. Kose, T. Tsujino, and C. Tanaka, Immunocytochemical localization of protein kinase C subspecies in the rat spinal cord: Light and electron microscopic study, The Journal of Comparative Neurology, vol.44, issue.2, pp.167-177, 1990.
DOI : 10.1002/cne.902990204

A. Miki, Developmental expression of ??-, ??- and ??-subspecies of protein kinase C in the dorsal corticospinal tract in the rat spinal cord, Neuroscience, vol.75, issue.3, pp.939-948, 1996.
DOI : 10.1016/0306-4522(96)00365-X

A. J. Canty and M. Murphy, Molecular mechanisms of axon guidance in the developing corticospinal tract, Progress in Neurobiology, vol.85, issue.2, pp.214-235, 2008.
DOI : 10.1016/j.pneurobio.2008.02.001

G. Alagona, Ipsilateral Motor Responses to Focal Transcranial Magnetic Stimulation in Healthy Subjects and Acute-Stroke Patients, Stroke, vol.32, issue.6, pp.1304-1309, 2001.
DOI : 10.1161/01.STR.32.6.1304

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.554.8568

P. Bawa, J. D. Hamm, P. Dhillon, and P. A. Gross, Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects, Experimental Brain Research, vol.158, issue.3, pp.385-390, 2004.
DOI : 10.1007/s00221-004-2031-x

C. Gallea, Congenital mirror movements: a clue to understanding bimanual motor control, Journal of Neurology, vol.143, issue.Pt 7, pp.1911-1919, 2011.
DOI : 10.1007/s00415-011-6107-9

D. Lazzaro, V. Ziemann, U. Lemon, and R. N. , State of the art: Physiology of transcranial motor cortex stimulation, Brain Stimulation, vol.1, issue.4, pp.345-362, 2008.
DOI : 10.1016/j.brs.2008.07.004

D. Lazzaro, V. Ziemann, and U. , The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex, Frontiers in Neural Circuits, vol.7, 2013.
DOI : 10.3389/fncir.2013.00018

S. Bestmann and J. W. Krakauer, The uses and interpretations of the motor-evoked potential for understanding behaviour, Experimental Brain Research, vol.496, issue.Pt 3, pp.679-689, 2015.
DOI : 10.1007/s00221-014-4183-7

K. R. Mills, Magnetic brain stimulation: a tool to explore the action of the motor cortex on single human spinal motoneurones, Trends in Neurosciences, vol.14, issue.9, pp.401-405, 1991.
DOI : 10.1016/0166-2236(91)90029-T

B. Brouwer and P. Ashby, Corticospinal projections to upper and lower limb spinal motoneurons in man, Electroencephalography and Clinical Neurophysiology, vol.76, issue.6, pp.509-519, 1990.
DOI : 10.1016/0013-4694(90)90002-2

E. Palmer and P. Ashby, Corticospinal projections to upper limb motoneurones in humans., The Journal of Physiology, vol.448, issue.1, pp.397-412, 1992.
DOI : 10.1113/jphysiol.1992.sp019048

N. T. Petersen, H. S. Pyndt, and J. B. Nielsen, Investigating human motor control by transcranial magnetic stimulation, Exp Brain Res, vol.152, pp.1-16, 2003.

M. J. Mayston, Mirror movements in X-linked Kallmann's syndrome. I. A neurophysiological study, Brain, vol.120, issue.7, pp.1199-1216, 1997.
DOI : 10.1093/brain/120.7.1199

D. J. Schreyer and E. G. Jones, Growth and target finding by axons of the corticospinal tract in prenatal and postnatal rats, Neuroscience, vol.7, issue.8, pp.1837-1853, 1982.
DOI : 10.1016/0306-4522(82)90001-X

E. A. Joosten, R. L. Schuitman, M. E. Vermelis, and P. J. Dederen, Postnatal development of the ipsilateral corticospinal component in rat spinal cord: A light and electron microscopic anterograde HRP study, The Journal of Comparative Neurology, vol.23, issue.3, pp.133-146, 1992.
DOI : 10.1002/cne.903260112

E. M. Rouiller, F. Y. Liang, V. Moret, and M. Wiesendanger, Trajectory of redirected corticospinal axons after unilateral lesion of the sensorimotor cortex in neonatal rat; A phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study, Experimental Neurology, vol.114, issue.1, pp.53-65, 1991.
DOI : 10.1016/0014-4886(91)90084-P

P. W. Nathan, M. C. Smith, and P. Deacon, THE CORTICOSPINAL TRACTS IN MAN, Brain, vol.113, issue.2, pp.303-324, 1990.
DOI : 10.1093/brain/113.2.303

S. H. Jang, The corticospinal tract from the viewpoint of brain rehabilitation, Journal of Rehabilitation Medicine, vol.46, issue.3, pp.193-199, 2014.
DOI : 10.2340/16501977-1782

J. C. Jen, Mutations in a Human ROBO Gene Disrupt Hindbrain Axon Pathway Crossing and Morphogenesis, Science, vol.304, issue.5676, pp.1509-1513, 2004.
DOI : 10.1126/science.1096437

C. H. Gunderson and G. B. Solitare, Mirror Movements in Patients With the Klippel-Feil Syndrome, Archives of Neurology, vol.18, issue.6, pp.675-679, 1968.
DOI : 10.1001/archneur.1968.00470360097009

P. Brandao, Congenital mirror movements: lack of decussation of pyramids, Brain, vol.137, issue.8, p.292, 2014.
DOI : 10.1093/brain/awu073

M. Hiramoto, Y. Hiromi, E. Giniger, and Y. Hotta, The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution, Nature, vol.406, pp.886-889, 2000.

Q. Gong, R. Rangarajan, M. Seeger, and U. Gaul, The netrin receptor frazzled is required in the target for establishment of retinal projections in the Drosophila visual system, Development, vol.126, pp.1451-1456, 1999.

B. T. Woods and H. Teuber, Mirror movements after childhood hemiparesis, Neurology, vol.28, issue.11, pp.1152-1157, 1978.
DOI : 10.1212/WNL.28.11.1152

J. F. Mangin, C. Poupon, C. Clark, L. Bihan, D. Bloch et al., Distortion correction and robust tensor estimation for MR diffusion imaging, Medical Image Analysis, vol.6, issue.3, pp.191-198, 2002.
DOI : 10.1016/S1361-8415(02)00079-8

URL : https://hal.archives-ouvertes.fr/hal-00349706

M. Repici, Specific inhibition of the JNK pathway promotes locomotor recovery and neuroprotection after mouse spinal cord injury, Neurobiology of Disease, vol.46, issue.3, pp.710-721, 2012.
DOI : 10.1016/j.nbd.2012.03.014

K. A. Tennant, The Organization of the Forelimb Representation of the C57BL/6 Mouse Motor Cortex as Defined by Intracortical Microstimulation and Cytoarchitecture, Cerebral Cortex, vol.21, issue.4, pp.865-876, 2011.
DOI : 10.1093/cercor/bhq159