Climate change and occupational allergies: an overview on biological pollution, exposure and prevention

Maria Concetta D’Ovidio1, Isabella Annesi-Maesano2, Gennaro D’Amato3 and Lorenzo Cecchi4

1Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Istituto Nazionale per l’Assicurazione contro gli Infortuni sul Lavoro (INAIL), Monte Porzio Catone (Rome), Italy
2Sorbonne Universités, UPMC Univ Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Epidemiology of Allergic and Respiratory Diseases Department (EPAR), Saint-Antoine Medical School, F75012 Paris, France
3Unità Operativa Complessa di Malattie Respiratorie e Allergiche, Azienda Ospedaliera ad Alta Specialità di Rilievo Nazionale A. Cardarelli, Naples, Italy
4Centro di Bioclimatologia, Università degli Studi di Firenze, Florence, Italy

Abstract
Introduction. Climate change, air pollution, temperature increase and other environmental variables are modifying air quality, contributing to the increase of prevalence of allergic respiratory diseases. Allergies are complex diseases characterized by multilevel interactions between individual susceptibility, response to immune modulation and environmental exposures to physical, chemical and biological agents. Occupational allergies introduce a further complexity to these relationships by adding occupational exposure to both the indoor and outdoor ones in the living environment.

Objective. The aim of this paper is to overview climate-related allergy affecting environmental and occupational health, as literature data are scanty in this regard, and to suggest a management model of this risk based on a multidisciplinary approach, taking the case of biological pollution, with details on exposure and prevention.

Conclusions. The management of climate-related occupational allergy should take into account preventive health strategies, environmental, public and occupational interventions, as well as to develop, implement, evaluate, and improve guidelines and standards protecting workers health under changing climatic conditions; new tools and strategies based on local conditions will have to be developed. Experimental studies and acquisition of environmental and personal data have to be matched to derive useful information for the scope of occupational health and safety.

INTRODUCTION

Article 1 of the Framework Convention on Climate Change (UNFCCC) defines climate change as a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods [1].

Climate change in IPCC’s (Intergovernmental Panel on Climate Change) position refers to a change in the state of the climate that can be identified (e.g. using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. It refers to any change in climate over time, due to natural variability or as a result of human activity; it is responsible for increased temperature, rise in the sea level, modified air quality [2].

“Air pollution is the contamination of the indoor or outdoor environment by any chemical, physical or biological agent that modifies the natural characteristics of the atmosphere”. Household combustion devices, motor vehicles, industrial facilities and forest fires are common sources of air pollution. Pollutants of major public health concern include particulate matter, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide. “Changes in temperature, modifications in pre-
Climate change and biological occupational allergy

Precipitation frequency, and air stagnation also affect air pollution levels with significant risks to health. Climate change affects pollution levels through pollutant formation, transport, dispersion, and deposition. For instance, fine particulate air pollution is estimated to be responsible for 7 million additional deaths globally in 2012, mainly due to respiratory and cardiovascular disease. Its effect is amplified by changes in ambient temperature, precipitation frequency, and air stagnation – all crucial for air pollutants formation, transport, dispersion and deposition”. Outdoor and indoor air pollution contributes to the increase of the prevalence of allergic respiratory diseases [3], exacerbating clinical features.

The 2015 Lancet Commission on Health and Climate Change “recommends that over the next 5 years, governments: Invest in climate change and public health research, monitoring, and surveillance to ensure a better understanding of the adaptation needs and the potential health co-benefits of climate mitigation at the local and national level” [4].

Occupational allergies are complex diseases because of the influence of environmental and climatic factors, the presence of allergens of different origin, the individual sensitization and immunological responses, the clinical manifestations: different and complementary medical skills are required for their management [5].

The topic climate change linked to the occupational health requires a particular attention by authorities in order to promote research, monitoring, surveillance, best practices, protective and preventive measures, starting with specific control program regarding occupational health and evaluation of environmental and climate factors. According to the scientific literature, thermal stress, injuries and fatalities are the main consequences of climate change in the workplaces [6, 7].

Allergic and respiratory diseases in relation to climate change have been extensively studied with regards to public health but little attention has been payed on climate-related allergic and respiratory diseases in the occupational sector, although some pertinent concerns are well known since several years [5, 8-14].

In Italy occupational health and safety are regulated by the Legislative Decree 81/08, implementing the EU directives on the improvement of health and safety at work. Article 28 (Title I - Common principles) of the Decree states that the employer has to assess all risks for health and safety of the workers. However, the allergic risk is explicitly mentioned in the Title X of the Decree (Exposure to biological agents) and particularly in the annex XLVI, where possible allergic effects are reported for 10 agents (2 parasites and 8 fungi) with respect to the 375 classified biological agents [15].

In this study we focused our attention on outdoor and indoor biological pollution, exposure and prevention related to climate change, with the aim to emphasize a topic – allergy – affecting environmental and occupational health and to remark the need to manage this risk in a multidisciplinary way. We also stress the importance of studying not only well known occupational allergens such as latex, house dust and flour, but also allergies caused by new indoor and outdoor sources of exposure.

PLANTS AND ANIMALS DERIVED AEROALLERGENS, CLIMATE CHANGE, ENVIRONMENTAL POLLUTION

Allergens and sensitizing agents are traditionally classified as high-molecular-weight (HMW) (glyco) proteins of animal and vegetable origin, mainly represented by grain dust (including mites), bakery dust, fish proteins, laboratory animals, bird proteins, natural rubber latex, enzymes (especially in detergents), mold proteins, vegetable gums, soy bean dust, cotton, coffee, and other seed dusts. Low-molecular weight (LMW) agents are metals, acid anhydrides, isocyanates, biocides, reactive dyes and others [16].

Although HMW proteins generally induce an IgE-response, involved in the pathogenesis of respiratory diseases (asthma, rhinitis, etc.), and LMW agents can induce T-cell dependent delayed-type reactions, the pathogenic mechanism of many of them is still unknown, for instance cases of occupational contact urticaria caused by parvalbumin, and respiratory diseases induced by some chemical agents, as reported in the literature [16-21].

The beginning and development of occupational allergic diseases are regulated by a complex interaction which includes endogenous and exogenous factors, individual susceptibility, exposure in living and working environments with different level, duration and frequency, etc. Moreover, the influence of climatic and environmental drivers on physical, chemical and biological pollutants also plays an important role in the onset of allergic diseases [8, 22-24].

A lot of allergens are affected by climatic and environmental variations, and many studies considered the effects of climate change and chemical pollution on the features and seasonality of pollen and plant flowering; influence on individual susceptibility, genetic variations, health consequences such as respiratory and allergic diseases have also been reported [9, 25, 26].

In this regard, a comprehensive and detailed biointeractive model to justify the increased prevalence of asthma and allergic diseases observed in recent decades [27-31] is still lacking.

Climate change and pollutants like greenhouse gases (GHGs), sulfur oxide (SO), particulate matter (PM), ozone (O3), nitric oxide (NO) have pronounced negative effects on both environmental and human health. Fauna, plant species, pollen (including spatiotemporal dynamics of allergenic pollen) and other biological components are affected by climatic variation, atmospheric factors, meteorological conditions. All these factors determine an increased allergic effects of both vegetable and animal components, inducing and/or exacerbating allergy and chronic respiratory diseases, as well as decreasing the lung function [31-42].

It is important to note that also indoor sources contribute to outdoor air pollution. Moreover, pollution arising from chemical, physical and biological agents affects climatic parameters (temperature, humidity, wind speed etc.), but the opposite is also true in both workplaces and living environments.

Institutional networks and associations ensure a continuous monitoring of pollen, fungal species distri-
bution and other biological emissions, as well as of parameters regarding climate and the environment (Table 1). In this perspective, the integration of environmental and climatic data as well as the synergy between different institutions in order to promote the protection of public and occupational health should be highly beneficial.

IMPACT OF CLIMATE CHANGE ON OCCUPATIONAL EXPOSURE

Outdoor workers are at high risk for exposure to allergens of biological (animal and vegetable) origin, because of the prolonged permanence in the workplace or the intense physical activity characterizing some working tasks resulting in an increased respiratory inhalation. Indoor environment can also be affected by climatic variations, as some environmental parameters and various types of pollutants increases the interchange, making recognition of a clear separation between indoor and outdoor difficult.

Several criticisms are inherent to occupational allergies of biological origin, such as the identification of all the biological agents with potential allergic effects, since current regulation (in Italy the Legislative Decree 81/08 - annex XLVI: Biological agents classified) recognizes only ten biological agents with regard to allergic effects (Table 2); moreover, evaluation of the role of several co-factors involved in both the individual susceptibility and allergic responses is still lacking. In addition several professional categories are potentially exposed to allergic risk. Construction, agriculture, animal husbandry, fishing, hunting, park maintenance, farming, forestry, urban rescue and safety are representative of outdoor workplaces; therefore subjects operating in the urban (ecological operators, safety and rescue operators, sport instructors, gardeners etc.) and suburban (farmers, ranchers, gardeners, beekeepers, foresters, safety’s operators, surveillance activity etc.) environments can be defined outdoor workers. In this context risk assessment shall be performed, taking into account environmental data arising from physical, chemical and biological parameters as well as from results of health surveillance of exposed workers.

Outdoor allergies have been traditionally studied in indoor environment (i.e. offices, schools, bakeries, hospitals) where main allergens are mites, dusts, latex, and other (micro)components [43-46]. In most cases, different methodologies have been applied to evaluate both the environmental exposure (air and sampling monitoring) and the immune response (skin tests,
immunochemical methods, molecular assays) [47-49].

In order to contribute to a better understanding of occupational allergies, a bibliometric approach for the study of scientific literature was followed. The search criteria are shown in the Supplementary data 1-8 available online (Supplementary Materials); we used MeSH (Medical Subject Headings) Terms – the NLM controlled vocabulary thesaurus used for indexing articles for PubMed – regarding air pollutants or allergens or pollen or changes, climate, occupational health or occupational exposure, hypersensitivity or allergy and immunology or respiratory tract diseases. A limit of data searching was the lack of “outdoor” term. Meva (MEDLINE Evaluator) – a free medico-scientific data mining web service to analyse bibliographic MEDLINE data – was used as post-processor condensing the endless list of a MEDLINE result by presenting counts, frequency distributions, contingency tables (relations) and detailed sorted lists of selected bibliographic fields. We applied this bibliometric approach to the literature of the last 5 years. As we reported in a previous communication, the study of bibliometric sources showed that articles refer specifically to a particular allergic condition, a source of exposure to specific allergens (both vegetables and animals), preventive measures against specific occupational allergies. It’s easy to extrapolate articles that deal with occupational allergies about indoor because this term is present in MeSH Terms, while terms outdoor/external/outer do not appear [50].

Workplaces may be an important source of exposure to air pollution, both outdoor and indoor, not only for dust and fumes, but also for vegetable and animal allergens; examples include arthropod allergens such as house dusts, mites and cockroaches, mammalian allergens derived from pets or pests, mouse, rats, horses, jellyfish, hymenoptera, wild and domestic species such as wasps, bees, hornets, etc. [43-46, 51-58].

Workers or working activities at risk of exposure to biological allergens are represented by flour millers, pastry makers, health-care workers, laboratory technicians, farmers, sea foods processing, baking products manufacturing detergent production, pharmaceutical industry, food industry, foresters, beekeepers, marine biologists, fishermens, scuba divers, gardeners, farmers, firefighters, foresters, municipal operators. Following exposure to allergen, clinical features may involve respiratory tract (occupational asthma is the most frequent work-related disease), eye and skin tissues, other systems following ingestion, contact and inoculation of the allergens. The management needs a multidisciplinary approach through innovative molecular methodologies applied to both environmental and biological matrices, medical history acquisition, health surveillance and control measures regarding outdoor and indoor environmental exposures [59-63].

The management of occupational allergy should take into account all factors regarding lifestyles, including hobbies and outdoor recreational activities, as well as indirect, no apparent exposure or passive carriage of **Table 2**

List of the classified biological agents with possible allergic effects

<table>
<thead>
<tr>
<th>Biological agents</th>
<th>Classification</th>
<th>Notes**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parasites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascaris lumbricoides</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Ascaris suum</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Fungi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Coccidioides immitis</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Cryptococcus neoformans var. neoformans (Filobasidiella neoformans var. neoformans)</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Cryptococcus neoformans var. gattii (Filobasidiella bacillispora)</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Epidermophyton floccosum</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Microsporum spp.</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Penicillium manuefei</td>
<td>2</td>
<td>A</td>
</tr>
</tbody>
</table>

*According to Annex XLVI – Legislative Decree 81/08
**A: Possible allergic effects
allergens [64-66]. It is also necessary to assess the co-
exposure to other environmental factors such as solar
radiation [67] that can modulate the immune response
and the occurrence of symptoms at various grades of
severity. Moreover it should be noted that “one health
frames the complex interactions between human, animal
and environmental health, one health is a unique approach
to cope with allergies, one health focuses on equity and is key
for human sustainable development” [68].

COLLABORATIVE, MULTIDISCIPLINARY
AND INTEGRATED APPROACH

In public and occupational settings health prevention and
promotion are intrinsically linked to education through
information, training and communication. It is
important to increase the awareness of workers regard-
ing the risk derived from exposure to allergens and to
define collective and individual control measures.
Moreover, workers may be responsible for the spread of
allergens to the community, carrying allergens through
their clothes, hair and shoes. The innovative molecular
methodologies on biological fluids that allow the deter-
mination of many allergens with a high degree of sen-
sitivity are very useful if implemented during workers’
health surveillance. It is likely that the development of
molecular aerobiology will provide a more detailed ap-
proach in term of health impacts. A multidisciplinary
approach is highly advisable to study the full spectrum
of issues regarding climate change, aerobiology and
clinical outcomes [69, 70].

Preventive health strategies should involve environ-
mental, public and occupational interventions. Decision
makers have the responsibility to develop, imple-
ment, evaluate, and improve guidelines and standards
to protect workers’ health under changing climatic condi-
tions; new tools and strategies based on local condi-
tions will have to be developed.

As shown in Figure 1, Figure 2a and Figure 2b (avail-
able online as Supplementary Materials) the study of bio-
logical occupational allergies should be performed by
a multidisciplinary approach based on both traditional
and innovative tools. Regarding exposure to vegetable
allergens – pollens in particular – air monitoring is ad-
dressed to improve the new molecular approaches in
addition to traditional methodology used by monitoring
stations [69,70].

Starting from a list of allergens [20] it is necessary
to know all information to manage the risk due to oc-
cupational allergy, such as sampling methodologies that
should be standardized. In order to protect the health
of both workers and the general public and to safeguard
plants and animals, the development of new and innova-
tive methods for sampling and measurement of (bio)
pollutants should be a priority.

Our research is addressed to carry out strategies and
programs for the management of outdoor occupational
allergy, listed in following key points (Figure 1, Figure
2a and Figure 2b, available online as Supplementary Ma-
terials):
I. Climate change and occupational allergy diseases
(CCOADs)
II. Allergy program control (APC)
III. Personal protective equipment (PPE)
IV. Communication, education and training (CET)
V. General and scientific information (GSI)
VI. Occupational and non occupational fields (ONOFs)
VII. Forecasting Models (FoMs)
VIII. Information and communication technology (ICT)

Consultation of the national and international litera-
ture supported by a bibliometric analysis confirmed the
lack of research on the assessment of biological aller-
gens in outdoor workplaces. This analysis provides in-
formation for research teams and audience to clearly
identify or mark peculiar topics in investigated fields.

For the protection of public health, the presence of
monitoring networks allows the sampling of pollen and
fungal spores through techniques fundamentally based
on the principles of gravitational deposition, inertial
impact and sucking, using stationary samplers placed
at certain heights above ground that allow sampling on
an ongoing basis. The measurement of outdoor aller-
gens is based on standardized methods (reading on a
microscope slide) and new molecular technologies are
currently being tested. The standardization of sampling
aerobiological methodology should also be conducted
at national and international level. As part of aerobiol-
ogy some goals to be pursued include the harmonization
of existing networks for monitoring biological particles,
the development of strategies to combat pollution and
the identification of the role of climate change in all-
ergic diseases for public and occupational health pur-
poses. It is necessary to define the role of the environ-
ment in the prevention of allergic diseases, the factors
affecting levels of indoor and outdoor allergens and the
methods to reduce exposure in the living and working
environments, taking into account both the individual
and environment exposure [5, 22, 23, 69-76].

Research topics should include action mechanisms,
classification, prevention, epidemiological surveil-
ance/registries, predictive biomarkers, molecular diagno-
sis, treatment response, phenotypes, serious illness/
exacerbations, new treatments (biological vaccine and
drugs). Data collected through the environmental net-
works should be matched with those concerning work-
ers health. Ad hoc questionnaires, immunochemical
and molecular tests to assess immunological and other
physiological parameters are of paramount importance
to plan appropriate technical, organizational and pro-
cedural interventions addressed at specific workplaces.
Information, education and communication are unre-
placeable tools.

Our research aim is to perform strategies and pro-
grams for the management of outdoor and indoor occu-
pational allergy through an experimental, integrated and
multidisciplinary approach, also considering mathemati-
cal models as valid tools to analyze emission and disper-
sion phenomena, contributing to design risk scenarios.

CONCLUDING REMARKS

Allergy is a complex disease characterized by mul-
tiple interactions between individual susceptibility,
genetic background, response to immune modulation
and environmental exposures to physical, chemical and
biological agents. Occupational allergies amplify these
relationships by adding other factors, depending on the workplace exposures. Traditionally, the study of occupational allergies was focused on indoor pollutants, but the growing body of data about allergies in the general population and recent new evidences are a stimulus to extend research to outdoor environment, trying to understand the potential connection between indoor and outdoor allergens. Air pollution and climate change have a central role in the etiology and pathology of occupational allergies.

A great body of literature suggests that bibliometric indicators are one of the most common tools to measure research performance. Moreover, these indicators have a wide range of applications, such as descriptive linguistics, development of thesauri, evaluation of reader usage and measuring term frequencies.

It is necessary to promote a multidisciplinary approach starting from an exhaustive and detailed knowledge of the literature regarding allergies, together with the monitoring of physical, chemical and biological parameters, data on the immune-susceptibility of the workers and the influence of other co-factors. In addition, forecasting and mathematical models can be helpful to increase the knowledge and to suggest the preventive measures to adopt in this area.

In conclusion, climate change represents an issue that need to be explored and studied in its different and complex aspects. The impact resulting from temperature increase and air pollution, health consequences such as cardiovascular and respiratory diseases and accidents and other events is certainly recognized.

These features are the apical part of a phenomenon which – if not counteracted – can keep on and greatly damage the environment and human health. Local actions as well as national and international agreements are aimed at safeguarding the “universal health”, since environmental and human health are interconnected. The questions regarding occupational health should be considered in an integrated life course approach [76-78].

Acknowledgements

We are grateful to Nunzia Bellantonio, Raffaella Modenino and Stefania Massari for their helpful collaboration and discussion regarding bibliometric approach, Claudio Garrazzo for his helpful collaboration and discussion concerning forecasting models, and Nicoletta Vonesch for the general revision. Availability, courtesy and professionalism are qualities that we wish to highlight.

This paper is part of a monographic section dedicated to Climate change and occupational health, edited by Maria Concetta D’Ovidio, Carlo Grandi, Enrico Marchetti, Alessandro Polichetti and Sergio Iavicoli and published in the same issue: Ann Ist Super Sanità 2016;52(3):323-423.

Conflict of interest statement

There are no potential conflicts of interest or any financial or personal relationships with other people or organizations that could inappropriately bias conduct and findings of this study.

Submitted on invitation. Accepted on 12 April 2016.

REFERENCES

6. Oyekale AS. Climate change induced occupational stress and reported morbidity among cocoa farmers in South-Western Nigeria. Ann Agric Environ Med 2015;22(2):357-61. DOI: 10.5604/12321966.1152095
10.1186/s40413-015-0073-0

29. Damialis A, Mohammad AB, Halley JM, Gance AC. Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates. Int J Biometeorol 2015;59(9):1157-67. DOI: 10.1007/s00484-014-0927-0

