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Abstract

We consider a sequence of linear hyper-elastic, inhomogeneous and
fully anisotropic bodies in a reference configuration occupying a cylindri-
cal region of height ε. We then study, by means of Γ-convergence, the
asymptotic behavior as ε goes to zero of the sequence of complementary
energies. The limit functional is then identified as a dual problem for a
two-dimensional plate. Our approach gives a direct characterization of
the convergence of the equilibrating stress fields.

2010 Mathematics Subject Classification: 49S05, 49J45, 74K20, 74B05,

Keywords: inhomogeneous and anisotropic plates, linear elasticity, complementary
energy, Γ-convergence, dimension reduction

1 Introduction

The equilibrium problem for a linear hyper-elastic body may be suitably studied by
means of several variational formulations, like the principle of the minimum potential
energy (primal formulation) and the principle of minimum complementary energy (dual
formulation). In the former formulation the unknown is the displacement vector field,
while in the latter the stress tensor field is to be found. Other variational formulations,
the so called mixed formulations, take simultaneously as unknowns the displacement
and the stress vector fields, see for instance [1].

In the last three decades, starting with the work of Ciarlet and Destuynder [2],
these variational problems, or their extremality equations, have been used, in con-
junction to some asymptotic techniques, to justify/derive models for thin structures
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starting from the three-dimensional theory. At the early stages of this prolific line of
research mixed formulations were adopted, while after the asymptotic techniques have
been refined the research have been focused almost exclusively on the study of some
form of the primal formulation. Within this line of research, the Kirchhoff-Love theory
for homogeneous and isotropic plates has been justified by means of Γ-convergence by
Anzellotti et al. [3] and by Bourqin et al. [4]. These results have been generalized in
several directions: for linear plates with residual stress [5, 6], for elasto-plastic plates
[7, 8, 9], Reissner-Mindlin plates [10, 11, 12], and non-linearly elastic plates [13, 14].

Respect to the existing literature a different route has been taken by Bessoud
et al. in [15]. These authors consider a system of two elastic materials glued by a
thin and strong material between them and by means of the complementary energy
they study the asymptotic behavior of the system of materials as the thickness of the
gluing material goes to zero. In the limit problem a material surface, endowed with
an appropriate elastic energy, replaces the thin layer.

We here consider a sequence of linear hyper-elastic, inhomogeneous, and fully
anisotropic bodies in a reference configuration occupying a cylindrical region of height
ε. We then study, by means of Γ-convergence, the asymptotic behavior as ε goes to
zero of the sequence of complementary energies. The limit functional is then identified
as a dual problem for a two-dimensional plate.

While variational limits of primal problems characterize the asymptotic behavior of
the minimizing displacements, the study of the asymptotic behavior of the complemen-
tary energies characterizes the convergence of the equilibrating stress fields. Besides
the use of this novel approach for the deduction of plate theory, our work deals with
fully anisotropic and inhomogeneous materials, case that has not been studied in this
full generality before, not even by means of the primal formulation. This kind of
generality on the constitutive equations has been used to derive linearly elastic beam
theories, within the primal formulation framework, for instance in [16, 17, 18, 19].

The paper is organized as follows. In Section 2 we review some function spaces
that will be useful in the rest of the paper, while in Section 3 the primal and dual
formulation of the problem considered are stated. The dimension reduction problems
are classically rescaled on a fixed domain, this is done in Section 4. In Section 5 the
Γ-convergence analysis is carried on, and in Section 6 the obtained Γ-limit is written
on a two-dimensional domain.

2 Preliminaries

Let Ω ⊂ R3 be an open, bounded set with Lipschitz boundary ∂Ω, and let Γ be an
open subset of ∂Ω.1 We denote by

H1/2(Γ;R3) := {v : ∃u ∈ H1(Ω;R3) s.t. γu = v on Γ},

where γ : H1(Ω;R3)→ H1/2(∂Ω;R3) denotes the trace operator, and we equip it with
the norm

‖v‖H1/2(Γ) := inf{‖u‖H1(Ω) : u ∈ H1(Ω;R3) and γu = v on Γ}.

The dual of H1/2(Γ;R3) shall be denoted by H−1/2(Γ;R3). We let

H
1/2
00 (Γ;R3) := {v ∈ H1/2(Γ;R3) : ṽ ∈ H1/2(∂Ω;R3)},

1Note that no regularity assumption is made on the open set Γ.

2



where ṽ denotes the extension by 0 of v to ∂Ω, and we equip it with the norm

‖v‖
H

1/2
00 (Γ)

:= ‖ṽ‖H1/2(∂Ω).

The spaces H1/2(Γ;R3) and H
1/2
00 (Γ;R3) are delicate spaces, see e.g., see [20] Chapter

I, §11 and 12, and [21] Chapter 1, §1.3.2. Note that the space denoted here, and in

[20], by H
1/2
00 (Γ) is denoted by W̃

1/2
2 (Γ) in [21].

Thanks to these spaces, for a distribution f ∈ H−1/2(∂Ω;R3) defined in the whole

boundary ∂Ω, we may define its restriction to Γ, denoted by f |Γ ∈ (H
1/2
00 (Γ;R3))′, in

the following way

〈f |Γ, v〉H1/2
00 (Γ)

:= 〈f, ṽ〉H1/2(∂Ω) for every v ∈ H1/2
00 (Γ;R3).

The space

H(div,Ω) := {T ∈ L2(Ω;R3×3
sym) : divT ∈ L2(Ω;R3)},

equipped with the norm

‖T‖2H(div,Ω) := ‖T‖2L2(Ω) + ‖divT‖2L2(Ω),

is a Hilbert space. It is well known that there exists a continuous linear mapping
γn : H(div,Ω)→ H−1/2(∂Ω;R3) such that∫

Ω

T · ∇u dx = −
∫

Ω

divT · u dx+ 〈γnT, γu〉H1/2(∂Ω), (1)

for every T ∈ H(div,Ω) and u ∈ H1(Ω;R3). Hereafter we shall simply write Tn in
place of γnT .

From (1) it follows that for T ∈ H(div,Ω) and for every u ∈ H1(Ω;R3) with γu = 0
in H1/2(∂Ω \ Γ;R3) we have∫

Ω

T · ∇u dx = −
∫

Ω

divT · u dx+ 〈Tn|Γ, γu〉H1/2
00 (Γ)

, (2)

since γu ∈ H1/2
00 (Γ;R3).

Hereafter, if no confusion shall arise, we shall simply write Tn also for the restric-
tion Tn|Γ and we shall drop the use of γ to denote the trace, i.e., we shall write u for
the trace γu.

3 The unscaled problems

Let ω be an open bounded domain of R2 with Lipschitz boundary ∂ω, and for ε ∈ (0, 1],
we set

Ωε := ω × (−ε/2, ε/2).

Let ∂Dω and ∂Nω be unions of finite numbers of open connected subsets of ∂ω such
that

∂Dω ∩ ∂Nω = ∅, ∂Dω ∪ ∂Nω = ∂ω, ∂Dω 6= ∅.
We set

∂DΩε := ∂Dω × (−ε/2, ε/2), ∂NΩε := ∂Ωε \ ∂DΩε.
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We consider Ωε as the region occupied by a linear hyper-elastic body in the ref-
erence configuration. Let Ĉε ∈ L∞(Ωε;R3×3×3×3

sym ) be the elasticity tensor, which
we assume to be uniformly coercive, of the elastic body considered. By writing
Ĉε ∈ L∞(Ωε;R3×3×3×3

sym ) we mean that

Ĉεijkl = Ĉεklij = Ĉεijlk.

The sets ∂DΩε and ∂NΩε are the parts of the boundary of Ωε where Dirichlet and Neu-
mann boundary conditions are imposed, and we denote2 by f̂ε ∈ (H

1/2
00 (∂NΩε;R3))′

the surface loads, and by ĝε ∈ H1/2(∂DΩε;R3) the imposed displacement on ∂DΩε.
Since every function in H1/2(∂DΩε;R3) is the trace of a function in H1(Ωε;R3), we
also denote by ĝε this latter function.

We further denote by b̂ε ∈ L2(Ωε;R3) the body forces.

Remark 3.1 Let ωε± be the upper and lower bases of the cylinder Ωε and let ∂NΩε` be
the Neumann part of the lateral boundary, i.e.,

ωε± := ω × {±ε/2}, and ∂NΩε` := ∂Nω × (−ε/2,+ε/2),

so that ωε+ ∪ ωε− ∪ ∂NΩε` is ∂NΩε up to a set of zero two-dimensional measure. Let
ˆ̄fε± ∈ H−1/2(ωε±;R3), and ˆ̄fε` ∈ H−1/2(∂NΩε` ;R3). Then, ˆ̄fε defined3, for every v̂ ∈
H

1/2
00 (∂NΩε;R3), by

〈 ˆ̄fε, v̂〉
H

1/2
00 (∂NΩε)

:=〈 ˆ̄fε+, v̂|ωε
+
〉H1/2(ωε

+) + 〈 ˆ̄fε−, v̂|ωε
−
〉H1/2(ωε

−)

+ 〈 ˆ̄fε` , v̂|∂NΩε
`
〉H1/2(∂NΩε

`
), (3)

is an example of a force that can be used as f̂ε. Moreover, in the case that ˆ̄fε± ∈
L2(ωε±;R3) and ˆ̄fε` ∈ L2(∂NΩε` ;R3), the duality in (3) is nothing but the sum of three

integrals. Note however that there are forces in (H
1/2
00 (∂NΩε;R3))′ that are more gen-

eral than ˆ̄fε defined by (3).

Remark 3.2 Given f̂ε ∈ (H
1/2
00 (∂NΩε;R3))′ and b̂ε ∈ L2(Ωε;R3), as above, there ex-

ists (looking e.g. for Ĝε as the symmetric part of the gradient of an unknown function)
a Ĝε ∈ H(div,Ωε) such that{

div Ĝε + b̂ε = 0 in L2(Ωε;R3),

Ĝεn̂ = f̂ε in (H
1/2
00 (∂NΩε))′.

(4)

Then, from (2), the work done by the loads can be simply rewritten as∫
Ωε

b̂ε · v̂ dx̂+ 〈f̂ε, v̂〉
H

1/2
00 (∂NΩε)

=

∫
Ωε

Ĝε · Ev̂ dx̂, (5)

for all v̂ ∈ H1(Ωε;R3) such that v̂ = 0 on ∂DΩε.

Also the converse is true: given Ĝε ∈ H(div,Ωε) there exist f̂ε ∈ (H
1/2
00 (∂NΩε;R3))′

and b̂ε ∈ L2(Ωε;R3), defined by (4), for which (5) holds.

2Throughout the paper the notation ·̂ refers to quantities defined on Ωε or on parts of its
boundary.

3Throughout the paper the notation ˆ̄· refers to quantities which are examples of the general
case.
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Therefore the description of the applied loads may be done indifferently either by
means of the body and surface forces b̂ε and f̂ε, or by means of the tensor field Ĝε.
Both approaches present some advantages and some disadvantages. For instance, it is
not necessary to assume Ĝε ∈ H(div,Ωε) but it is enough to have Ĝε ∈ L2(Ωε;R3×3

sym).
We consider hereafter both representations simultaneously. In Remark 4.3, below, we
explain why we consider both type of forces.

We consider, in the spirit of Remark 3.2, also “generalized forces” described by a
tensor field Ĥε ∈ L2(Ωε;R3×3

sym).
The problem of linear elasticity can be written as:

ŵε ∈ H1(Ωε;R3), ŵε = ĝε in H1/2(∂DΩε;R3),∫
Ωε

ĈεEŵε · Eψ̂ dx̂ =

∫
Ωε

Ĥε · Eψ̂ + b̂ε · ψ̂ dx̂+ 〈f̂ε, ψ̂〉
H

1/2
00 (∂NΩε)

,

for every ψ̂ ∈ Âε,

(6)

where Eŵε denotes the symmetric part of the gradient of ŵε, and Âε the set of
admissible displacements defined by

Âε := {v̂ ∈ H1(Ωε;R3) : v̂ = 0 on ∂DΩε}.

Since ĝε simultaneously denotes a function in H1(Ωε;R3) and its trace, (6) can be
rewritten as:

ûε := ŵε − ĝε ∈ Âε,∫
Ωε

ĈεEûε · Eψ̂ dx̂ =

∫
Ωε

F̂ ε · Eψ̂ + b̂ε · ψ̂ dx̂+ 〈f̂ε, ψ̂〉
H

1/2
00 (∂NΩε)

,

for every ψ̂ ∈ Âε,

(7)

where, for notational simplicity, we denote

F̂ ε := Ĥε + ĈεEĝε. (8)

As it is well known, the solution ûε of (7) may also be found by minimizing the
total energy F̂ε : Âε → R defined by

F̂ε(v̂) :=
1

2

∫
Ωε

ĈεEv̂ · Ev̂ dx̂−
∫

Ωε

F̂ ε · Ev̂ + b̂ε · v̂ dx̂− 〈f̂ε, v̂〉
H

1/2
00 (∂NΩε)

,

that is
F̂ε(ûε) = inf

v̂∈Âε
F̂ε(v̂).

This variational problem is called Primal Problem.
We now introduce the dual problem.
From the inequality

0 ≤ Ĉε(Ê − (Ĉε)−1Ŝ) · (Ê − (Ĉε)−1Ŝ) = ĈεÊ · Ê − 2Ê · Ŝ + (Ĉε)−1Ŝ · Ŝ,

which holds for every Ê, Ŝ ∈ R3×3
sym , it follows that for every v̂ ∈ H1(Ωε;R3)

1

2

∫
Ωε

ĈεEv̂ · Ev̂ dx̂ = max
Ŝ∈L2(Ωε;R3×3

sym )

∫
Ωε

Ŝ · Ev̂ − 1

2
(Ĉε)−1Ŝ · Ŝ dx̂

5



with the max achieved for Ŝ = ĈεEv̂. Thus we can rewrite the direct problem as

inf
v̂∈Âε

max
Ŝ∈L2(Ωε;R3×3

sym )

L̂ε(v̂, Ŝ),

where the Lagrangian L̂ε(v̂, Ŝ) is defined by

L̂ε(v̂, Ŝ) :=

∫
Ωε

Ŝ · Ev̂ − 1

2
(Ĉε)−1Ŝ · Ŝ − F̂ ε · Ev̂ − b̂ε · v̂ dx̂− 〈f̂ε, v̂〉

H
1/2
00 (∂NΩε)

.

Since L̂ε satisfies the assumptions of the min-max Theorem (see e.g. [22] p. 176 Propo-
sition 2.4 and Remark 2.4), it follows that

inf
v̂∈Âε

max
Ŝ∈L2(Ωε;R3×3

sym )

L̂ε(v̂, Ŝ) = max
Ŝ∈L2(Ωε;R3×3

sym )

inf
v̂∈Âε

L̂ε(v̂, Ŝ)

= max
Ŝ∈L2(Ωε;R3×3

sym )

( ∫
Ωε

−1

2
(Ĉε)−1Ŝ · Ŝ dx̂

+ inf
v̂∈Âε

∫
Ωε

(Ŝ − F̂ ε) · Ev̂ − b̂ε · v̂ dx̂− 〈f̂ε, v̂〉
H

1/2
00 (∂NΩε)

)
,

but, from (2) we deduce that

inf
v̂∈Âε

∫
Ωε

(Ŝ − F̂ ε) · Ev̂ − b̂ε · v̂ dx̂− 〈f̂ε, v̂〉
H

1/2
00 (∂NΩε)

= inf
v̂∈Âε

( ∫
Ωε

(−div (Ŝ − F̂ ε)− b̂ε) · v̂ dx̂+ 〈(Ŝ − F̂ ε)n̂− f̂ε, v̂〉
H

1/2
00 (∂NΩε)

)
=

{
0 if Ŝ ∈ Ŝε,
−∞ otherwise,

where we denote by

Ŝε := {Ŝ ∈ L2(Ωε;R3×3
sym) : div (Ŝ − F̂ ε) + b̂ε = 0 in L2(Ωε;R3) and

(Ŝ − F̂ ε)n̂− f̂ε = 0 in (H
1/2
00 (∂NΩε;R3))′}

the set of admissible stresses.
By defining the dual energy by

F̂ε∗(Ŝ) :=
1

2

∫
Ωε

(Ĉε)−1Ŝ · Ŝ dx̂,

it follows that

F̂ε(ûε) = inf
v̂∈Âε

F̂ε(v̂) = − min
Ŝ∈Ŝε

F̂ε∗(Ŝ) =: −F̂ε∗(T̂ ε), (9)

and that T̂ ε = ĈεEûε.
The minimization problem

min
Ŝ∈Ŝε

F̂ε∗(Ŝ).

is called Dual Problem.

Remark 3.3 Note that the stress σ̂ε := ĈεEŵε associated to the solution ŵε of (6),
see also (7), is given by

σ̂ε = T̂ ε + ĈεEĝε.

6



4 Rescaled problems

We now rescale the problems introduced in Section 3 to a domain independent of ε.
To this end, we set

Ω := Ω1, ∂DΩ := ∂NΩ1, ∂DΩ := ∂NΩ1.

We define the change of variables pε : Ω→ Ωε by

pε(x1, x2, x3) := (x1, x2, εx3),

and we let
P ε := ∇pε = diag (1, 1, ε).

For v̂ : Ωε → R3 we define v : Ω→ R3 by

v := P εv̂ ◦ pε, (10)

so that
∇v = P ε(∇v̂) ◦ pεP ε, and Ev = P ε(Ev̂) ◦ pεP ε.

We denote by
Eεv := (P ε)−1Ev(P ε)−1 = (Ev̂) ◦ pε. (11)

We assume that Ĉε, b̂ε, Ĥε, ĝε, and f̂ε are such that

Ĉε ◦ pε = C, P εb̂ε ◦ pε = b, Ĥε ◦ pε = H, P εĝε ◦ pε = g, (12)

and that

〈f̂ε, v̂〉
H

1/2
00 (∂NΩε)

= ε〈f, v〉
H

1/2
00 (∂NΩ)

for every v̂ ∈ H1/2
00 (∂NΩε), (13)

for some coercive tensor field C ∈ L∞(Ω;R3×3×3×3
sym ), b ∈ L2(Ω;R3), H ∈ L2(Ω;R3×3

sym),

g ∈ H1(Ω;R3) such that (Eg)i3 = 0, and f ∈ (H
1/2
00 (∂NΩ;R3))′. From (8) we deduce

that
F̂ ε ◦ pε = H + CEεg = H + CEg =: F. (14)

Remark 4.1 The required condition (Eg)i3 = 0 is equivalent to say that g is a
Kirchhoff-Love displacement. Indeed, this assumption and also those on Ĉε, B̂ε, Ĥε,
and f̂ε could be relaxed. For instance, it would be enough to require that

Ĥε ◦ pε = H̄ε, P εĝε ◦ pε = ḡε, (15)

for some H̄ε ∈ L2(Ω;R3×3
sym), ḡε ∈ H1(Ω;R3) which further satisfy

ḡε ⇀ ḡ in L2(Ω;R3), (16)

for some ḡ ∈ L2(Ω;R3), and

H̄ε → H̄, CEεḡε → Ḡ in L2(Ω;R3×3
sym), (17)

for some H̄, Ḡ ∈ L2(Ω;R3×3
sym).

We note though that from (17) we have that

Eεḡε → C−1Ḡ in L2(Ω;R3×3
sym),

which, combined with (16), Korn inequality and Rellich compactness Theorem, implies
that (Eḡ)i3 = 0, i.e., that ḡ is a Kirchhoff-Love displacement, and that convergence
(16) actually takes place in H1(Ω;R3).
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Remark 4.2 For the example ˆ̄fε considered in Remark 3.1, with ˆ̄fε± ∈ L2(ω±ε ;R3)

and ˆ̄fε` ∈ L2(∂NΩε` ;R3) which satisfy

P ε ˆ̄fε± ◦ pε =: εf̄±, εP ε ˆ̄fε` ◦ pε =: f̄`,

for some f̄± ∈ L2(ω±;R3) and f̄` ∈ L2(∂NΩ`;R3), the rescaled surface load f̄ defined
by (13) is given by

〈f̄ , v〉
H

1/2
00 (∂NΩ)

=

∫
ω+

f̄+ · v dx+

∫
ω−

f̄− · v dx+

∫
∂NΩ`

f̄` · v dx.

We define the Rescaled Primal Problem as

inf
v∈Aε

Fε(v),

where the set of rescaled admissible displacements and the rescaled energy are defined
by

Aε := {v ∈ H1(Ω;R3) : v = 0 on ∂DΩ},
and

Fε(v) :=

∫
Ω

1

2
CEεv · Eεv − F · Eεv + b · v dx− 〈f, v〉

H
1/2
00 (∂NΩ)

. (18)

With the assumptions (12)-(14) we have

F̂ε(v̂) = εFε(v),

where the relation between v and v̂ is given by (10).

Remark 4.3 In the line of Remark 3.2, we now make a comparison between the
rescalings adopted for the “generalized forces” and the “standard forces”. The rescaled
“generalized force” H contributes to the primal energy, see (18) and (14), with the
term ∫

Ω

H · Eεv dx, (19)

while the “standard forces” contribute with the terms∫
Ω

b · v dx+ 〈f, v〉
H

1/2
00 (∂NΩ)

.

In order to make a comparison we need to rewrite the contribution of the “standard
forces” in a form similar to (19). As in Remark 3.2, given f ∈ (H

1/2
00 (∂NΩ;R3))′ and

b ∈ L2(Ωε;R3), we may find H̄ ∈ H(div,Ω) such that∫
Ω

b · v dx+ 〈f, v〉
H

1/2
00 (∂NΩ)

=

∫
Ω

H̄ · Ev dx, (20)

for all v ∈ Aε. The right hand side of (20) may be rewritten as∫
Ω

H̄ · Ev dx =

∫
Ω

P εH̄P ε · (P ε)−1Ev(P ε)−1 dx =

∫
Ω

P εH̄P ε · Eεv dx,

and the last term is exactly in the form of (19). Since (P εH̄P ε)i3 → 0 in L2(Ω;R3×3
sym),

while, in general, Hi3 6= 0 we deduce that the scaling of the “standard forces” is weaker
than that applied to the “generalized forces”.
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We now change variables to the dual problem. Setting

S := Ŝ ◦ pε,

for any Ŝ ∈ Ŝε and v̂ ∈ Aε we have, from (2) and (11), that on one hand∫
Ωε

(Ŝ − F̂ ε) · Ev̂ dx̂ = ε

∫
Ω

(Ŝ ◦ pε − F ) · Eεv dx

= ε

∫
Ω

(P ε)−1(S − F )(P ε)−1 · Ev dx, (21)

= −ε
∫

Ω

div ((P ε)−1(S − F )(P ε)−1) · v dx

+ ε〈(P ε)−1(S − F )(P ε)−1)n, v〉
H

1/2
00 (∂NΩ)

,

while on the other hand∫
Ωε

(Ŝ − F̂ ε) · Ev̂ dx̂ = −
∫

Ωε

div (Ŝ − F̂ ε) · v̂ dx̂+ 〈(Ŝ − F̂ ε)n̂, v̂〉
H

1/2
00 (∂NΩε)

=

∫
Ωε

b̂ε · v̂ dx̂+ 〈f̂ε, v̂〉
H

1/2
00 (∂NΩε)

(22)

= ε

∫
Ω

b · v dx+ ε〈f, v〉
H

1/2
00 (∂NΩ)

.

Thus from the previous two equations we find that S ∈ Sε if and only if{
div ((P ε)−1(S − F )(P ε)−1) + b = 0 in L2(Ω;R3),

((P ε)−1(S − F )(P ε)−1)n = f in (H
1/2
00 (∂NΩ;R3))′.

Hence, after rescaling the admissible set Ŝε becomes

Sε := {S ∈ L2(Ω;R3×3
sym) : div ((P ε)−1(S − F )(P ε)−1) + b = 0 in L2(Ω;R3)

and ((P ε)−1(S − F )(P ε)−1)n = f in (H
1/2
00 (∂NΩ;R3))′},

the dual energy rewrites as

Fε∗(S) :=
1

2

∫
Ω

C−1S · S dx,

and the Rescaled Dual Problem is

inf
S∈Sε

Fε∗(S).

Remark 4.4 With the notation above we have

F̂ε∗(Ŝ) = εFε∗(S).

In particular, it follows that if T ε is the minimizer of Fε∗, i.e.,

Fε∗(T ε) = inf
S∈Sε

Fε∗(S),

and if T̂ ε is the minimizer of F̂ε∗, see (9), then

T ε = T̂ ε ◦ pε.
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Let wε := P εŵε ◦ pε be the rescaled displacement of the solution ŵε of (6). Then
the rescaled stress σε := σ̂ε ◦pε = CEεwε associated to the solution of (6), see Remark
3.3, is given by

σε = T ε + CEεg = T ε + CEg.

Remark 4.5 The rescaled dual problem coincides with the dual of the rescaled direct
problem.

5 Gamma-convergence of the Rescaled Dual Func-
tional

In this section, after studying the compactness of the dual problem in the weak-L2

topology, we identify the Γ-limit of the sequence of dual functionals. Moreover, we
prove the strong convergence in the L2 topology of the minimizers. For what follows
it is useful to notice, see (21) and (22), that S ∈ Sε if and only if∫

Ω

(S − F ) · Eεv dx =

∫
Ω

b · v dx+ 〈f, v〉
H

1/2
00 (∂NΩ)

, (23)

for any v ∈ Aε. From (23) it easily follows that the set Sε is not empty, indeed it can
be shown that for every ε > 0 there exist Sε ∈ Sε such that supε ‖Sε‖L2(Ω) < +∞.
This, then implies that supε F∗ε (Sε) < +∞.

Before stating the compactness result it is convenient to set

KL0(Ω) := {v ∈ H1(Ω;R3) : (Ev)i3 = 0, for i = 1, 2, 3, and v = 0 on ∂DΩ},

and

S := {S ∈ L2(Ω;R3×3
sym) :Si3 = Fi3, for i = 1, 2, 3, and (24)∫

Ω

(S − F ) · Ew dx =

∫
Ω

b · w dx+ 〈f, w〉
H

1/2
00 (∂NΩ)

for every w ∈ KL0(Ω)}.

Lemma 5.1 Let Sε ∈ Sε be a sequence such that supε F∗ε (Sε) < +∞. Then there
exist a subsequence, not relabeled, and an S ∈ S such that

Sε ⇀ S in L2(Ω;R3×3
sym).

Proof. Let c > 0 be such that C−1(x)T · T ≥ c|T |2 for a.e. x ∈ Ω and for every
symmetric matrix T . Thus

+∞ > Fε∗(Sε) ≥ 1

2
c‖Sε‖2L2(Ω),

and hence supε ‖Sε‖L2(Ω) < +∞, which implies that there exist a subsequence, not

relabeled, and an S ∈ L2(Ω;R3×3
sym) such that

Sε ⇀ S in L2(Ω;R3×3
sym).
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Let w ∈ KL0(Ω) and ψ ∈ C∞0 (Ω;R3). Define

vεα(x1, x2, x3) := wα(x1, x2, x3) + ε

∫ x3

0

ψα(x1, x2, s) ds,

vε3(x1, x2, x3) := w3(x1, x2, x3) + ε2

∫ x3

0

ψ3(x1, x2, s) ds.

Then vε ∈ Aε, vε → w in H1(Ω;R3) and

Eεvε = (P ε)−1Evε(P ε)−1 → Ew +

 0 0 ψ1/2
0 ψ2/2

sym ψ3

 in L2(Ω;R3×3).

By taking S = Sε and v = vε in (23) and by passing to the limit, we find∫
Ω

(S − F ) · Ew + (S − F )e3 · ψ dx =

∫
Ω

b · w dx+ 〈f, w〉
H

1/2
00 (∂NΩ)

.

Since w and ψ are arbitrary functions, in the respective domains, we easily conclude
that S ∈ S. 2

We now identify the Γ-limit of the dual functionals.

Theorem 5.2 The extended functional Fεext : L2(Ω;R3×3
sym)→ R ∪ {+∞} defined by

Fεext(S) =

{
Fε∗(S) if S ∈ Sε,

+∞ otherwise,

sequentially Γ-converges with respect to the weak topology of L2(Ω;R3×3
sym) to the func-

tional

Fext(S) =

{
F∗(S) if S ∈ S,
+∞ if S ∈ L2(Ω;R3×3

sym) \ S,
where

F∗(S) :=
1

2

∫
Ω

C−1S · S dx.

Proof. We need to prove that:

a) for every S ∈ L2(Ω;R3×3
sym) and every sequence Sε ∈ L2(Ω;R3×3

sym) such that
Sε ⇀ S in L2(Ω;R3×3

sym) it holds

lim inf
ε
Fεext(S

ε) ≥ Fext(S);

b) for every S ∈ L2(Ω;R3×3
sym) there exists a sequence Sε ∈ L2(Ω;R3×3

sym) such that
Sε ⇀ S in L2(Ω;R3×3

sym) and

lim sup
ε
Fεext(S

ε) ≤ Fext(S).

We start by proving a). Let S ∈ L2(Ω;R3×3
sym) and Sε ∈ L2(Ω;R3×3

sym) be a sequence
such that Sε ⇀ S in L2(Ω;R3×3

sym). We may assume that

lim inf
ε
Fεext(S

ε) = lim
ε
Fεext(S

ε) < +∞.

11



Then supε Fεext(S
ε) = supε Fε∗(Sε) < +∞ and hence, by Lemma 5.1 it follows that

S ∈ S. By a standard semicontinuity argument we have

lim inf
ε
Fεext(S

ε) = lim
ε

1

2

∫
Ω

C−1Sε · Sε dx ≥ 1

2

∫
Ω

C−1S · S dx = F∗(S) = Fext(S).

We now prove b), which is usually called the recovery sequence condition. Let
S ∈ L2(Ω;R3×3

sym). We may assume that Fext(S) < +∞. Thus S ∈ S. To construct the
recovery we consider the following problem: uε ∈ Aε,∫

Ω

(CEεuε + S − F ) · Eεϕdx =

∫
Ω

b · ϕdx+ 〈f, ϕ〉
H

1/2
00 (∂NΩ)

, for every ϕ ∈ Aε.

(25)
By the definition of the operator Eε and Korn’s inequality we have that ‖Eεϕ‖L2(Ω) ≥
‖Eϕ‖L2(Ω) ≥ C‖ϕ‖H1(Ω), for every ϕ ∈ Aε and for a constant C independent of ϕ.
This together with the positive definiteness of the elasticity tensor C implies that the
solution uε of problem (25) satisfies the bound:

sup
ε
‖Eεuε‖L2(Ω) < +∞, (26)

and, as a consequence, supε ‖uε‖H1(Ω) < +∞. Up to subsequences, we have that

uε ⇀ ǔ in H1(Ω;R3),

for some ǔ ∈ H1(Ω;R3). By the definition of Eε, also

(Eεuε)αβ = (Euε)αβ ⇀ (Eǔ)αβ in L2(Ω), and (Euε)i3 → 0 in L2(Ω).

Whence ǔ ∈ KL0(Ω). Moreover, up to a subsequence, we have that

(Eεuε)i3 ⇀ ψ̌i in L2(Ω),

for some ψ̌ ∈ L2(Ω;R3). These convergences can be compactly rewritten as

Eεuε ⇀

(
(Eǔ)αβ ψ̌α
ψ̌β η3

)
=: E(ǔ, ψ̌) in L2(Ω;R3×3).

Set
Sε := S + CEεuε. (27)

That Sε ∈ Sε follows from (23) and (25), while, up to a subsequence,

Sε ⇀ S + CE(ǔ, ψ̌) =: Š in L2(Ω;R3×3). (28)

Let w ∈ KL0(Ω), η ∈ C∞0 (Ω;R3), and set

ϕα(x1, x2, x3) := wα(x1, x2, x3) + ε

∫ x3

0

2ηα(x1, x2, s) ds,

ϕ3(x1, x2, x3) := w3(x1, x2, x3) + ε2

∫ x3

0

η3(x1, x2, s) ds.

Then,
Eεϕ = E(w, η) +Rε, with Rε → 0 in L2(Ω;R3×3),

12



and with such a ϕ we may pass to the limit in (25) to find∫
Ω

(Š − F ) · E(w, η) dx =

∫
Ω

b · w dx+ 〈f, w〉
H

1/2
00 (∂NΩ)

, (29)

which holds for every w ∈ KL0(Ω) and η ∈ C∞0 (Ω;R3).
Since S ∈ S we have, from the definition (24) of S, that∫

Ω

(S − F ) · E(w, η) dx =

∫
Ω

b · w dx+ 〈f, w〉
H

1/2
00 (∂NΩ)

, (30)

holds for every w ∈ KL0(Ω) and η ∈ C∞0 (Ω;R3). The difference between (29) and
(30) delivers: ∫

Ω

(Š − S) · E(w, η) dx = 0, (31)

for every w ∈ KL0(Ω) and η ∈ C∞0 (Ω;R3). By density this equation holds also for
every η ∈ L2(Ω;R3). Taking w = ǔ, η = ψ̌, and using (28) we obtain∫

Ω

CE(ǔ, ψ̌) · E(ǔ, ψ̌) dx = 0,

which implies that E(ǔ, ψ̌) = 0 almost everywhere in Ω, and consequently ψ̌ = 0, and
also ǔ = 0, since ǔ ∈ KL0(Ω). Now, taking ϕ = uε in (25) and passing to the limit we
deduce that

lim
ε→0

∫
Ω

CEεuε · Eεuε dx = lim
ε→0

∫
Ω

−(S − F ) · Eεuε + b · uε dx+ 〈f, uε〉
H

1/2
00 (∂NΩ)

=

∫
Ω

−(S − F ) · E(ǔ, ψ̌) + b · ǔ dx+ 〈f, ǔ〉
H

1/2
00 (∂NΩ)

= 0,

thence Eεuε → 0 in L2(Ω;R3×3) and, by (27),

Sε → S in L2(Ω;R3×3).

Since Sε ∈ Sε we find:

lim
ε→0
Fε∗(Sε) = lim

ε→0

1

2

∫
Ω

C−1Sε · Sε dx =
1

2

∫
Ω

C−1S · S dx = F∗(S) = Fext(S),

and the proof is completed. 2

Remark 5.3 We remark that in the second part of the proof of Theorem 5.2 we have
indeed shown that: for every S ∈ L2(Ω;R3×3

sym) there exists a sequence Sε ∈ L2(Ω;R3×3
sym)

such that Sε → S in L2(Ω;R3×3) and

lim
ε→0
Fεext(S

ε) = Fext(S).

Remark 5.4 In our setting, by Proposition 8.10 of [23], sequential Γ-convergence is
equivalent to Γ-convergence.

In the next theorem we prove the strong convergence of the minimizers.
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Theorem 5.5 Let T ε be the minimizer of Fε∗ and T be the minimizer of F∗. Then

T ε → T in L2(Ω;R3×3
sym),

and
lim
ε→0
Fε∗(T ε) = F∗(T ).

Proof. Let T ε be the minimizer of Fε∗. Then by Lemma 5.1 we have that, up to a
subsequence, T ε ⇀ T in L2(Ω;R3×3

sym), for some T ∈ S. Let S ∈ S and let Sε ∈ Sε be a
sequence such that lim supε→0 Fε∗(Sε) ≤ F∗(S), which exists by Theorem 5.2. Since
Fε∗(T ε) ≤ Fε∗(Sε), by Theorem 5.2 we have

F∗(T ) ≤ lim inf
ε→0

Fε∗(T ε) ≤ lim sup
ε→0

Fε∗(T ε) ≤ lim sup
ε→0

Fε∗(Sε) ≤ F∗(S),

which implies that T is a minimizer of F , and by taking S equal to T , that

lim
ε→0
Fε∗(T ε) = F∗(T ).

Since F∗ has a unique minimizer we have that the full sequence T ε weakly converges to
T in L2(Ω;R3×3

sym). By convexity it then follows that T ε → T in L2(Ω;R3×3
sym). Indeed,

we have

lim
ε→0

∫
Ω

C−1(T ε − T )·(T ε − T ) dx

= 2 lim
ε→0

(
Fε∗(T ε)−

∫
Ω

C−1T ε · T dx+ F∗(T )
)

= 0,

from which the strong convergence follows. 2

Remark 5.6 The rescaled stress σε = T ε+CEg associated to the solution of (6), see
Remark 4.4, strongly converges in L2(Ω;R3×3

sym) to σ := T + CEg.

The next lemma, similar to a result contained in [15], allows us to characterize the
minimizing stress tensor.

Lemma 5.7 Let D be a bounded, open subset of R3 with Lipschitz boundary ∂D. Let
∂DD 6= ∅ be the union of a finite number of open connected sets of ∂D. Let

KL0(D) := {v ∈ H1(D;R3) : (Ev)i3 = 0, and v = 0 on ∂DD},

K := {E ∈ L2(D;R3×3
sym) :∃z ∈ KL0(D) and ψ ∈ L2(D;R3) such that

E =

(
(Ez)αβ ψβ
ψα ψ3

)
},

and

M = {S ∈ L2(D;R3×3
sym) :Si3 = 0, and∫

D

S · Ez dx = 0 for every z ∈ KL0(D)}.

Then

K =M⊥.
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Proof. We first note that K is a closed subset of L2(D;R3×3
sym). Indeed, let {Ej} ⊂ K be

such that Ej → E in L2(D;R3×3
sym). Then there exist zj ∈ KL0(D) and ψj ∈ L2(D;R3)

such that
(Ezj)αβ → (E)αβ ψji → ψi = (E)i3, in L2(D),

for some ψi ∈ L2(D). Thus to show that K is closed it suffices to show that there
exists a z ∈ KL0(D) such that (E)αβ = (Ez)αβ . But since zj ∈ KL0(D) we have
that Ezj is a Cauchy sequence in L2(D;R3×3

sym) and hence, from Korn’s inequality we
deduce, in the components of D whose boundary contain part of ∂DD, that zj → z in
the H1 norm, while on the other components it is zj minus its orthogonal projection
on the set of infinitesimal rigid displacements which converges to some z in the H1

norm. Throughout D we then have (E)αβ = (Ez)αβ .
The proof of the lemma now follows easily. In fact, we have K ⊂M⊥ and K⊥ ⊂M.

This latter inclusion implies that M⊥ ⊂ (K⊥)⊥. Hence

K ⊂M⊥ ⊂ (K⊥)⊥,

but since K is a closed subset of L2(D;R3×3
sym) we have that (K⊥)⊥ = K. 2

Theorem 5.8 The minimizer T of F∗ satisfies the following problem: T ∈ S,∫
Ω

C−1T · Σ dx = 0, for every Σ ∈ S0,
(32)

where

S0 := {S ∈ L2(Ω;R3×3
sym) :Si3 = 0, and (33)∫

Ω

S · Ez dx = 0 for every z ∈ KL0(Ω)}.

Moreover, there exist a unique ψ ∈ L2(Ω;R3) and a unique u ∈ KL0(Ω) such that

T = C
(

(Eu)αβ ψβ
ψα ψ3

)
. (34)

Proof. Problem (32) is simply the Euler-Lagrange equation of the problem infS∈S F∗(S).
From (32) we have that

C−1T ∈ (S0)⊥,

and hence from Lemma 5.7 we deduce that there exist u ∈ KL0(Ω) and ψ ∈ L2(Ω;R3)
such that

C−1T =

(
(Eu)αβ ψβ
ψα ψ3

)
.

2

Remark 5.9 The stress σ = T +CEg, limit of the stresses associated to the solutions
of (6), see Remark 5.6, is given by

σ = C
(

(Eu+ Eḡ)αβ ψβ
ψα ψ3

)
.
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Setting

w := u+ g ∈ KLg(Ω) := {v ∈ H1(Ω;R3) : (Ev)i3 = 0, and v = g on ∂DΩ},

we may write

σ = C
(

(Ew)αβ ψβ
ψα ψ3

)
.

The rescaled stresses σε = CEεwε strongly converge in L2(Ω;R3×3
sym) to σ, see Re-

marks 4.4 and 5.6, thus

Eεwε →
(

(Ew)αβ ψβ
ψα ψ3

)
, in L2(Ω;R3×3).

6 The bi-dimensional limit problem

The limit problem obtained in Section 5 is defined on a three-dimensional domain. The
aim of this Section is to show that it can be rewritten on a two-dimensional domain.

For a given S ∈ S let

SN :=

∫ 1/2

−1/2

Sαβ dx3eα ⊗ eβ , and SM :=

∫ 1/2

−1/2

x3Sαβ dx3eα ⊗ eβ .

Similarly, using the components Fαβ , we define FN and FM . Let

H1
0,D(ω;R2) := {η ∈ H1(ω;R2) : η = 0 on ∂Dω},

and
H2

0,D(ω) := {η ∈ H2(ω) : η = ∂nη = 0 on ∂Dω}.
For every z ∈ KL0(Ω) there exist (η1, η2) ∈ H1

0,D(ω;R2), η3 ∈ H2
0,D(ω) such that{

zα(x1, x2, x3) = ηα(x1, x2)− x3∂αη3(x1, x2),
z3(x1, x2, x3) = η3(x1, x2).

A simple calculation shows that

Ez = ((Eη)αβ − x3∂α∂βη3)eα ⊗ eβ ,

and hence the condition, which also appears in the definition of S, see (24),∫
Ω

(S − F ) · Ez dx =

∫
Ω

b · z dx+ 〈f, z〉
H

1/2
00 (∂NΩ)

,

for every z ∈ KL0(Ω), rewrites as∫
ω

(SN − FN )αβ(Eη)αβ − (SM − FM )αβ∂α∂βη3 dx =WN ((η1, η2)) +WM (η3),

where

WN ((η1, η2)) :=

∫
ω

∫ 1/2

−1/2

bα dx3 ηα dx+ 〈fα, ηα〉H1/2
00 (∂NΩ)

,

and

WM (η3) :=

∫
ω

∫ 1/2

−1/2

b3 dx3 η3 dx+ 〈f3, η3〉H1/2
00 (∂NΩ)

+

∫
ω

∫ 1/2

−1/2

x3bα dx3 ∂αη3 dx+ 〈fα, x3∂αη3〉H1/2
00 (∂NΩ)

.

16



Remark 6.1 If f̄ is as in Remark 4.2, then the work done by the loads can be written
more explicitly, for instance

〈f̄α, ηα〉H1/2
00 (∂NΩ)

=

∫
ω+

f̄+α ηα dx+

∫
ω−

f̄−α ηα dx+

∫
∂Nω

∫ 1/2

−1/2

f̄`α dx3 ηα dx.

We therefore have

S := {S ∈ L2(Ω;R3×3
sym) : Si3 = Fi3, for i = 1, 2, 3, and (35)∫
ω

(SN − FN ) · Eϕdx =WN (ϕ) for every ϕ ∈ H1
0,D(ω;R2),∫

ω

(SM − FM ) · ∇∇ψ dx =WM (ψ) for every ψ ∈ H2
0,D(ω).}

We now rewrite the functional F∗ in terms of SN and SM . To do so we let

L := {S ∈ L2(Ω;R3×3
sym) : ∃A,B ∈ L2(ω;R2×2

sym) such that

Sαβ(x1, x2, x3) = Aαβ(x1, x2) + x3Bαβ(x1, x2)}.

Since L is a closed subspace of L2(Ω;R3×3
sym) we have

L2(Ω;R3×3
sym) = L ⊕ L⊥.

We note that Σ ∈ L⊥ if and only if ΣN = ΣM = Σi3 = 0. Let Π be the projection of
L2(Ω;R3×3

sym) onto L. Then, from the relation∫
Ω

Π(S) · Σ dx =

∫
Ω

S · Σ dx for every Σ ∈ L,

we infer that
Π(S)αβ = SNαβ + 12x3S

M
αβ , Π(S)i3 = Si3.

Hereafter we denote by

SL := Π(S) and Sc := S − SL.

and by
SL := Π(S) and Sc := S − SL.

Lemma 6.2 With the notation just introduced we have that

Sc = L⊥.

Proof. From the definition of Sc it immediately follows that Sc ⊂ L⊥. To prove the
opposite inclusion first note that

SL ⊂ S. (36)

Indeed, let SL ∈ SL . Then there exists S ∈ S such that SL = Π(S), that is
(SL)i3 = Si3 = Fi3, and since Π(S)αβ = SNαβ+12x3S

M
αβ we have also that (SL)N = SN

and (SL)M = SM . Hence (36) follows from the representation of S given in (35).
Let Σ ∈ L⊥. Let SL be any element of SL. The condition Σ ∈ L⊥ implies that

ΣN = ΣM = Σi3 = 0 and hence we have, using (36), that Σ+SL ∈ S. Since Π(Σ) = 0,
Π(SL) = SL and the linearity of Π, which holds because L is a closed linear subspace,
we have

Σ = Σ + SL − (Π(Σ) + Π(SL)) = Σ + SL −Π(Σ + SL) ∈ S \Π(S) = Sc,
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and hence L⊥ ⊂ Sc. 2

We may therefore write

F∗(S) =
1

2

∫
Ω

C−1SL · SL + 2C−1SL · Sc + C−1Sc · Sc dx

= F⊥(SL, Sc) +
1

2

∫
Ω

C−1SL · SL dx,

where we have set

F⊥(SL, Sc) :=

∫
Ω

C−1SL · Sc +
1

2
C−1Sc · Sc dx.

Thus, thanks to Lemma 6.2, we have that

inf
S∈S
F∗(S) = inf

SL∈SL
inf

Sc∈L⊥
F⊥(SL, Sc) +

1

2

∫
Ω

C−1SL · SL dx,

and setting
f⊥(SL) := inf

Sc∈L⊥
F⊥(SL, Sc),

we have
inf
S∈S
F∗(S) = inf

SL∈SL
F∗L(SL),

where we have set

F∗L(SL) :=
1

2

∫
Ω

C−1SL · SL dx+ f⊥(SL). (37)

It is possible, even for a generic elasticity tensor C, to write the function f⊥ explicitly,
but, as it can be seen in the next Theorem, the explicit form of f⊥ is quite involved.

Theorem 6.3 Let

cij := Ci3j3, C̄αβγδ := Cαβγδ − Cαβj3c−1
ji Ci3γδ, (38)

C̄(i) :=

∫ 1/2

−1/2

xi3 C̄ dx3 for i = 0, 1, 2, (39)

Ĉ := 12(C̄(2) − C̄(1)(C̄(0))−1C̄(1)), (40)

and

Cnn := (C̄(0))−1 + 12(C̄(0))−1C̄(1)Ĉ−1C̄(1)(C̄(0))−1, (41)

Cnm := −12(C̄(0))−1C̄(1)Ĉ−1, (42)

Cmn := −Ĉ−1C̄(1)(C̄(0))−1, Cmm := Ĉ−1. (43)

For a given SL ∈ SL, let Λ ∈ L⊥ be the minimizer of F⊥(SL, ·), i.e.,

f⊥(SL) = inf
Sc∈L⊥

F⊥(SL, Sc) = F⊥(SL,Λ).

Then Λ = CZ − SL where4 Z = Z̄ + z � e3, with Z̄ := ZN + 12x3Z
M ,

ZN := Cnn(SL)N + Cnm(SL)M + z
n,

ZM := Cmn(SL)N + Cmm(SL)M + z
m,

zj := c
−1
ji (Fi3 − (CZ̄)i3),

(44)

4a� b := 1
2

(a⊗ b + b⊗ a)
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and where

z
m := Ĉ−1(C̄(1)(C̄(0))−1

f
N − f

M ), z
n := −(C̄(0))−1(fN + 12C̄(1)

z
m), (45)

with
fαβ := Cαβj3c−1

ji Fi3. (46)

Moreover

f⊥(SL) =
1

2

∫
Ω

C̄Z̄ · Z̄ − C−1SL · SL dx+ c, (47)

where the constant c depends only on Fi3 and C.

The proof of Theorem 6.3 is given in the Appendix at the end of the paper.

Remark 6.4 We note that:

1. if Cαβγ3 = Cα333 = 0, i.e., triclinic symmetry, then

C̄αβγδ = Cαβγδ −
Cαβ33C33γδ

C3333
;

2. if the material is triclinic and Fα3 = 0 then Λα3 = 0, i.e., the shear stresses are
equal to zero. Indeed we have Λα3 = Cα3jkZjk − SLα3 = 2Cα3β3Zβ3 = 2Cα3β3zβ,
but since cβ3 = 0 it follows that zβ = c

−1
βα(Fα3− (CZ̄)α3) = −c−1

βαCα3γδZ̄γδ = 0;

3. if C(x1, x2, ·) is even, for almost every (x1, x2) ∈ ω, then C̄(1) is null, and hence{
ZN := (C̄(0))−1(SL)N − (C̄(0))−1

f
N ,

ZM := 1
12

(C̄(2))−1(SL)M − 1
12

(C̄(2))−1
f
M ;

4. if Fi3 = 0 then f, zn and z
m are null matrices;

5. if C is independent of x3 and Fi3 = 0 then items 3. and 4. of the present
Remark hold and moreover

f⊥(SL) =
1

2

∫
Ω

C̄−1SL · SL − C−1SL · SL dx+ c. (48)

In fact, under these assumptions, we find C̄(0) = C̄, C̄(2) = 1
12
C̄ and hence

ZN = C̄−1(SL)N , ZM = C̄−1(SL)M , from which it follows that

Z̄ = C̄−1((SL)N + 12x3(SL)M ) = C̄−1SL.

Thus from the equation of f⊥ given in Theorem 6.3 it follows the representation
of f⊥ given in (48). The constant c, see Appendix, is equal to zero if Fi3 = 0.
Thus under these assumptions we have that, see (37),

F∗L(SL) :=
1

2

∫
Ω

C̄−1SL · SL dx.

Let TL be the minimizer of F∗L, i.e.,

F∗L(TL) = inf
SL∈SL

F∗L(SL),

and T c ∈ Sc be the minimizer of F⊥(TL, ·), i.e.,

F⊥(TL, T c) = inf
Sc∈L⊥

F⊥(TL, Sc),

then the minimizer of F∗ is
T = TL + T c.

We note that once TL is known one can determine T c directly from Theorem 6.3.
We conclude the section by noticing that the functional F∗L, despite its appearance,

is essentially defined on ω.
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7 Appendix

This appendix is devoted to the proof of Theorem 6.3. Let SL be given and let Λ ∈ L⊥
be the minimizer of F⊥(SL, ·), i.e.,

f⊥(SL) = inf
Sc∈L⊥

F⊥(SL, Sc) = F⊥(SL,Λ).

Then Λ satisfies the following problem:∫
Ω

C−1(SL + Λ) · Σ dx = 0, for every Σ ∈ L⊥,

that is
Z := C−1(SL + Λ) ∈ L.

Hence CZ = SL + Λ and since Λ ∈ L⊥ we have that
(CZ)i3 = (SL)i3 = Fi3,
(CZ)N = (SL)N ,
(CZ)M = (SL)M .

(49)

We now show that system (49) delivers Z uniquely. Let

zα := 2Zα3, z3 := Z33, Z̄ = Zαβeα ⊗ eβ ,

then we have
Z = Z̄ + z � e3.

The first equation of (49) rewrites as

(CZ̄)i3 + (Cz � e3)i3 = Fi3

and by denoting, see (38),
cij := Ci3j3,

it can be rewritten as
(cz)i = Fi3 − (CZ̄)i3.

Since C is positive definite we have that c is also positive definite, and hence

zj = c
−1
ji (Fi3 − (CZ̄)i3). (50)

We now evaluate the in-plane components of CZ. We have

(CZ)αβ = CαβγδZ̄γδ + Cαβj3zj = CαβγδZ̄γδ + Cαβj3c−1
ji (Fi3 − (CZ̄)i3)

= (Cαβγδ − Cαβj3c−1
ji Ci3γδ)Z̄γδ + Cαβj3c−1

ji Fi3.

Setting, see (38) and (46),

C̄αβγδ := Cαβγδ − Cαβj3c−1
ji Ci3γδ, fαβ := Cαβj3c−1

ji Fi3,

we have
(CZ)αβ = (C̄Z̄)αβ + fαβ . (51)

But, since Z ∈ L, we can write

Z̄ = ZN + 12x3Z
M ,
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and, with this position, the second and third equations of (49) rewrite as:{
C̄(0)ZN + 12C̄(1)ZM = (SL)N − f

N ,

C̄(1)ZN + 12C̄(2)ZM = (SL)M − f
M ,

(52)

where we have set, see (39),

C̄(i) :=

∫ 1/2

−1/2

xi3 C̄ dx3 for i = 0, 1, 2.

Thanks to Lemma 7.1, below, we have

ZN = −12(C̄(0))−1C̄(1)ZM + (C̄(0))−1((SL)N − f
N ), (53)

and
ZM = Ĉ−1((SL)M − f

M − C̄(1)(C̄(0))−1((SL)N − f
N )), (54)

where Ĉ is defined by (40).

Lemma 7.1 Let cC > 0 be a constant such that

essinf x∈Ω C(x)A ·A ≥ cC|A|2,

for every symmetric matrix A ∈ R3×3.
With the notation introduced above we have

C̄Ā · Ā = min
b∈R3

C(Ā+ b� e3) · (Ā+ b� e3) ≥ cC|Ā|2

for every symmetric matrix Ā ∈ R2×2. The minimum is achieved for bmin
j = −c−1

ji (CĀ)i3,
and

(C(Ā+ bmin � e3))i3 = 0.

Also
ĈĀ · Ā ≥ cC|Ā|2,

for every symmetric matrix Ā ∈ R2×2.

Proof. The statements concerning C̄ follow by an easy computation. To prove the
statement concerning Ĉ note that∫ 1/2

−1/2

C̄(B̄ + x3Ā) · (B̄ + x3Ā) dx3 ≥ cC
∫ 1/2

−1/2

|B̄ + x3Ā|2 dx3 ≥
cC
12
|Ā|2,

and since∫ 1/2

−1/2

C̄(B̄ + x3Ā) · (B̄ + x3Ā) dx3 = C̄(0)B̄ · B̄ + 2C̄(1)Ā · B̄ + C̄(2)Ā · Ā,

we have that

ĈĀ · Ā = 12 min
B̄∈R2×2

sym

∫ 1/2

−1/2

C̄(B̄ + x3Ā) · (B̄ + x3Ā) dx3.

2
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Thus, from (53) and (54), and using (41), (42), (43) and (46), we deduce (44).
Hence from (44) we find Z̄ and from (50) we find z. Thus also Z is completely known
and hence, from the relation, CZ = SL + Λ, also Λ is known in terms of SL.

We now compute f⊥(SL). We have

f⊥(SL) = F⊥(SL,Λ) = F⊥(SL,CZ − SL)

=
1

2

∫
Ω

CZ · Z − C−1SL · SL dx.

Let us write (50) as follows

z = zmin + f with zmin
j := −c−1

ji (CZ̄)i3, fj := c
−1
ji Fi3,

then

CZ · Z = C(Z̄ + z � e3) · (Z̄ + z � e3)

= C(Z̄ + zmin � e3) · (Z̄ + zmin � e3)

+ 2C(Z̄ + zmin � e3) · f� e3 + C f� e3 · f� e3

= C̄Z̄ · Z̄ + c f · f,

where to obtain the last equality we have used Lemma 7.1. Thus

f⊥(SL) =
1

2

∫
Ω

C̄Z̄ · Z̄ − C−1SL · SL + c f · f dx,

which is equivalent to (47).
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