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linearly elastic bodies
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Abstract

We consider a sequence of linear hyper-elastic, inhomogeneous and
fully anisotropic bodies in a reference configuration occupying a cylindri-
cal region of height e. We then study, by means of I'-convergence, the
asymptotic behavior as € goes to zero of the sequence of complementary
energies. The limit functional is then identified as a dual problem for a
two-dimensional plate. Our approach gives a direct characterization of
the convergence of the equilibrating stress fields.

2010 Mathematics Subject Classification: 49505, 49J45, 74K20, 74B05,
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1 Introduction

The equilibrium problem for a linear hyper-elastic body may be suitably studied by
means of several variational formulations, like the principle of the minimum potential
energy (primal formulation) and the principle of minimum complementary energy (dual
formulation). In the former formulation the unknown is the displacement vector field,
while in the latter the stress tensor field is to be found. Other variational formulations,
the so called mixed formulations, take simultaneously as unknowns the displacement
and the stress vector fields, see for instance [1].

In the last three decades, starting with the work of Ciarlet and Destuynder [2],
these variational problems, or their extremality equations, have been used, in con-
junction to some asymptotic techniques, to justify/derive models for thin structures
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starting from the three-dimensional theory. At the early stages of this prolific line of
research mixed formulations were adopted, while after the asymptotic techniques have
been refined the research have been focused almost exclusively on the study of some
form of the primal formulation. Within this line of research, the Kirchhoff-Love theory
for homogeneous and isotropic plates has been justified by means of I'-convergence by
Anzellotti et al. [3] and by Bourgin et al. [4]. These results have been generalized in
several directions: for linear plates with residual stress [5, 6], for elasto-plastic plates
[7, 8, 9], Reissner-Mindlin plates [10, 11, 12], and non-linearly elastic plates [13, 14].

Respect to the existing literature a different route has been taken by Bessoud
et al. in [15]. These authors consider a system of two elastic materials glued by a
thin and strong material between them and by means of the complementary energy
they study the asymptotic behavior of the system of materials as the thickness of the
gluing material goes to zero. In the limit problem a material surface, endowed with
an appropriate elastic energy, replaces the thin layer.

We here consider a sequence of linear hyper-elastic, inhomogeneous, and fully
anisotropic bodies in a reference configuration occupying a cylindrical region of height
€. We then study, by means of I'-convergence, the asymptotic behavior as € goes to
zero of the sequence of complementary energies. The limit functional is then identified
as a dual problem for a two-dimensional plate.

While variational limits of primal problems characterize the asymptotic behavior of
the minimizing displacements, the study of the asymptotic behavior of the complemen-
tary energies characterizes the convergence of the equilibrating stress fields. Besides
the use of this novel approach for the deduction of plate theory, our work deals with
fully anisotropic and inhomogeneous materials, case that has not been studied in this
full generality before, not even by means of the primal formulation. This kind of
generality on the constitutive equations has been used to derive linearly elastic beam
theories, within the primal formulation framework, for instance in [16, 17, 18, 19].

The paper is organized as follows. In Section 2 we review some function spaces
that will be useful in the rest of the paper, while in Section 3 the primal and dual
formulation of the problem considered are stated. The dimension reduction problems
are classically rescaled on a fixed domain, this is done in Section 4. In Section 5 the
I'-convergence analysis is carried on, and in Section 6 the obtained I'-limit is written
on a two-dimensional domain.

2 Preliminaries

Let Q C R® be an open, bounded set with Lipschitz boundary 99, and let T be an
open subset of 9Q.1 We denote by

HY*(D;R%) :={v: Ju € H' (%4 R?) s.t. yu=v on '},

where v : H'(Q;R?) — H1/2(89; R?) denotes the trace operator, and we equip it with
the norm

Il grrv2 ey = nf{||ullg1q) v € H'(%;R?) and yu = v on T'}.
The dual of H'/?(T;R?) shall be denoted by H~'/?(I'; R?). We let

HYP(D;R?) := {v € HY*(T;R®) : 5 € HY? (00 R?)},

INote that no regularity assumption is made on the open set I



where ¥ denotes the extension by 0 of v to 92, and we equip it with the norm
HU||H30/2(F) = ||17HH1/2(3Q)

The spaces Hl/Q(F; R?) and Héé2 (I'; R?) are delicate spaces, see e.g., see [20] Chapter
I, §11 and 12, and [21] Chapter 1, §1.3.2. Note that the space denoted here, and in
[20], by H),*(T) is denoted by W;/*(T') in [21].

Thanks to these spaces, for a distribution f € H~/2(9Q; R?) defined in the whole

boundary 052, we may define its restriction to I', denoted by f|r € (H(%Q(F; R?))’, in
the following way

(Fles ) sz = D) mszon)  for every v € Hop* (T3 RY).
The space
H(div, Q) := {T € L*(% R - divT € L*(Q;R%)},
equipped with the norm
HTH?{(div,Q) = HTHiQ(Q) + ||diVTH2L2(Q)7

is a Hilbert space. It is well known that there exists a continuous linear mapping
n : H(div, Q) — H~Y2(8Q; R®) such that

/T~Vudm:f/divT-ud:v+(WnT,vu)Hl/z(am, (1)
Q Q

for every T € H(div,Q) and u € H'(Q;R?). Hereafter we shall simply write T'n in
place of ~,T.

From (1) it follows that for T € H(div, Q) and for every u € H'(€;R?) with yu = 0
in H'/2(9Q\ T;R?) we have

/T-Vudx:—/divT~udm—|—(Tn\p,'yu>H1/2 , (2)
Q o 00 (@)
since yu € HSO/Q(P;]R‘Q’).

Hereafter, if no confusion shall arise, we shall simply write T'n also for the restric-
tion T'n|r and we shall drop the use of v to denote the trace, i.e., we shall write u for
the trace vyu.

3 The unscaled problems

Let w be an open bounded domain of R? with Lipschitz boundary dw, and for ¢ € (0, 1],
we set

O = wx (—£/2,¢/2).

Let Opw and dnw be unions of finite numbers of open connected subsets of dw such
that
OpwNioyw =0, OpwUOdNyw=0w, Opw #0.

We set
(9DQE = Opw X (76/2,6/2), aNQE = 00° \ OpQle.



We consider Q° as the region occupied by a linear hyper-elastic body in the ref-
erence configuration. Let C° € L>®(Q°;R3%3%3%3) be the elasticity tensor, which
we assume to be uniformly coercive, of the elastic body considered. By writing
C° € L=(Q%;RE%3*3*3) we mean that

€ ~E ~E
Cijri = Criij = Cijpp.

The sets 0pQ° and InQ° are the parts of the boundary of Q2° where Dirichlet and Neu-
mann boundary conditions are imposed, and we denote? by f° € (Hééz(BNQE;Rg))’
the surface loads, and by §° € H1/2(GDQ€;R3) the imposed displacement on dpQ°.
Since every function in H'/?(0pQ°;R®) is the trace of a function in H'(Q%;R?), we
also denote by ¢° this latter function.

We further denote by b° € L?(Q%; R®) the body forces.

Remark 3.1 Let wi be the upper and lower bases of the cylinder Q° and let On$2; be
the Neumann part of the lateral boundary, i.e.,

wi =w x {*£e/2}, and OINQG = Inw X (—€/2,+€/2),

so that wi Uws UONQ; is ONQ® up to a set of zero two-dimensional measure. Let
fi e H_1/2(o.fft;R3), and ff € H Y2(OnQ5;R?). Then, f° defined®, for every v e
Hy* (9n 05 RP), by

<.feaﬁ>Héé2(aNQg) ::<fi7@‘wi_>}11/2(wi) + <fia®|wi>Hl/2(w6_)

~a

+ :@|8NQZ>H1/2(3NQ,§)7 (3)
is an example of a force that can be used as fa. Moreover, in the case that fi S
L*(w3;R®) and f§ € L*(OnQ5;R?), the duality in (3) is nothing but the sum of three
integrals. Note however that there are forces in (H(%Q(BNQE; R3))’ that are more gen-
eral than € defined by (3).

Remark 3.2 Given fE € (Héo/Q(aNQE;RS))' and b° € L*(Q°;R?), as above, there ex-
ists (looking e.g. for G¥ as the symmetric part of the gradient of an unknown function)
a G° € H(div, ) such that

(4)

divG*+b°=0 in L*(Q5;R%),
Gen = f* in (Hy? (On)).

Then, from (2), the work done by the loads can be simply rewritten as

G* - Eb di, (5)

2 n 14 YN =
b - vdx + (f 7”>H362(0NQE>_ o

QE
for all © € H*(QF;R?) such that © = 0 on OpQ°.
Also the converse is true: given G¢ € H(div, ) there exist f* € (Héé2 (OnQF;R3)Y
and b° € L*(Q°;R?), defined by (4), for which (5) holds.

2Throughout the paper the notation ° refers to quantities defined on Q¢ or on parts of its
boundary.

3Throughout the paper the notation * refers to quantities which are examples of the general
case.



Therefore the description of the applied loads may be done indifferently either by
means of the body and surface forces b and fs, or by means of the tensor field Ge.
Both approaches present some advantages and some disadvantages. For instance, it is
not necessary to assume G° € H(div,Q.) but it is enough to have G° € L*(Q%;R3%3).
We consider hereafter both representations simultaneously. In Remark 4.3, below, we
explain why we consider both type of forces.

We consider, in the spirit of Remark 3.2, also “generalized forces” described by a
tensor field H® € L*(Q;R3%3).
The problem of linear elasticity can be written as:

w° € HY(Q%;R%),w° = §° in H/?(0p0%;R?),
< Bos - B di = / HE - B) b dde + (5 0) ey o (6)

Qe Qf

for every ¢ € A°,

where Ew° denotes the symmetric part of the gradient of %°, and A° the set of
admissible displacements defined by

A= {o e H'(Q%R?) : 5 =0 on dpQ°}.

Since ¢° simultaneously denotes a function in H*'(Q¢;R?) and its trace, (6) can be
rewritten as:

4 1= 0 — g € A,
QEC EUA'ElﬁdUC: QEF By + b7 ypdi +(f 7¢>H362(8NQE)7 (7)
for every ¢ € A,

where, for notational simplicity, we denote
P om0+ B ()

As it is well known, the solution @° of (7) may also be found by minimizing the
total energy F° : A° — R defined by
. 1 . . . .
F@):=5 [ CEo-Bodi— | F° Eo+b-0dé—(f,0),1

Qe Qe 00 (dnQe)’

that is
Fe(0f) = inf F°(0).
d€ds
This variational problem is called PRIMAL PROBLEM.
We now introduce the dual problem.

From the inequality
0<CH(E—(C)'S)-(E—(C)'S)=CE-E—2E-§+(C°)'S-8,
which holds for every E, S € Rg;,?,, it follows that for every ¢ € H'(Q%;R?)

L[ ¢ Bo.Bodi=  max /SEv— (C5)7'S - Sdi
> 5

1
Qe Serz(sr3xS 2



with the max achieved for § = C°E#d. Thus we can rewrite the direct problem as

inf max L5(0,9),
€A Ser?(Qs;RE%S)

where the Lagrangian £°(d, S) is defined by

<

AE /A &Y . & ~ 1 ~Ney—1 & & e ~ Te A SN
L5(9,5) .—/ES-E’U— 5(((: )7S-S—F°-Eto—b"-9di — (f 7U>H362<6NQE).
Since L. satisfies the assumptions of the min-max Theorem (see e.g. [22] p. 176 Propo-
sition 2.4 and Remark 2.4), it follows that
inf max L5(9,8) = max inf £°(0,89)
veAc Ser?(qs;RE%S) SeL2(0s;R3%3) veAe

— _T(reyla. PS
= max )(/E 2(((:) S-Sdz

SeL2(ns;R3%S

—
W
I
T
)
~
S|
S8
I
o
)
S
U
>
I
—~
s,
)
3

+ inf
veds Jo-

>H(1)0/2(8NQE))’

but, from (2) we deduce that

>H352<8NQE>

inf / (8§ —F%)-Eo—b"-odi — (0

veAe
= lenj ( Qs(fdiv (S —F%) —b°) - odi 4 (S — F*)n — fE,@)Héég(aNQE))
_ { 0 ifSedss,
—oo otherwise,
where we denote by
S :={S e L(Q%RYSD) : div (S — F°) +b° = 0 in L*(Q%;R?) and
(S = F)n— f*=0in (Hy) (0nQR%))'}
the set of admissible stresses.
By defining the dual energy by

F(9) = %/ (©)18 - §di,
it follows that
FE(aF) = inf F°(0) = — min F*(S) = —F=*(1T°), (9)
veAE sese

and that T° = C°Ea°.
The minimization problem
min F°(89).
5ese
is called DUAL PROBLEM.
Remark 3.3 Note that the stress 6° := C°Ew® associated to the solution v° of (6),

see also (7), is given by R R
5% =T° + C°Bg".



4 Rescaled problems

We now rescale the problems introduced in Section 3 to a domain independent of €.
To this end, we set

Q:=0, 0pQ:=0nvQ, O0p:=0n.
We define the change of variables p° : Q — QF by
P° (@1, 2, 3) = (21, T2, €73),
and we let
Pe:=Vp® =diag(l,1,¢).
For © : Q° — R3 we define v : Q@ — R3 by
v:= P0op°, (10)
so that
Vv = P*(Vd) op°P?, and Fv = P°(E?) o p® P®.
We denote by

Efv:= (P°) 'Ev(P*)"' = (Eb)op°. (11)
We assume that C°, b°, H®, g%, and fE are such that
Cop*=C, Pbop°=b, H op®=H, Gcop° =g, (12)
and that
A . 1/2
0 1r2 00y = S 0) 12y for every 0 € HY?(0n00), (13)

for some coercive tensor field C € L>®(Q;R35373%3) b € L*(4R?), H € L*(Q;R3:3),
g € H*(Q;R?) such that (Eg)i;3 =0, and f € (H&é2(8NQ;R3))/. From (8) we deduce
that

Ffop"=H+CE°g=H+CEg=: F. (14)

Remark 4.1 The required condition (Eg):3 = 0 is equivalent to say that g is a
Kirchhoff-Love displacement. Indeed, this assumption and also those on C%, B¢, H*,
and f¢ could be relaxed. For instance, it would be enough to require that

HE opf = H°, 4° o pf = §F, (15)
for some H® € L*(;R2%3), g° € H' (S R®) which further satisfy
g —g inL*(QR%), (16)
for some g € L*(Q;R?), and
H° — H, CE°g —G inL*(RED), (17)
for some H,G € L*(Q;R2:3).
We note though that from (17) we have that
E°gF - C7'G in L*( RIS,

which, combined with (16), Korn inequality and Rellich compactness Theorem, implies
that (Eg)is = 0, i.e., that § is a Kirchhoff-Love displacement, and that convergence
(16) actually takes place in H'(Q;R?).



Remark 4.2 For the example fs considered in Remark 3.1, with fft € L*(wE;R®)
and f§ € L*(OnQ5;R?) which satisfy

Pfiop =ef*,  ePfiop = f,
for some f* e L2(wi;R3) and f, € L*(OnQ%;R®), the rescaled surface load f defined
by (13) is given by

= fr-vd f_-vd fo-vdz.
(£, 512000 /w+f+ v «’L"+/Wf v x+/astéfe vdx

We define the RESCALED PRIMAL PROBLEM as

vl€n¢£5 a ('U) ’

where the set of rescaled admissible displacements and the rescaled energy are defined
by

A= {ve H' (R :v=0o0n dpQ},
and

Fe(v) = /Q %(CEEwEEv —F-E*v+b-vdr— (f,v) (18)

Hgl* (o)’
With the assumptions (12)-(14) we have

FE(0) = eF* (v),
where the relation between v and ¢ is given by (10).
Remark 4.3 In the line of Remark 3.2, we now make a comparison between the
rescalings adopted for the “generalized forces” and the “standard forces”. The rescaled

“generalized force” H contributes to the primal energy, see (18) and (14), with the
term

/ H - Efvdz, (19)
Q

while the “standard forces” contribute with the terms

/Qb.vdx—i- <f’v>H3({2(8NQ>'

In order to make a comparison we need to rewrite the contribution of the “standard
forces” in a form similar to (19). As in Remark 3.2, given f € (H(%2 (ONQ;R?)) and
b€ L*(Q%;R?), we may find H € H(div,Q) such that

/S;b‘vdx+<f"u>Hé(<2(aNQ): QH-Evclar, (20)

for all v € A®. The right hand side of (20) may be rewritten as
/ H-Evdr = / P°HP® - (P°) "Ev(P*) "da = / P*HP® - E*vdz,
Q Q Q
and the last term is ezactly in the form of (19). Since (P*HP®);5 — 0 in L*(Q;R3SE),

while, in general, H;3 # 0 we deduce that the scaling of the “standard forces” is weaker
than that applied to the “generalized forces™.



We now change variables to the dual problem. Setting
S :=80p°,

for any S € 8¢ and © € A° we have, from (2) and (11), that on one hand

/ (S’—FE)-E@diza/(S'OpE—F)~E€vdx
(953

Q

:s/(PE)’l(SfF)(PE)’I - Bvdz, (21)

_ _E/Qdiv((psrl(s_F)(Ps)*l) vdz
+e((PF) (S - F)(Ps)il)”vwfz;f(a,m)’

while on the other hand

/(S‘—F’S)-E@di:—/ div (S — F*) - d.di + (S — F°), 0) 1/

. 00 (ONQF)

/ BE'@di—i—“E’@H&éZ(aNQE) (22)
:s/S]b-vdx—l-s(f,v)Hégz(aNm.

Thus from the previous two equations we find that S € §° if and only if

{ div ((P*)"Y(S — F)(P*)™ ) 4+b=0 in L*(Q;R?),
(P)"U(S = F)(P) ) = f in (Hoy” (x5 R?)).

Hence, after rescaling the admissible set 8¢ becomes
S* = {S € L (YR :div (P) (S — F)(P*) ") +b=0in L*(%R?)
and ((P)~'(S = F)(P) " )n = f in (Hy)* (On % R*)'Y,
the dual energy rewrites as
F(9) = 1/ C'S- Sdx,
2 Jq
and the RESCALED DUAL PROBLEM is
Slgga FE(S).
Remark 4.4 With the notation above we have
F(S) = e F(S).
In particular, it follows that if T is the minimizer of F°*, i.e.,
F(Te) = Slél;g]‘— (),

and if T° is the minimizer of F=*, see (9), then

T° =T°op°.



Let w® := P*wW® o p° be the rescaled displacement of the solution w° of (6). Then
the rescaled stress o° := 6° op® = CE*w® associated to the solution of (6), see Remark
3.3, is given by

o°=T°+CE*g=T°+CEg.

Remark 4.5 The rescaled dual problem coincides with the dual of the rescaled direct
problem.

5 (Gamma-convergence of the Rescaled Dual Func-
tional

In this section, after studying the compactness of the dual problem in the weak-L?
topology, we identify the I'-limit of the sequence of dual functionals. Moreover, we
prove the strong convergence in the L? topology of the minimizers. For what follows
it is useful to notice, see (21) and (22), that S € S° if and only if

/Q(S_F).E de:/Qb.vdx—i-(f,v)Héf(aNm, (23)

for any v € A°. From (23) it easily follows that the set S° is not empty, indeed it can
be shown that for every ¢ > 0 there exist S° € S§° such that sup, [|S]|12(q) < +oo.
This, then implies that sup, FZ(S¥) < 4oc.

Before stating the compactness result it is convenient to set

KLo(Q) :={ve H (R : (Bv)iz =0, fori=1,2,3, and v = 0 on dp},
and

S:={S € L*(QRY:Y) : Sis = Fis, fori=1,2,3, and (24)

/Q(S—F) -Bwdr = /Qb~wd1:+ <f’w>Héé2(aNQ)
for every w € KLo(Q2)}.

Lemma 5.1 Let S° € 8% be a sequence such that sup, F2(S°) < +oo. Then there
exist a subsequence, not relabeled, and an S € S such that

55— S in L*(Q;RY).

PROOF. Let ¢ > 0 be such that C™(z)T - T > ¢|T|* for a.e. € Q and for every
symmetric matrix 7. Thus

E % 1> 1 €

and hence sup, [|S°|| 2(q) < 00, which implies that there exist a subsequence, not
relabeled, and an S € L?(£; R33) such that

S° — Sin L*(Q;RY).

10



Let w € KLo(Q) and 9 € C§°(£;R?). Define
z3
ve(T1, T2, T3) = wa(x1, T2, T3) + E/ Va(T1, T2, 5)ds,
0
z3
v3(z1, T2, 3) = w3 (w1, T2, 3) + &2 / Y3(x1, z2, ) ds.
0

Then v* € A%, v° — w in H'(;R®) and

0 0 /2
Ev® = (P°) 'Ev*(P9)™" = Ew + 0 2/2 | in L*(QR*™%).
sym P3

By taking S = S° and v = v° in (23) and by passing to the limit, we find

/Q(S—F)-Ew+(S—F)eg.¢dx:/Qb.wdm—&—(f,w>Hééz(aNQ).

Since w and 1 are arbitrary functions, in the respective domains, we easily conclude
that S € S. a

We now identify the I'-limit of the dual functionals.
Theorem 5.2 The extended functional Fey : LZ(Q;R;Q’;,I?) — RU{+o0} defined by

F(S) if Sese,

+o00 otherwise,

Fauls) = {

sequentially I'-converges with respect to the weak topology of LQ(Q;RS’;S) to the func-
tional ()
_f F(S) ifSeSs,
Foul8) = { oo if S e LX(GBRYD\S,

where

F(8) = %/ﬂc*ls-sczm.

PRrROOF. We need to prove that:

a) for every S € L*(;R252) and every sequence S° € L*(S;R3YS) such that
S° — S in L*(;RESE) it holds

lim inf F5 (S%) > Fext(S);

b) for every S € L*(Q;R3X3) there exists a sequence S° € L*(€;R3%3) such that

sym sym

S — Sin L*(RSE) and
lim sup Fey (S°) < Fext (S).

We start by proving a). Let S € LQ(Q;REYXIS) and S° € LQ(Q;RS;IS) be a sequence
such that S — S in L*(Q;R3%3). We may assume that

sym

lim inf Fg (S°) = lim Feey (S°) < +o00.

11



Then sup, Fee (S¢) = sup, F°*(S°) < +oo and hence, by Lemma 5.1 it follows that
S € S. By a standard semicontinuity argument we have

lim inf F2 (S°) = lim%/ ClSt . 5 da > %/ C'S . Sdx = F*(S) = Fous(S).
€ £ Q Q
We now prove b), which is usually called the recovery sequence condition. Let

S € L*(SuR3SS). We may assume that Fex(S) < +0o. Thus S € S. To construct the
recovery we consider the following problem:

u® e A%,
/Q((C EUE+57F)-Ea"odxz/ﬂb-(’odx+<f7g0>Hégz(aNQ), for every ¢ € A°.

(25)
By the definition of the operator £ and Korn’s inequality we have that || £l 12 q) >
I1Eoll 20y > Cllollni(q), for every ¢ € A® and for a constant C' independent of ¢.
This together with the positive definiteness of the elasticity tensor C implies that the
solution u® of problem (25) satisfies the bound:

sup [|[E“u®|| 12(q) < +00, (26)
1=

and, as a consequence, sup, ||[u®||y1(q) < +0o. Up to subsequences, we have that
u® = in H'(Q;RY),
for some @ € H'(;R?). By the definition of E°, also
(E°u)ap = (Bu)as — (Bi)as in L*(Q), and (Eu®)i —0 in L*(Q).
Whence o € K Lo(£2). Moreover, up to a subsequence, we have that
(B°u®)is — i in L*(Q),

for some 1 € L?(Q;R?). These convergences can be compactly rewritten as

Efuf — <(E1})a3 7/;a> — E(Tlﬂzl) in L2(Q;R3X3).
s 73

Set
S°:= 8+ CE°v". (27)

That S° € S§° follows from (23) and (25), while, up to a subsequence,
5S¢ ~ S+ CE(u,¢) =8 in L*(Q;R**®). (28)
Let w € KLo(), n € C5°(;R?), and set
z3
YalT1, T2, 23) = Wa(T1, T2, T3) + 5/ 2na (21, 2, 8) ds,
0
x3
w3(z1, T2, 23) := ws(x1, T2, 3) + 52/ ns3(z1,x2,s)ds.
0

Then,
E°p = E(w,n) +R°, with R°—0in L*(Q;R**?),
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and with such a ¢ we may pass to the limit in (25) to find
/Q(S—F).E(w,n)dx:Ab.wdx+<f,w>Héé2(6NQ), (29)

which holds for every w € K Lo(Q) and € C§°(€;R?).
Since S € S we have, from the definition (24) of S, that

[5=F)Bmde = [ bowde+ () a0 (30)
holds for every w € KLo(Q) and n € C§°(Q;R?). The difference between (29) and
(30) delivers:

[(38-39)- Bwmds=0, (31)
Q
for every w € KLo(Q) and n € C5°(Q;R?). By density this equation holds also for

every n € L*(Q;R?). Taking w = @, = 1, and using (28) we obtain

CE(u,9) - E(a,) dz = 0,
Q

which implies that E(a, 113) = 0 almost everywhere in 2, and consequently ¥ =0, and
also @ = 0, since @ € K Lo(€2). Now, taking ¢ = u° in (25) and passing to the limit we
deduce that

21_13% Q(CEu - Efu dx:gir%) Q—(S—F)- u +b-u dx+(f7u)Héé2

_ /Q (8 = F)- B(i,) + b wdz + (£,0) sz o

=0,

(ON©)

thence Eu® — 0 in L2(Q; R®**®) and, by (27),
S = S in L*(Q;R**?).
Since S¢ € §° we find:

lim F°*(S°) = lim L
e—0

e—0 2

/C—lsf~sfdx:1/c—ls-Sd:c:f*(S):fext(S),
Q 2 Q

and the proof is completed. a

Remark 5.3 We remark that in the second part of the proof of Theorem 5.2 we have
indeed shown that: for every S € L*(S;R3)E) there exists a sequence S° € L*(;RE)E)
such that S — S in L*(;R3*3) and

lim F5,(S%) = Fext (S).
e—0

Remark 5.4 In our setting, by Proposition 8.10 of [23], sequential T'-convergence is
equivalent to I'-convergence.

In the next theorem we prove the strong convergence of the minimizers.

13



Theorem 5.5 Let T be the minimizer of F°* and T be the minimizer of F*. Then
T° = T in L*(Q;RS),
and

lim F**(T°) = F*(T).

e—0

PRrROOF. Let T° be the minimizer of F°*. Then by Lemma 5.1 we have that, up to a
subsequence, T — T in L?(%; Rg’;ﬁ), for some T' € S. Let S € S and let S° € S° be a
sequence such that limsup,_,, F°*(S¢) < F*(S), which exists by Theorem 5.2. Since
Fer(T°) < F(S¢), by Theorem 5.2 we have

F(T) < limi(l;lf]:e*(TE) <limsup F*(T°) < limsup F=*(S%) < F*(9),
e—

e—0 e—0
which implies that 7" is a minimizer of F, and by taking S equal to T', that
;1_13(1) F(Te) = F(T).

Since F* has a unique minimizer we have that the full sequence T weakly converges to
T in L*(Q;R3%3). By convexity it then follows that 7° — T in L*(Q;R2%3). Indeed,
we have

lim [ CNT° = T)(T° = T)dx

e—0 Q

=2lim (F*(T°) - [ CT'T°-Tdz+ F*(T)) =0,
e—0 Q

from which the strong convergence follows. a

Remark 5.6 The rescaled stress o° = T°+CEg associated to the solution of (6), see
Remark 4.4, strongly converges in L*(€; RS;,,?) too: =T+ CEyg.

The next lemma, similar to a result contained in [15], allows us to characterize the
minimizing stress tensor.

Lemma 5.7 Let D be a bounded, open subset of R® with Lipschitz boundary OD. Let
OpD # 0 be the union of a finite number of open connected sets of OD. Let

KLo(D) :={ve H (D;R®) : (Ev)iz =0, and v =0 on dpD},

K:={E € L*(D;RY3) :32 € KLo(D) and ¢ € L*(D;R®) such that
E:( (E2)as g )}

’(/)a ’(/)3
and
M={S¢e LQ(D;RS),X,S) :Si3 =0, and
/ S-Ezdx =0 for every z € KLo(D)}.
D
Then

K =M.

14



PROOF. We first note that K is a closed subset of L*(D; R2%2). Indeed, let {E7} C K be
such that B/ — E in L*(D;R3S). Then there exist 27 € K Lo(D) and ¢/ € L*(D;R?)
such that ‘ _
(Bz)ap = (B)as %] = i = (E)is, in L*(D),

for some v; € L?(D). Thus to show that K is closed it suffices to show that there
exists a z € KLo(D) such that (E)ag = (E2)as. But since 27 € KLo(D) we have
that Ez7 is a Cauchy sequence in L?(D; Rfyxnf ) and hence, from Korn’s inequality we
deduce, in the components of D whose boundary contain part of dpD, that z7 — z in
the H! norm, while on the other components it is z/ minus its orthogonal projection
on the set of infinitesimal rigid displacements which converges to some z in the H*
norm. Throughout D we then have (E)ag = (E2)ag-

The proof of the lemma now follows easily. In fact, we have K € M+ and K+ ¢ M.
This latter inclusion implies that M+ C (K*)*. Hence

Kc M- c(KhH?t,

but since K is a closed subset of L?(D;R2%2) we have that (K+)* = K. O

Theorem 5.8 The minimizer T of F* satisfies the following problem:

Tes,
/ C'T-Sde =0, forevery X € So, (32)
Q
where
So:={S € L*(%RYW) : Sis = 0, and (33)

/ S-Ezdr =0 for every z € KLo(Q)}.
Q

Moreover, there exist a unique ¢ € L*(Q;R?) and a unique u € K Lo(Q) such that

T = (C( (EQZC)!“" Zi ) . (34)

PROOF. Problem (32) is simply the Euler-Lagrange equation of the problem infgecs F*(5).
From (32) we have that
C'T e (So)h,

and hence from Lemma 5.7 we deduce that there exist u € K Lo(Q) and ¢ € L*(Q;R?)

such that () ’
—1m U)ap B
cir = ( s 0 )

Remark 5.9 The stress o0 = T+ CFEg, limit of the stresses associated to the solutions
of (6), see Remark 5.6, is given by

_ (Bu+Eg)as s
c=C ( Yo s ) .
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Setting
wi=u+g€ KLy (Q):={ve H (LR?) : (Ev)izs =0, andv =g on dpQ},

_ (Bw)ag g
oc=C ( Yo s ) .
3x3

The rescaled stresses ¢ = CE°w® strongly converge in L2 (% R5w) to o, see Re-
marks 4.4 and 5.6, thus

Esws N < (E’L’l/}l)iaﬁ ii > , in L2(Q;R3X3).

we may write

6 The bi-dimensional limit problem

The limit problem obtained in Section 5 is defined on a three-dimensional domain. The
aim of this Section is to show that it can be rewritten on a two-dimensional domain.
For a given S € S let

1/2 1/2
SN .= / Sap drsea ® eg, and sM .- / 23848 drseqa @ eg.
—1/2 —1/2
Similarly, using the components F, 5, we define FN and FM. Let
H) p(w;R?) := {n € H' (w;R*) : n =0 on dpw},

and
H{ p(w) :={n € H*(w) : n = 8,1 =0 on dpw}.
For every z € K Lo(f2) there exist (n1,72) € Hg p(w;R?), n3 € Hj p(w) such that

Za (w1, 22,%3) = Na (1, T2) — 230an3 (w1, T2),
z3(z1, 22, w3) = M3(1, T2).

A simple calculation shows that
Ez = ((En)ag — 230a0p73)€0 @ €g,

and hence the condition, which also appears in the definition of S, see (24),

/Q(S_F),Ezdm:/Qb~zdw+<fvz>HégQ(aNQ)’

for every z € K Lo(Q2), rewrites as
(8% = F¥)a(Bnas = (5 = FY)asudims dz = WY (G, m)) + W (1),

where

1/2
WN((T/hnZ)) = / / bo drs Na dx + <fa777a>Héé2(8NQ)a

wJ—1/2
and

1/2
M P—
W)= /w /40 b drs s A+ Uss 1) a2 o)

1/2
+/w/1/2$3ba dx3 0ans d$+<f°"x3aan3>Héé2(6Nﬂ)'
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Remark 6.1 If f is as in Remark 4.2, then the work done by the loads can be written
more explicitly, for instance

B B B /2

as Ta - e ad —a ad ad ad .
(fasm >H362(8NQ) /er J+am 90+/w f-amn ﬂH—/BNW e Jea dxsne da
We therefore have

S:={Se LQ(QRS;H?) : Sis = Fys, fori=1,2,3, and (35)

/(SN — FYY. Epdx = WY (p) for every ¢ € Hj p(w;R?),
/(SM — FMY . vV dz = WY () for every ¢ € Hy p(w).}

We now rewrite the functional F* in terms of S% and S*. To do so we let
L:={S e L*(Q;RYY) :3A, B € L*(w; R352) such that
Sap(z1,22,23) = Aap(z1,22) + 23Bap(x1,22)}-
Since L is a closed subspace of L*(€;R2%?) we have
LR =L Lt

We note that ¥ € £+ if and only if &V = ¥ = ;3 = 0. Let II be the projection of
L*(;RE%E) onto £. Then, from the relation

/H(S)~Ed:c:/5~2dm for every ¥ € L,
Q Q

we infer that
H(S)a/g = Sévﬁ + 12:1’352%, H(S)zd = 813

Hereafter we denote by
SE:=11(S) and §°:=8—S5°.

and by
S :=1(S) and &°:=8-S8*.

Lemma 6.2 With the notation just introduced we have that
SC=rt

PROOF. From the definition of S¢ it immediately follows that S¢ C £1. To prove the
opposite inclusion first note that

S*cs. (36)
Indeed, let S* € S . Then there exists S € S such that S* = TI(S), that is
(5%)iz = Siz = Fy3, and since I1(S)as = SA+12235)% we have also that (5%)~ = SV
and (S“)M = S™. Hence (36) follows from the representation of S given in (35).

Let ¥ € £1. Let S* be any element of S*. The condition ¥ € £ implies that
»¥ = 5™ = 3,3 = 0 and hence we have, using (36), that ©+S* € S. Since II(X) = 0,
IS £ )=2S5 £ and the linearity of II, which holds because £ is a closed linear subspace,
we have

S=%+48° - (I(D) +II(S7)) = £+ 8° — (X + §°) € S\ II(S) = S°,
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and hence £ C §°. i
We may therefore write
FHS) = %/ﬂc*sﬁ L§% 4207184 . 8¢+ CT1SE - 8 da
= F(S%,8°) + %/Q(C’lsﬁ-sﬁ da,
where we have set
FH(8%,8% := /Qc—lsﬁ -S° 4 %c—lsc - 8% da.
Thus, thanks to Lemma 6.2, we have that
BLF) = nl, it PSS g €0

and setting
fH(8%):= inf F(S*,8°),

Scect
we have
. K _ . * L
inf 77(5) = Sgrelfsﬂfg(s ),
where we have set
Fr(S5) = %/ C 'S8 . S da + fH(S%). (37)
Q

It is possible, even for a generic elasticity tensor C, to write the function f* explicitly,
but, as it can be seen in the next Theorem, the explicit form of f* is quite involved.

Theorem 6.3 Let

Cij = Cizys, Caprys = Capys — CaﬁjSCj_il(CiS’yéy (38)

. vz
c® .= / 2y Cdxs fori=0,1,2, (39)

—1/2
C:=12(C® - T ~'cM), (40)
and

C™ = (CO)~! 4+ 12(C@)~"1CHEICH(C®) 1, (41)
cvm = —12(C@O)ICHE Y, (42)
cmt = —CTICW(CO)E, cmm = CL (43)

For a given S* € 8%, let A € L be the minimizer of FX(S*,"), i.e.,
FH(SS) = inf FH(S%,8%) = FH(SF, ).
SeeLt

Then A = CZ — S* where* Z = Z 4+ z ® es, with Z := ZV + 12232™,
ZN = Cnn(SE)N+Cnm(S£)M+Zn,
ZM = Cmn(Sﬁ)NmeM(Sﬂ)M+Zm’ (44)
Zj = (E;il (Fig — ((CZ)Z;;),

taob=1(a®b+b®a)
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and where

2" = CH(COEC) Y — ), 2" = —(CO)TNEY +12¢Vz™),  (45)
with
fop = CaﬂjSC;ilFifS- (46)
Moreover 1
(85 = 3 CZ-Z—-C's*. 5%da +c, (47)
Q

where the constant ¢ depends only on F;3 and C.
The proof of Theorem 6.3 is given in the Appendix at the end of the paper.
Remark 6.4 We note that:
1. if Capys = Cazzz = 0, i.e., triclinic symmetry, then
Caprs = Capys — %'
3333

2. if the material is triclinic and Fys = 0 then Aos = 0, i.e., the shear stresses are
equal to zero. Indeed we have Aos = CazjnZin — 552, = 2CaspsZps = 2Caspszp,
but since €gz = 0 it follows that zg = (1:5(11 (Fas—(CZ)as) = 7Cgica375Z»Y§ =0;

3. if C(x1,x2,-) is even, for almost every (x1,x2) € w, then CW is null, and hence
{2 Co s e e
2V = H(TO) (SN — H(C) Y,
4. if Fi3 =0 then , z™ and z'™ are null matrices;

5. if C is independent of xs and Fi3 = 0 then items 3. and 4. of the present
Remark hold and moreover

(s = %/@*1sﬁ.sﬁ—<c*1sﬁ-sﬁdx+c. (48)
Q

In fact, under these assumptions, we find C® =¢, Cc?® = ﬁ@ and hence

ZN = CYSH)N, ZzM = CY(SH)M, from which it follows that
Z =C 1 ((SYN + 12z3(55)M) =C 'S~
Thus from the equation of f+ given in Theorem 6.3 it follows the representation

of f+ given in (48). The constant c, see Appendiz, is equal to zero if Fiz = 0.
Thus under these assumptions we have that, see (37),

" 1 ~
Fi(85) = 7/ C's“ . S da.
2 Jq
Let T* be the minimizer of F}, i.e.,
Fi(T%) = inf Fi(S©),
c(T7) = _jnf Fr(57)
and T° € S¢ be the minimizer of F*(T*,-), i.e.,
FHTF,T°) = inf FHT* S,
SceLt
then the minimizer of F* is
T=T"+T"
We note that once T is known one can determine 7°° directly from Theorem 6.3.
We conclude the section by noticing that the functional F7, despite its appearance,
is essentially defined on w.
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7 Appendix

This appendix is devoted to the proof of Theorem 6.3. Let S be given and let A € £+

be the minimizer of F1(S%,"), i.e.,

fH(s*) = Jnf FH(8F,8% = FH(S%,A).

Then A satisfies the following problem:
/ C (S +A)-Zdr =0, foreverySeLh,
Q
that is

Z:=C ' (S"+AN)eL.
Hence CZ = S + A and since A € £ we have that

(CZ)Z;’, = (S£)~L3 = F7,'37
(C2)™ = (s°)",
(C2)M = (S5)M.

We now show that system (49) delivers Z uniquely. Let
Za = 2Za37 zZ3 = 2337 Z = Zaﬁea ® eg,

then we have ~
Z=7Z+z0es.

The first equation of (49) rewrites as
(C2)iz+ (Cz0e3)is = F;
and by denoting, see (38),
Cij := Cyzyz,

it can be rewritten as -
(CEZ)»; = Fi3 — (CZ)»LQ,

Since C is positive definite we have that € is also positive definite, and hence

Zj = (]:j_il(Fi:’, — ((CZ)Zg)

We now evaluate the in-plane components of CZ. We have

(CZ)Q,B = Caﬂ'yéz'yé + Ca,@j3zj = Caﬂ'yéz'yé + Ca,@j3¢j_il(Fi - ((CZ)Z3)

= (Capys — Caﬁj?)(]:;ilci&yé)z'y& + Ca6j3¢;i1Fi3-

Setting, see (38) and (46),

Caprys = Copys — CQBjBC;ilciB'yé, fap = CaﬂjBC;;lFiSa

we have o
(CZ)ap = (CZ)ap + fap.

But, since Z € L, we can write

Z =2 4 12252M,
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and, with this position, the second and third equations of (49) rewrite as:

{ COZN 4 12CVZM = (85N — £V,

@(I)ZN 4 12@(2)Z]M _ (SLZ)IM _ ﬁ:]VI7 (52)

where we have set, see (39),

. /2
c® ::/ 25Cdrs fori=0,1,2.
~1/2

Thanks to Lemma 7.1, below, we have
ZN = —12(CV)ICW 2™ + (CO) ()N - ), (53)
and ) P
ZM =T ()M 1 - VT TSN - ), (54)
where C is defined by (40).

Lemma 7.1 Let cc > 0 be a constant such that
essinf e C(x)A - A > cc|Al,

for every symmetric matriz A € R3¥3.
With the notation introduced above we have

CA-A=minC(A+bOes) - (A+b®es) > cc|Al

beR3

i (CA)s,

for every symmetric matriz A € R**2. The minimum is achieved for b;-“i“ =—C;

and B '
(C(A -+ bmm ® 63))7,3 =0.
Also o ~
CA-A>cc|AP,
for every symmetric matriz A € R?*2.
PRrOOF. The statements concerning C follow by an easy computation. To prove the
statement concerning C note that
1/2

/2 ~ ~ ~
/ C(B + z34) - (B+ z3A)dxs > cc/

|B + 23 A* des > S|AP?,
—1/2 —1/2 12

and since
1/2 o _ _ _ _ _ _ _ o _ o
/ C(B+z34) - (B+x3A)des =CYB-B+2CMA-B+CPA. 4,
—1/2

we have that

O vz o _
CA-A=12 min / C(B + z3A) - (B + z3A) dzs.

BeRZX2 J_1/2
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Thus, from (53) and (54), and using (41), (42), (43) and (46), we deduce (44).
Hence from (44) we find Z and from (50) we find z. Thus also Z is completely known
and hence, from the relation, CZ = S + A, also A is known in terms of S*.

We now compute f+(S%). We have

JH(8F) = FH (S5, A) = FH(S5,cz - S°)

zl/cz-Z—C*lsﬁ.Sﬁdzp.
2 Q

Let us write (50) as follows
z = Zmin +f with Z;nin = —(]:j_,b-l((CZ)ig, fj = Cj_ilFig,
then

CZ Z=C(Z+z0e3)  (Z+2z0e3)
:C(Z+Zn]in®€3)'(Z-i—zmn]@@:’))
+2(C(Z+zmi"®eg)-f®€3+(Cf®63'f®€3
=CZ -Z+cf-f,

where to obtain the last equality we have used Lemma 7.1. Thus
FH(SE) = %/ CZ.Z-C 'S5 8% +cf fdu,
Q
which is equivalent to (47).

Acknowledgement. We would like to thank an anonymous referee for pointing out a
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of our paper.
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