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Abstract A shell can have multiple stable equilibria
either if its initial curvature is sufficiently high or if
a suitably strong pre-stress is applied. Under the hy-
potheses of a thin and shallow shell, we derive closed
form results for the critical values of curvatures and
pre-stresses leading to bistability and tristability. These
analytical expressions allow to easily provide guidelines
to build shells with different stability properties.
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1 Introduction

The highly non-linear behaviour of shell structures along
with anisotropic material properties and prestresses can
induce interesting phenomena, such as multistability,
i.e. the existence of multiple distinct configurations of
stable equilibria. Similar complex non-linear behaviours
recently raise a growing scientific interest; they are the
object of a large number of research works ranging from
the analysis of biological systems, such as the study of
multistable natural structures [5,10] or the problem of
the growth of elastic membranes, see for instance [3,9,
12], to the analysis and design of morphing structures,
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i.e. structures that can largely change their shape in
order to adapt to different functioning regimes [18,19,
15,23,4,20], and more generally to the study of slen-
der structures undergoing large displacements, see for
instance [21,14].

The study of the non-linear response of shell struc-
tures is generally perceived as a complex problem of
structural mechanics [1] not prone to a simple analyt-
ical treatment. However, as pointed out in [17], it is
extremely difficult to extrapolate informations on the
global non-linear behaviour of shells only from the re-
sults of direct finite-element simulations. In fact, the
numerical analysis of fully non-linear shells is a difficult
task and only parametric studies can be conducted for
limited combinations of geometry, material properties
and loading conditions, see for instance [6].

The use of simplified analytical models is of paramount
importance, because it can provide a global picture
of the qualitative behaviour of non-linear shells. This
may be obtained through reduced order models assum-
ing restrictive hypotheses on the admissible deforma-
tion modes and on the order of the geometrical non-
linearities. The application of the Föppl-von Karman
(FvK) kinematics has represented an important contri-
bution to the study of shallow shells [3,9,7], and specif-
ically a deeper insight of the stability of anisotropic
shells was possible thanks to the use, within FvK mod-
els, of the syimplifying assumption of Uniform Curva-
ture (UC) [19,23,4,20,8]. Despite its simplicity, such as-
sumption allowed to foresee and experimentally demon-
strate the existence of three stable equilibria for or-
thotropic shells [23,2].

Although the accepted domain of validity of the FvK
model is limited to plates and shallow shells, many of
the works cited above seem to indicate that, at least
for shells loaded only by inelastic deformations, the FvK
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can furnish results in good agreement with experiments
for an impressive large range of magnitude of curvatures
(both initial geometric curvatures, as well as elastic or
inelastic curvatures induced by external loads), even
when the model is further simplified by the assumption
of uniform curvatures [19,23,4]. In a recent interest-
ing work, [11] rigorously show by asymptotic expan-
sion and Gamma-convergence that FvK is indeed the
pertinent model to include the dominant geometrically
non-linear effects in plates or shallow shells with inelas-
tic deformations. However a better numerical validation
and theoretical investigation of the range of validity of
the results obtained by uniform curvature FvK model
seem to be necessary. First steps in this direction were
presented in [4] and [17]. In [4] the simplified UC FvK
model was applied to the study of the non-linear be-
haviour of orthotropic plates undergoing large inelastic
curvatures, from thermo-elastic or piezo-elastic origin,
and the validity of the analytical results was confirmed
by means of fully non-linear finite-element simulations.
In [17] the results obtained with polynomial approx-
imations of FvK and higher order shell models were
compared to non-linear finite element simulations.

In the present work, we intend to investigate the
applicability of the uniform curvature assumption in
order to model and to design multistable shells with
high initial and inelastic curvatures. In Section 2 we
describe the two basic bifurcations which lead to the
multistable behaviour of shells. For the sake of synthe-
sis, we illustrate these concepts in the case of spherical
initial and inelastic curvatures. Section 3 illustrates the
uniform curvature model and summarizes the useful re-
sults for design purposes. Based on the simple “recipes”
given in Section 4, in Section 5 we present experimen-
tal prototypes for each of the three basic relevant cases
of multistability. The analytical results and the sim-
plified models are checked against fully non-linear nu-
merical simulations based on a commercial FE package
(Abaqus). Section 6 draws the conclusions. In particu-
lar we discuss agreements and failures of the analytical
models with respect to the numerical simulations, thus
assessing the range of validity of the Uniform Curva-
ture Föppl-von Karman model for the description of
the highly non-linear behaviour of shell structures.

2 Basic phenomena

We study how the stable equilibrium shapes of free-
standing shells depend on two distinct classes of control
parameters: (i) the curvatures of the shell in its initial
stress-free configuration and, (ii) the inelastic curva-
tures induced by thermal, plastic or hygroscopic loads.

We consider here the simple case in which the natu-
ral and inelastic curvatures are uniform in space and
spherical (i.e. equal in all directions). Under these hy-
potheses, they are completely characterised by two in-
dependent scalar parameters: the magnitudes c0 and
ci of the initial and inelastic curvatures, respectively.
To simplify the analytical treatment, we will further
assume that also the current equilibrium configuration
has uniform (but generally not spherical) curvatures.
Here and henceforth, we will denote byKx,Ky,Kxy the
three independent components of the symmetric tensor
characterising the current curvature in this simplified
Uniform Curvature (UC) model. Despite its simplic-
ity, this setting allows us to faithfully describe the rich
non-linear behaviour of the shells under the effect of
the control parameters (c0, ci) and to design structures
with multiple (up to three) stable equilibrium shapes or
a continuous set of configurations at the same energy
level (neutrally stable shells). The results of the simple
UC model are checked against more refined models, as
a model with Quadratic Curvature (QC, see Section 3)
and fully non-linear shell finite-element models with a
large number of degrees of freedom.

Figures 1, 2 and 3 show bifurcation diagrams de-
scribing the effect of the natural and inelastic curva-
tures. Details on the procedure that allows to draw
these graphics are given in Section 3. As three, qual-
itatively different, stability regions arise, in Section 4
we sketch a procedure to design shells within each one
of them. Section 5 describes the actual production of
three prototypes corresponding to points B, C and T
in Figure 3. In the rest of this Section, we comment on
the key qualitative phenomena highlighted in Figures
1-3.

2.1 Shells with initial curvature c0 and vanishing
inelastic curvature (ci = 0)

Shells with a (spherical) initial curvature c0 and van-
ishing inelastic curvature are characterised by a natural
stress-free configuration with

Kx = Ky = c0, Kxy = 0. (1)

For c0 6= 0 the natural shape of the shell is a spherical
sector of radius 1/c0. For c0 = 0 the shell degenerates
to a flat plate. Because of geometrical non-linearities,
stable equilibrium configurations different from the nat-
ural configuration above may exist. Figure 1 shows the
emergence of alternative stable equilibria when the ab-
solute value of the natural curvature c0 exceeds a crit-
ical threshold. Shells which are sufficiently curved in
their initial configuration possess an additional (not
stress-free) stable everted configuration.
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Fig. 1 Average curvatures at the equilibrium when varying the
initial curvature c0 with vanishing inelastic curvature ci = 0:
black points refer to Abaqus FE results, solid black and brown
respectively to the UC and QC models, whilst light gray refers
to unstable equilibria.

2.2 Shells with inelastic curvature ci and vanishing
initial curvature (c0 = 0)

The inelastic curvature affects the constitutive relation
between the bending moments and the (geometric) cur-
vatures of the shell. In a linear constitutive model, the
bending energy is quadratic with respect to the misfit
between the current curvature K and the spherical in-
elastic curvature ci. The elastic energy density due to
bending vanishes only when K is spherical and equal to
ci. The plate would like to conform in a spherical shape
to minimize the bending energy. However, because of
the geometrical compatibility, an initially flat plate can
require a significant amount of extensional energy to de-
form as a sphere. It would prefer to deform in cylindrical
shapes. This latter effect, related to geometrical non-
linearities, becomes predominant in the large curvature
regime. Indeed, when the absolute value of the inelastic
curvature ci exceeds a critical threshold, the spherical
deformation mode bifurcates toward an almost cylin-
drical one, as shown in Figure 2. In perfectly isotropic
circular discs, the structure has not a preferred bend-
ing axis. All the configurations obtained by rotating the
axis of the cylinder would be neutrally a stable equilib-
rium, producing a neutrally stable shell [20]. However,
small imperfections in the shape of the disc, in the con-
stitutive properties, or in the inelastic curvature would
modify this idealized behaviour. In practical situations,
the disc is bistable in this regime, with two stable equi-
libria, where the shell is bended in two orthogonal direc-
tions (see Figure 2). In conclusion, inelastic curvatures
can lead to shells with multiple equilibrium configura-
tions.

Fig. 2 Average curvatures at the equilibrium when varying the
inelastic curvature ci with vanishing initial curvature (c0 = 0):
black points refer to Abaqus FE results, solid black and brown
lines (superposed) are obtained with the UC and QC models,
whilst light gray refers to unstable equilibria.

2.3 Combined effects of initial and inelastic curvatures

The stability diagram is sensibly enriched when com-
bining the effects of initial and inelastic curvatures. Fig-
ure 3 shows the regions of monostability (white), bista-
bility (light gray) and tristability (darker gray) in the
plane (c0, ci), obtained by combining curves from Fig-
ures 1 and 2. Only one half of the plane, namely ci > 0,
is shown as for ci < 0 the effect of (c0,−ci) is equivalent
to that of (−c0, ci). As to be expected, the two phenom-
ena shown in Figures 1 and 2 superpose to produce a
richer scenario. For instance choosing the parameters
c0 and ci within the darker gray region produces a shell
having both the everted and the bifurcated shapes as
stable equilibria. However note that the tristability re-
gion shown here is different from the case discussed in
[23] and [2]. In those references the tristable behaviour
of an orthotropic shell was induced using only a natural
curvature field with Kx suitably larger than Ky. Here
the tristable nature of some shells is due to the contem-
porary occurrence of natural and inelastic curvatures.

3 Discrete reduced models and analytical
results

In this Section we briefly recall the procedure to deduce,
from the Föppl-von Kármán shallow shell equations,
reduced models with few degrees of freedom and the
main analytical results arising from similar models. For
further details the reader is addressed mainly to [22].
In particular we focus on the results arising from the
Uniform Curvature (UC) reduced model that proves to
be the most useful one for design purposes.
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Fig. 3 Stability diagram in the half-plane c0, ci > 0. The gray
level refers to the number of stable equilibria: 1 (white), 2 (light
gray) or 3 (darker gray). Black points report the Abaqus FE
results, dashed and solid curves report respectively the stability
boundaries found with the UC and QC reduced models.

3.1 Föppl-von Kármán assumptions

The Föppl-von Kármán (FvK) assumptions are often
used to simplify the fully non-linear Koiter shell model
to the case of thin shallow shells. The non-linear cou-
pling between membrane deformations and transverse
displacements is still accounted for and, actually, it rep-
resents the key to describe many interesting phenomena
as the multistable behaviour of such structures.

Two displacements fields are taken as primary un-
knowns: with reference to an initially flat configuration
S ⊂ IR2 these are the in-plane, say u = (ux, uy), and
the transverse or normal, say w, displacement fields1.
The stable equilibria of the FvK model are found as the
local minimizers of the total energy:

U(u,w) =∫
S

[
Ā (e− f) · (e− f)

2
+
D (k − h) · (k − h)

2

]
dS̄,

(2)

where e and k are respectively the in-plane distortion
and the curvature given e.g. by [13]:

e := {ex, ey, 2exy} = =


∂ux

∂x
+

1

2

(
∂w

∂x

)2

,

∂uy

∂y
+

1

2

(
∂w

∂y

)2

,

∂ux

∂y
+
∂uy

∂x
+
∂w

∂x

∂w

∂y

 ,

(3)

k := {kx, ky, 2kxy} =

{
∂2w

∂x2
,
∂2w

∂y2
, 2

∂w

∂x∂y

}
. (4)

1 Sometime the membrane problem, aimed at determining u,
is translated in terms of an Airy stress function, say Φ.

Note that the in-plane distortion e includes the second-
order geometric contributions due to transverse dis-
placements, which is the source of the non-linear be-
haviour; correspondingly the compatibility between e

and k requires:

curl curl e :=
∂2ey
∂x2

+
∂2ex
∂y2

− 2
∂2exy
∂x∂y

= kxky − k2
xy =: det k, (5)

where det k means the shell Gaussian curvature and
curl is the standard curl operator in S. In Eq. (2) Ā and
D are respectively the 3 × 3 matrices representing the
membrane stiffness and the bending stiffness. Moreover,
still in Eq. (2), the fields f and h are decomposed into
two separate contributions:

f = f0 + fi, h = h0 + hi : curl curl f0 = deth0. (6)

The contributions fi and hi describe inelastic mem-
brane and bending deformations as those associated
to thermal, plastic, hygroscopic or piezoelectric effects,
while f0 and h0 give the shape of the initial configura-
tion.

3.2 Reduction under the assumption of uniform
curvature

A necessary condition to minimize (2) is to solve an el-
liptic problem on the two-dimensional domain S for the
membrane displacement fields (ux, uy). Noting that this
problem is linear and completely defined once assigned
the transverse displacement w, an efficient procedure to
approximate the FVK energy with few discrete degrees
of freedom was proposed in [22].

In particular, assuming the transverse displacement
in the form

w(x, y) =
k̄x x

2

2
+
k̄y y

2

2
+ k̄xy x y (7)

leads to a particularly simple reduced model labeled
as UC. This name refers to the fact that (7) is tan-
tamount to assume the curvature (4) to be uniform,
k = k̄ := {k̄x, k̄x 2k̄xy}. In [4] was proven that, under
the hypothesis (7) the minimization of (2) is reduced
to the minimization of

U(K) =
1

2
D (K −H0 −Hi) · (K −H0 −Hi)

+
1

2
(detK − detH0)

2
, (8)

in terms of the three state parameters

K = {Kx,Ky, 2Kxy}.
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Here detK = KxKy −K2
xy, and

D := D̃/D̃11, D̃ :=
1

L2

∫
S
DdS̄, (9)

is an averaged and normalized bending stiffness matrix.
The curvatures K := R k̄, H0 := Rh0 and Hi := Rhi
are expressed in dimensionless form using the charac-
teristic radius

R =
√

12ψ
L2

t
, t =

√
12 D̃11/Ā11. (10)

In (9) and (10) L2 is the area of the planform of the
shell and t its equivalent thickness.

The scalar number ψ which determines the curva-
ture scaling is of fundamental importance as it measures
the ratio between bending and membrane energy. It is
function only of the planform shape Ω and of the nor-
malized membrane stiffness A := Ā/Ā11. Let us intro-
duce dimensionless coordinates X = x/L and Y = y/L

and a corresponding scaled domain Ω. Choosing L so
that the area of Ω is 1, the number ψ is computed as

ψ :=

∫
Ω

A−1Σ · Σ, Σ =

{
∂2Φ

∂Y 2
,
∂2Φ

∂X2
,− ∂2Φ

∂X∂Y

}
,

(11)

where the Airy stress function Φ satisfies the elliptic
problem

∆∆Φ = 1 in Ω, Φ = 0, ∂Φ/∂n = 0 on ∂Ω. (12)

3.3 Estimation of the parameter ψ

Clearly the evaluation of the integral (11) and the solu-
tion of problem (12) are the crucial, and possibly more
difficult, steps in the reduction procedure. However it
turns out that ψ can be estimated with good accuracy
by simply applying a correction coefficient to the ana-
lytical expression (14) available for elliptical planforms.

For Ω an elliptical shape with axes ratio a/b and a
membranally orthotropic material:

A =

 1 ν 0

ν β 0

0 0 γ

 , γ = ρ(1− ν2/β), (13)

the problem (12) is solved in closed form, see [19], and
ψ is evaluated to be:

ψell =
β − ν2

24π2 (3(a/b)2β + (β/ρ− 2ν) + 3(b/a)2)
. (14)

For isotropic materials (β = 1, 2ρ = 1/(1 + ν)) and
circular shapes (a/b = 1) this expression reduces to the
simple:

ψic =
1− ν2

192π2
' 5.3 ∗ 10−4 (1− ν2). (15)

In Figure 4, we have plotted as a solid black curve
the ratio ψell/ψic in the isotropic case in order to eluci-
date the dependence of ψ on the planform aspect ratio
a/b: it is evident that for nearly circular planforms, the
membrane energy has the maximal relevance with re-
spect to the bending energy.

0 1 2 3 4 5
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0.6

0.8
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a�b

Ψ
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Fig. 4 The ratio ψi/ψic for isotropic material as function of
the planform aspect ratio a/b: exact solution for ellipses (black),
FE solution (points) and the approximation (16) (dashed) for
rectangular planform.

For rectangular shapes we claim that multiplying
the closed form solution (14) by a correction factor is
sufficient to get a quite accurate estimation; in partic-
ular we state that

ψrect ' 0.738 ∗ ψell. (16)

As a matter of fact, in Figure 4, we have also reported
as black points the values ψrect/ψic, computed numer-
ically solving (12) on rectangles with different aspect
ratios and the function 0.738∗ψell/ψic as a gray dashed
curve. One can check that the error associated to the es-
timation (16) is quite small and specifically is below 5%
for a/b ∈ (0.5, 2). The number 0.738 has been numeri-
cally obtained as the ratio between the values of ψ for
a circle and a square of isotropic material, but similar
error bounds still hold for non isotropic materials.

3.4 More complex ansatz

Displacement ansatzs more complicated than (7) can
be introduced to satisfy the boundary conditions for
the bending moments and improve the accuracy of the
UC solution. In particular we will refer in Section 6 to
some results related to the Quadratic Curvature (QC)
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model arising from the ansatz

w(x, y) =
k̄x x

2

2
+
k̄y y

2

2
+ k̄xy x y+

c1 x
2
(
x2 − a2

)
+ c2 y

2
(
y2 − b2

)
. (17)

This leads to a quadratically varying curvature field
able to satisfy on average the boundary conditions for
the bending moment in a rectangular domain. Again
the interested reader is addressed to [22] for details.

The analysis of the multistable behaviour of shells
based on the QC model produces results which are very
close to the ones obtained by the reduced UC model (see
Figures 1-3).

3.5 Validation of UC model by comparison with
Finite-Element (FE) simulations

In order to validate the analytical results for the UC
model, we performed fully non-linear FE simulations:
all the FE results were obtained with the Abaqus S4R
element in a general non-linear setting by means of
a Full-Newton scheme. FE results are plotted in Fig-
ures 1-3 (details on how the stability boundaries are
traced can be found in the Appendix) and show very
good agreement with the analytical predictions: all the
boundaries of the monostability region fall within a 3%
error.

The FE model is not bound to the assumptions of
shallow shells, as it is the case in the Föppl-von Kár-
mán model, or its UC and QC approximations. Yet
the overall stability scenario (Figure 3), as well as the
main effects leading to multistable behaviour of shells
(Figures 1-2), are confirmed by FE simulations even for
large curvatures. Further comments on the differencies
between analytical and FE results can be found in Sec-
tion 6.

Based on these remarks, in the following we present
design rules for multistable shells based on the UC
model. These rules or recipes are applied in order to
build examples of multistable shells (see Section 5).

3.6 Equilibria and stability properties

Aimed at giving simple design directives, we derive closed
form solutions regarding the existence and stability of
the UC equilibria. We focus on the case of orthotropic
(particularly square-symmetric/isotropic) shells.

For square-symmetric shells the normalized stiffness
matrix D can always be put in the form:

D :=

 1 µ 0

µ 1 0

0 0 γ

 , −1 < µ < 1, γ > 0, (18)

where µ := ν/
√
β and γ := ρ(1 − ν2/β)/

√
β are the

only two constitutive parameters. Here ν is the in-plane
Poisson’s ratio, β := Ey/Ex the ratio between Young
moduli in the orthotropy directions and ρ the shear
modulus2. Isotropic shells correspond to β = 1 and γ =

(1− µ)/2.
Assuming (18) and a spherical initial natural cur-

vature H0 represented by the only parameter c0 such
that:

H0x = H0y = c0 and H0xy = 0 (21)

the stationarity equations (∂U/∂K = 0) give, after
some algebra, the following equilibrium equations:

(Kx −Ky)
(
detK − c20 + µ− 1

)
= 0,

(detK + µ+ 1)∆− c20∆− 2(ci + c0) (µ+ 1) = 0,

Kxy

(
detK − c20 − 2γ

)
= 0,

(22)

where ∆ :=
√

4detK + 4K2
xy + (Kx −Ky)2.

Stability of equilibria is related to the sign of the Hes-
sian ∂2U/∂K2, and the stability margin is then repre-
sented by the condition:

∂2U

∂K2
= 0. (23)

By solving (22)1 and (22)3, we see that three different
types of equilibria are possible which are briefly dis-
cussed in what follows. In each of the cases discussed
hereafter, the values of Kx and Ky at equilibrium are
obtained by solving (22)2.

1. Kx = Ky and Kxy = 0. These are "untwisted"
configurations and they are spherical when β = 1.
These equilibria can be either one or three. If we
combine the stationarity condition (22)2 with the
stability margin (23), in this case one can find the
expression fI :

fI = 4c60 − 54c0ci(µ+ 1)2 − (µ+ 1)2
(
27c2i + 4µ+ 4

)
+

−12c40(µ+ 1)− 15c20(µ+ 1)2,

2 As shown in [4], a differential scaling of the curvature com-
ponents can always be introduced

Kx → Kx

√
β, Ky → Ky , Kxy → Kxy

4
√
β, (19)

Hx → Hx

√
β, Hy → Hy , Hxy → Hxy

4
√
β, (20)

which reduces the generic orthotropic material to the analysis of
a square-symmetric material with β = 1.
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(24)

it is easily seen that in the region fI < 0 there is only
one stable equilibrium. Instead when fI > 0 there
are three equilibria only two of which are stable,
while on the set fI = 0 one of them looses stability
as a turning point. Hence fI > 0 is the gray region
in Figure 1 where everted configurations are stable
and curve fI = 0 represents the boundary between
monostable and bistable regions.

2. detK = c20+1−µ > 0 andKxy = 0. These equilibria
correspond to "untwisted" configurations with posi-
tive assigned Gaussian curvature. If we combine the
stationarity condition (22)2 with the stability mar-
gin (23), in this case one can find the expression
fII :

fII = (µ (ci + c0) + ci − c0) (µ (ci + c0) + ci + 3c0)+4(µ−1),

(25)

it is easily seen that these equilibria are stable when
fII > 0. They originate from type I equilibria through
a pitchfork bifurcation on the set fII = 0. Hence
fII > 0 is the gray region in Figure 2 which al-
lows for two bifurcated configurations, and the curve
fII = 0 represents the boundary between monos-
table and bistable regions.

3. Kx = Ky and detK = c20 +2 γ. These equilibria cor-
respond to "twisted" configurations with assigned
Gaussian curvature. However it easily checked that
these equilibria can be stable only if 0 < γ < (1 −
µ)/2 ≤ 1 i.e. for non-isotropic shells with low shear
rigidity.

If γ = (1 − µ)/2, as, for instance, in isotropic shells,
then

detK = c20 + 1− µ ≡ c20 + 2 γ, (26)

and two equilibrium equations are contemporarily solved
by this value of the Gaussian curvature. Therefore when
γ = (1 − µ)/2 the twisting curvature Kxy and the dif-
ference (Kx −Ky) can be chosen arbitrarily provided:

4K2
xy +(Kx−Ky)2 = (ci + c0)

2
(µ+1)2−4 (c20 +1−µ).

(27)

We then have a whole one-dimensional set of config-
urations, (27), sharing the same level of energy. The
corresponding stability margin is vanishing and similar
shells actually behave as zero-stiffness structures [20,8].
We notice that these equilibria can be seen as a degen-
eration of the case II described above and that a similar
result was recently found for cylindrical shells in [8].

3.7 Useful analytical results for design purposes

Materials verifying the condition γ < (1 − µ)/2 are
rare. We focus here on the case of the two basic classes
described in Section 2 without considering twisting in-
stability. In the important limit case of isotropic shells,
twist becomes a degenerate zero-stiffness deformation
mode.

Fig. 5 Zoom for c0 > 0, ci > 0 of the stability diagram in
Figure 3. Definitions of the limits c∗0, c

∗
i , c

∗∗
0 and c∗∗i .

Having found the analytical boundaries, fI = 0 and
fII = 0, of the monostability, bistability and tristability
regions, one can derive precise closed form indications
for the design of multistable shells. We focus in partic-
ular on the set c0 > 0 and ci > 0 which is shown in
Figure 5. With reference to this figure we first define
the two critical values

c∗0 = 2
√

1 + µ, c∗i =
2
√

1− µ
1 + µ

, (28)

which are obtained intersecting fI = 0 with ci = 0 and
fII = 0 with c0 = 0 respectively. The value c∗0 gives
the critical stress-free curvature over which a shell is
bistable (i.e has an everted shape) in absence of inelas-
tic curvatures; the value c∗i gives the critical inelastic
curvature over which a shell is bistable (i.e bifurcates
its equilibrium) in absence of natural curvatures.

The two sets fI = 0 and fII = 0 intersect at the
apex of the tristability region, namely in the point

c0 = c∗∗0 :=
√

7 + µ, ci = c∗∗i :=
4
√

2

1 + µ
−
√

7 + µ.

(29)

In the same point we compute the tangents to the two
stability boundaries (gray vectors in Figure 5) in or-
der to be able to move inside the tristability region. In
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particular we find that any point in the form

{c∗∗0 , c∗∗i }+ λ {cosφ, sinφ}, λ > 0, (30)

with

φ = arctan

(
3
√

7 + µ+ p
(√

7 + µ−
√

2(1 + µ)
)

√
2 p (1 + µ)

)
(31)

and 0 < p < 1, lies inside the tristability region. For
p � 1 the point (30) stays close to the lower stability
boundary, while for p ' 1 is closer to the upper bound-
ary. The point T, for instance, corresponds to p ' 0.24

and λ ' 3.4.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

μ

c 0*
,
c 0**
,
c i* ,

c i**

Fig. 6 Critical values of the curvatures as functions of µ: c∗0
(dashed black), c∗∗0 (solid black), c∗i (dashed gray), c∗∗i (solid
gray).

Finally in Figure 6 we examine the dependance of
the introduced critical values for c0 and ci as functions
of the material parameter µ. Whilst for c∗0 and c∗∗0 we
observe a moderate dependence, both c∗i and c∗∗i tends
to zero when µ → 1. This fact is of great practical
importance as even small inelastic loads can bifurcate
the equilibrium in materials having the parameter µ
close to 1. Recalling the definition of µ, the condition
µ→ 1 is obtained when

ν2 → Ey/Ex, (32)

a remarkable material property already found and dis-
cussed in [23] or [7].

4 Design recipes

Based on the results obtained above, we detail, in the
following subsections, three recipes to actually build
multistable shells in each of the regions shown in Fig-
ure 3:

(B) Bistable shells with natural and everted configura-
tions (fI > 0, c0 > 0);

(C) Bistable shells with bifurcated quasi-cylindrical con-
figurations (fII > 0, ci > 0);

(T) Tristable shells with bifurcated quasi-cilindrical con-
figurations and everted configuration (fI > 0, fII >

0, c0 > 0, ci > 0).

Preliminarly to every recipe there is the choice of
both the planform shape Ω and the material.
Concerning the shape, the best results are obtained
with Ω a circle because it minimizes the critical values
of curvatures for multistability. In fact, the dimensional
values of curvatures are inversely proportional to the ra-
dius R (see (10)), which on its turn is proportional to√
ψ (the number ψ is defined in (11)): thus, the bigger

is ψ, the bigger is R and the lower the corresponding
dimensional curvatures. It can be seen from the results
in Figure 4 that the maximum value for ψ are obtained
for the circular shape.
Concerning the material, in the orthotropic case we sup-
pose given the Poisson’s ratio ν, the Young modulus
Ex, the Young moduli ratio β = Ey/Ex and the shear
modulus ρ. The best results are obtained for materials
having sufficiently high shear modulus 2ρ ≥ 1 + ν (in
order to eliminate twisting intabilities: see explanations
in Section 3) and satisfying (32), in order to maximize
the stability margins.

4.1 Steps common to all recipes

(I) Depending on the chosen shape Ω and on the ma-
terial compute ψ:
– using (14) if the shape is elliptical,
– using (16) if the shape is rectangular;
– either numerically solving (12) and (11) or ap-

proximating ψ as in the previous cases if the
shape is neither elliptical nor rectangular.

(II) Choose the area of the planform L2 and the thick-
ness t. Note that the ratio L2/t is a scaling factor
for the characteristic radius; hence, the larger is the
number L2/t, the smaller curvature will be needed
for multistability.

(III) Compute the characteristic radius R in (10).

4.2 Bistable shells with natural and everted
configurations

(IV) Compute c∗0 in (28).
(V) Build a shell having, in a stress-free configuration,

curvatures

h̄0x =
√
β h∗0, h̄0y = h∗0, h̄0xy = 0, h∗0 ≥ 1.05·c∗0/R.
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(33)

As, with respect to refined FE simulations, the UC
model typically overestimates within a 3% error the
critical natural curvature, the coefficient 1.05 in (33)
guarantees the existence of a stable everted configu-
ration. Clearly the value in (33)3 represents the min-
imum curvature, but larger values are also possible.
Note, however, that the energy needed for the shell
eversion increases rapidly with the distance from the
critical value, since it scales as (det h̄0 − (h∗0)2)2.

4.3 Bistable shells with two bifurcated configurations

(IV) Compute c∗i in (28).
(V) Build a flat shell and apply to it inelastic curvatures

h̄ix =
√
β h∗i , h̄iy = h∗i , h̄ixy = 0, h∗i ≥ c∗i /R.

(34)

Since, with respect to refined FE simulation, the
UC model estimates very well the critical inelastic
curvature, condition (34) should guarantee the exis-
tence of two bifurcated configurations without any
additional coefficient. Clearly the value (34)3 rep-
resents the minimum inelastic curvature to induce
bifurcation of the equilibrium. Larger values are pos-
sible and needed to increase the difference between
the bifurcated shapes; however, in these shells the
energy, needed to move from one equilibrium to the
other, increases less rapidly with the distance from
the minimal critical value as it scales as (h̄i − h∗i )2.

4.4 Tristable shells with two bifurcated and one
everted configurations

(IV) Compute c∗∗0 and c∗∗i in (29).
(V) Build a shell with stress-free curvatures

h̄0x =
√
β h∗∗0 , h̄0y = h∗∗0 , h̄0xy = 0, (35)

and apply to it inelastic curvatures

h̄ix =
√
β h∗∗i , h̄iy = h∗∗i , h̄ixy = 0, (36)

with

{h∗∗0 , h∗∗i } = {c∗∗0 , c∗∗i }/R+ λ {cosφ, sinφ}/R (37)

and φ given in (31). A word of caution is needed
in order to properly choose the parameters λ and
p. Since the UC model underestimates the apex of
tristable region by 14% in norm, the condition λ > 0

should be substituted by a safer λ > 1. Moreover
the angle φ (controlled by 0 < p < 1) is better

chosen to stay closer at the bottom boundary of
the tristability region; safer values for p are within
0.05 < p < 0.5. This last choice allows to avoid
local instabilities that the UC model is not able to
describe and which are discussed in Section 6.

5 Sample prototypes

We present an experimental example for each of the
three cases examined in the previous Section and cor-
responding to points B, T and C in Figs. 3 and 5.

In particular the prototype corresponding to point
B in Figure 5 is half a tennis ball, while the proto-
types corresponding to points C and T are made of sil-
icone. These two families of materials are parametrized
by µ = 0.5, which is the only parameter affecting the
shape of the stability diagram of Figure 3; hence, this
diagram is valid for all cases. We remark that this value
of Poisson’s ratio is the highest possible for isotropic
materials, thus the one which is closest to the condi-
tion (32).

5.1 Bistable spherical shell: half tennis-ball

A tennis ball is a spherical shell essentially made of rub-
ber. One half of such a ball constitutes a nice example
of bistable shell with both natural and everted config-
urations as shown in Figure 7. Modelling it as a shell
with circular planform of radius r ' 0.03 m, thickness
t ' 0.003m, and using an isotropic rubber material
with β = 1, ν = µ ' 0.5 and γ ' 0.25, we calculate:
ψ = 3.96 ∗ 10−4, L =

√
2πr ' 0.075 m, L/t ' 25,

R = 0.13 m, c∗0 = 2.45, h∗0 = c∗0/R = 18.84m−1. Since
β = 1 and the stress-free curvature of half tennis ball,
namely h̄0 = 1/r = 33.33m−1, is sensibly larger than
the threshold h∗0, the everted configuration is stable,
Figure 7. Clearly half a tennis ball is not a shallow
shell; yet the UC model predicts the correct stability
properties.

5.2 Bistable bifurcated shell and tristable shell:
silicones

Whilst we presented the very simple case of half a tennis
ball to illustrate the case of the bistable shell in B, the
points C and T in Figure 5 do require the presence of
inelastic curvatures: fabricating shells with large initial
and inelastic curvatures is not a trivial task from the
experimental point of view. The solution we adopted
here is to use the silicones Zhermack Elite double 32
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Fig. 7 Natural (a) and everted (b) configurations for half a ten-
nis ball.

(referred as Green) and Zhermack Elite double 8 (re-
ferred as Pink). These soft and isotropic materials are
easily moldable and can exhibit controlled inelastic de-
formations if suitably prepared; they are delivered in
the form of liquid polymers which, once mixed with a
catalyst, undergo a rapid polymerisation reaction.

The Green and Pink silicones have similar mechani-
cal properties, namely ν ' 0.5, β = 1, ρ = 1/3 (leading
to µ = 0.5 and γ = 0.25), but are characterized by dif-
ferent Young moduli (EGreen = 1, 364 MPa, EPink =

0, 186 MPa) and by different hygroscopic properties.
We use this circumstance to produce shells with con-
trolled inelastic effects: indeed we observed that the
polymerisation of a layer of Pink silicone, which is laid
over a layer of already polymerized Green silicone, pro-
duces a bilayered medium with inelastic curvature (an
effect which is not documented in the technical mate-
rial specifications). Moreover, this effect is also obtained
when the top layer is made of a mixture of Pink and
Green silicone, and the resulting inelastic curvature can
be controlled by tuning the relative percentage of Pink
and Green silicone used in the mixture.
In particular, we suppose the bottom layer being made
entirely of Green silicone and we characterize the mix-
ture of the upper layer by its percentage ρ of Pink sili-
cone (ρ ∈ [0, 100], the percentage of Green silicone be-
ing then (100−ρ)). We measured the resulting inelastic
curvature hi experimentally on 2mm-thick two-layered
strips corresponding to different values of ρ: results are
shown in Figure 8. We note that in such assemblies also
a small percentage of Pink silicone in the upper layer

suffices to produce an inelastic curvature higher than
the critical threshold h∗i .
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Fig. 8 Inelastic curvature hi of bi-layered Pink-Green silicone
strips induced by the percentage ρ of Pink material in the Pink-
Green mixture of the upper layer. The critical value h∗i , needed in
the sample case discussed, and the inelastic curvatures of points
T and C are reported: these last correspond to a 40% Pink-60%
Green mixture.

For the material properties of these silicones and
a circular planform the preliminary steps described in
Section 4.1 give:

(I) ψ = 3.96 ∗ 10−4.
(II) The planform radius and thickness are chosen re-

spectively 5 cm and 2 mm. Hence L2/t = 3.93m.
(III) R = 0.271m.

To build the bistable shell with quasi-cylindrical con-
figurations, we follow the steps in Section 4.3 to get:

(IV) c∗i = 0.943.
(V) h∗i > 3.48m−1.

Fig. 9 Bifurcated shapes of the silicone shell corresponding to
point C in Figure3. The principal directions of curvature are
marked on the shell in red and blue.

Entering with this last value in Figure 8b dictates a
Pink percentage ρ in the upper layer higher than 5%; we
choose in particular ρ ' 40% which corresponds to the
inelastic curvatures h̄ix = h̄iy ' 13m−1 and to point C
in Figure 3. The resulting bifurcated configurations are
shown in Figure 9.



Basic criteria to design and produce multistable shells 11

Finally, to build the tristable shell we follow the
steps in Section 4.4 to get:

(IV) c∗∗0 = 2.74 and c∗∗i = 1.03

(V) The choice λ = 3.4 and p = 0.24 leads to h∗∗0 '
18.1m−1 and h∗∗i ' 13m−1

The choice made for λ and p allows to have the same
inelastic curvature of the previous case and, therefore,
it is obtained as before with a mixture of 40% Pink
and 60% Green in the upper layer. But now the bilayer
plate must not be flat and must have curvature radius
1/h∗∗0 ' 5.5 cm equal in all directions since β = 1. To
this end, using a 3D printer, we have produced the mold
shown in Figure 11, and the polymerization phases for
both the Green and Pink-Green layers has taken place
inside this mold. The three stable shapes of the result-
ing tristable shell are shown in Figure 10.

Fig. 10 Shapes of the silicone shell corresponding to point T in
Figure3. The principal directions of curvature are marked on the
shell in red and blue.

Despite the silicone shells shown in Figures 9-10 are
clearly not shallow, their multistable behaviour is well
predicted by applying the design rules provided by our
UC shallow-shell model based on Föppl-von Kármán
assumptions.

6 Concluding remarks

We have reported on modelling, numerical approxima-
tion and design recipes of simple multistable shells. Us-
ing soft isotropic materials, we have built sample proto-
types for three relevant cases. The following conclusions
can be drawn:

1. All the FE results have been obtained with fully
non-linear simulations of shells in Abaqus (S4R el-
ement, Full-Newton scheme: see the Appendix for

Fig. 11 Mold with radius of curvature 5.5 cm used to build the
tristable shell in Figure 10.

details). Even if the Föppl-von Kármán model, or
its UC and QC approximations, are based on the as-
sumptions of thin (t� L) shallow (k � 1/L) shells,
yet the UC and QC models are able to give an accu-
rate description of the stability scenario (Figure 3)
even for large curvatures.

Fig. 12 a) Upper row: Shapes predicted by UC (yellow) and
QC (brown) models for a square shell within the tristable region
c0 > 0, ci > 0; actually, the FE predictions are almost confused
with the QC ones and are not reported exactly. b) Lower row:
Variations of the curvatures computed with FE with respect to
their spatial averages: from the left components Kx −Kx, Ky −
Ky and Kxy−Kxy in the everted configuration of a square shell.

2. The UC model gives faithful indications of the sta-
bility, associated to rather large natural and inelas-
tic curvatures, despite the simplicity of the Uniform
Curvature assumption. In particular the predictions
on all the boundaries of the monostability region fall
within a 3% error.
We note that this remains true even when the ac-
tual (or FE computed) shapes violate the UC as-
sumption. Figure 12a shows, for instance, the UC
shapes (yellow) of a square tristable shell as com-
pared with the ones predicted by the QC model or
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by FE simulations (brown). For the everted config-
uration, Figure 12b shows the variations of the FE
curvature fields with respect to their averages.

3. The QC model, based on a quadratic ansatz of the
curvature field, is slightly more precise than the UC
model for predicting the number of stable equilibria
(see, for instance, the lower boundary of the trista-
bility region in Figure 3) and the actual equilibrium
shapes (Figure 12a). However, in a possible trade-
off between these QC precision enhancements and
the simple closed-form solutions allowed by the UC
model, the latter should, in our opinion, be preferred
because it is simpler but it suffices to well describe
the multistability phenomena both qualitatetively
and quantitatively.

Fig. 13 a) Comparison of the average shell curvatures for c0 =
4.4 and ci increasing: UC (gray), QC (brown), FE (black). b) The
Kxy field when ci reaches the critical value making the everted
configuration unstable as computed in Abaqus.

4. Still with reference to Figure 3 the more pronounced
difference between the UC (or QC) predictions and
the FE results lies in the upper stability boundaries
of the tristable regions. In Figure 13a we have plot-
ted the average shell curvatures Kx and Ky as pre-

dicted by UC (gray), QC (brown) and FE (black)
for c0 = 4.4. Clearly in the FE simulation the ev-
erted configuration looses stability for ci ' 4.6, i.e.
much earlier than the UC and QC predictions. Plot-
ting, in Figure 13b, the FE spatial distribution of the
component Kxy as ci ' 4.6 is approached, we un-
derstand that the stability is lost for a localization
of the twisting curvature; a bifurcation mode that
evidently could not be contemplated under the sim-
ple hypotheses of a uniform or quadratically varying
curvature.
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Appendix: Identification of stability boundaries
for multistable shells by FE simulations

In Figure 3, we resume the prediction of the stabil-
ity boundaries for multistable shells: results obtained
by applying the UC and QC models (solid and dashed
lines, respectively) can be compared to the ones com-
puted by refined Finite Element approximations (marked
as black dots). In particular, we performed FE simula-
tions with Abaqus CAE using the S4R element, which
is a shell element with four nodes and five degrees of
freedom per node with reduced integration. Geomet-
rical non linearities are taken into account in a Full-
Newton scheme. In order to validate the analytical re-
sults as well as to locate the experimental response of
the prototypes described in Section 5, results of sim-
ulations correspond to the same material system as in
experiments, that is 2mm-thick bilayered shells made of
Green−(Green+Pink) silicone material. The non-dimensional
diagram of Figure 3 is valid for both silicone and rub-
ber materials since they have the same Poisson’s ra-
tio (µ = 0.5) which is the only parameter affecting its
boundaries. The planform of the shell is circular, but
simulations based on square planforms were also per-
formed and gave similar results. The diameter was ini-
tially fixed at D = 10 cm in order to reproduce the
experimental results. Simulations were also performed
with a diameter of D = 20 cm in order to apply suffi-
ciently high initial curvatures c0 (points with c0 > 5 in
Figure 3).

In the analytical models, the shell is free and no
boundary condition is applied; thus, in the FE simu-
lations we only clamped the central node in order to
avoid rigid body motions.
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In order to reproduce the stability diagram of Fig-
ure 3, the two parameters to be varied in the FE study
are the natural curvature c0 and the inelastic curvature
ci (we remind that c0 and ci are adimensional curva-
tures, according to definitions given in Section 3). Dif-
ferent levels of natural curvature c0 simply correspond
to different paraboloid shell surfaces c0

R (x2 +y2), where
R is the characteristic radius defined by equation (10):
changing c0 required to build a new mesh for the ini-
tial stress-free configuration, the number of elements
of the mesh varying from 1456 (9114 d.o.f.) for a disk
(c0 = 0) to 1828 (11346 d.o.f.) for the deepest shell
considered (c0 = 9). Different levels of inelastic curva-
ture ci were induced by applying an equivalent uniform
temperature change ∆T to the shell (different expan-
sion coefficients are defined for the two layers, thus in-
ducing an inelastic curvature of the shell: values of the
ficticious expansion coefficients are identified from the
experimental behaviour of the silicone material system,
shown in Figure 8).

From an operational point of view, we fixed a dis-
crete set of c0 values (see dots on Figure 3). For each
value of c0, we built the corresponding mesh (stress-free
configuration) of the shell and we found the correspond-
ing everted configuration at ci = 0, if it existed, by
applying imposed displacements onto the shell: clearly
there is a range of values of c0 (c0 ∈ [−c∗0, c∗0]) where the
everted configuration cannot be found. Then, starting
from each natural configuration and from each everted
configuration, we have progressively increased the in-
elastic curvature value ci (in practice, the temperature
change ∆T ) until the stability was lost, thus marking
the critical values of inelastic curvature in order to ob-
tain bifurcation or loss of equilibrium.

In order to find the different points on the stability
diagram (see Figure 14), we followed the procedures
described hereafter.

1. Intersection between solid gray and dashed gray lines
(black point, c∗i ): start from a flat disk and increase
the inelastic curvature ci until finding the critical
value c∗i inducing bistability through a pitchfork bi-
furcation (evolution of curvatures is shown in Fig-
ure 2.a).

2. Intersection between dashed black line and the hor-
izontal axis ci = 0 (gray point, c∗0): start from a
spherical shallow shell and impose displacements onto
the shell in order to evert the curvature; repeat the
simulations by increasing the initial curvature c0 un-
til the existence of the everted configuration is es-
tablished at c0 = c∗0 (see results on Figure 1.a).

3. Dashed gray boundary (c0 > 0): start from a spher-
ical shell with initial curvature c0 > 0 and apply
a positive inelastic curvature ci until finding the
value corresponding to the pitchfork bifurcation of
the natural configuration into two quasi-cylindrical
shapes.

4. Dashed black boundary (c0 > 0): first find the ev-
erted configuration, then apply a positive inelas-
tic curvature ci until it looses stability (above the
dashed black line the everted configuration is no
longer stable: tristability is attested above the dashed
gray line and below the dashed black line).

5. Solid black boundary (c0 < 0): start from a curved
shell with initial negative c0 curvature, and apply a
positive inelastic curvature ci until it looses stability.

6. Solid gray boundary (c0 < 0): apply a positive in-
elastic curvature ci onto an everted configuration
corresponding to intial negative natural curvature
c0 and increase ci until the everted configuration
bifurcates into two quasi-cylindrical shapes.
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Fig. 14 Multistability boundaries for all materials parametrized
by µ = 0.5.
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