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Abstract

Differential growth of thin elastic bodies furnishes a surprisingly simple explanation of the complex and
intriguing shapes of many biological systems, such as plant leaves and organs. Similarly, inelastic strains
induced by thermal effects or active materials in layered plates are extensively used to control the curvature
of thin engineering structures. Such behaviour inspires us to distinguish and to compare two possible modes
of differential growth not normally compared to each other, in order to reveal the full range of out-of-plane
shapes of an initially flat disk. The first growth mode, frequently employed by engineers, is characterized by
direct bending strains through the thickness, and the second mode, mainly apparent in biological systems,
is driven by extensional strains of the middle surface. When each mode is considered separately, it is shown
that buckling is common to both modes, leading to bistable shapes: growth from bending strains results
in a double-curvature limit at buckling, followed by almost developable deformation in which the Gaussian
curvature at buckling is conserved; during extensional growth, out-of-plane distortions occur only when the
buckling condition is reached, and the Gaussian curvature continues to increase. When both growth modes
are present, it is shown that, generally, larger displacements are obtained under in-plane growth when the
disk is relatively thick and growth strains are small, and vice versa. It is also shown that shapes can be mono-,
bi-, tri- or neutrally stable, depending on the growth strain levels and the material properties: furthermore,
it is shown that certain combinations of growth modes result in a free, or natural, response in which the
doubly-curved shape of disk exactly matches the imposed strains. Such diverse behaviour, in general, may
help to realise more effective actuation schemes for engineering structures.
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Nomenclature

Parameters
a, b major, minor semi-axes of elliptical planform of disk
d displacement of disk edge

d1, d2, d3, d4 discriminant expressions
gA Gaussian curvature due to extensional growth strains alone, Eqn 3
E x-direction Young’s modulus
t uniform disk thickness

UB bending strain energy stored in disk
US stretching strain energy stored in disk
x, y in-plane coordinates associated with disk middle surface

Major symbols
α relative shear modulus, equal to (1− ν)/2 for isotropic behaviour
β y-direction specific Young’s modulus, equal to unity for isotropic behaviour
γ bending growth effectiveness (maximum value of 2)
ε middle surface strain tensor
εA middle surface growth strain tensor
εE elastic components of strain, equal to ε− εA
ε̄ maximum growth strain
κ curvature tensor
κA curvature tensor due to bending growth strains
κE elastic components of curvature, equal to κ− κA
ν Poisson’s ratio
µ linearising parameter for governing equations of deformation, Eqn 7(d)
φ material and geometry parameter for disk
η relative weighting between bending growth (=±1) and extensional growth (= 0)

Other
detκ Gaussian curvature due to bending, equal to κxκy − κ2xy

κ̄ dimensionless curvature, equal to κa2/t
ḡA dimensionless Gaussian curvature due to extensional growth strains, equal to gAa

4/t2

A, E subscripts for growth and elastic properties, respectively
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1 Introduction

Morphogenesis considers the evolution and governance of shape in biological structures, and recent studies
have identified the importance of mechanical effects and constraints on the origins of complex shapes under
relatively simple driving forces (Dumais and Steele 2000). Many such structures have thin membranes or
shells for reasons of geometrical efficiency and biological expediency, and the mechanics of these components
provides essential insight into how growth proceeds. For example, instabilities such as local buckling of
closed shells and membrane wrinkling simulate unique features of developing cell and organ growth in vitro
as well as skin deterioration (Goriely and Ben Amar 2005, Cerda and Mahadevan 2003)—an excellent overall
review is given by Chen and Yin (2010); the interplay between evolving shape and residual stresses in open
strips describes the bent and twisted profiles of long leaves, kelp and seed pods (Liang and Mahadevan 2009,
Koehl et al. 2008, Forterre and Dumais 2011, Armon et al. 2011); dynamical “snap-through” of a shell cap
can explain the rapid closure of the Venus Flytrap without muscular intervention (Forterre et al. 2005); and
the elongation of cell tips in pollen (Campas and Mahedvan 2009, Aouar et al. 2010) behaves like a so-called
propagating instability (Kyriakides 1994), which—we surmise—expedites the growth of highly deformed
areas at much lower driving forces than expected.

This paper focuses on recent studies concerning the complex shapes attained by an initially flat, uncon-
strained surface when prescribing inelastic deformations that model growth phenomena in biological systems
(Klein et al. 2007, Dervaux and Ben-Amar 2008, Dervaux et al. 2009). Despite its apparent simplicity, the
problem encapsulates a fundamental responsive mode in deforming shells, in which the actual deformations
differ from the prescribed deformations because of the interplay between bending and extensional effects.
Often, and correctly, biologists and physicists assume that, because the surface is relatively thin, growth
produces extensional strains, which are uniform through the thickness. The strains induced by growth may
be unreachable in practice because of geometrical incompatibility and, as carefully described by Klein et al.
(2007), their non-uniform distribution within the middle surface of shell correspond to non-Euclidean met-
rics of the surface, i.e. to metrics unattainable by surfaces embedded in a three-dimensional Euclidean
space. In response, the surface develops a state of self-stress whilst deforming elastically to accommodate
the incompatible growth strains, and this can lead to interesting buckling phenomena. Although the shape
is controlled mainly by the mechanical properties, there is some evidence that the degree of difference has a
genetic component in practice (Nath et al. 2003).

At the same time, controlling the shape of a surface and conceiving “morphing” structures is an active
research subject in mechanical engineering, where active materials and multi-physical couplings (e.g. piezo-
electric, thermoelastic, hygroscopic, plasticity) provide the means to induce controllable inelastic strains
analogous to growth. On the basis of linear theories, engineers have long assumed that large displacements
in thin shells are wrought most effectively by bending actuation composed of differential through-thickness
strains: a familiar example is a bimetallic plate that curves directly out-of-plane under a rise in ambient
temperature (Wittrick et al. 1953). However, large displacements in shells entail a coupling between bending
and in-plane extension, which ultimately limits the authority of bending actuation. For thin surfaces, there
is potentially a choice for engineers in the mode of actuation—the so-called “actuation paradigm” mentioned
by Modes et al. (2011)—if extensional actuation can provide an efficient alternative to bending. Thus, re-
search on shape control of structures may benefit from this study, for out-of-plane deformation of shells using
in-plane actuation exclusively is only recently garnering attention and may prove competitive compared to
traditional bilayer (bending) methods. There are also implications for processes involving plastically working
thin-walled engineering materials where, like biological growth, the deformation is irreversible and usually
evolves incrementally: residual stresses confer the desired shape of shell—which differs from the final shape
because the imposed deformation cannot proceed without constraint.

In this paper, growth and actuation are treated together as simple inelastic strain distributions simul-
taneously conferred upon a flat, stress-free disk. Our primary aim is to establish the differences in the
out-of-plane shapes arising from extensional and bending modes—whether by growth or from actuation—
when they act separately and when both are present. The latter “interaction” of modes is entirely novel
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because it has not been reported formally in the literature, and is essential for the reasons described above.
We consider this interaction in two ways, by prescribing modes that are independent and then coupled by a
common maximum growth strain. The first enables us to ascertain the general behaviour, e.g. the stability
complexion, and the second allows pertinent details to be found, such as the maximum shape change etc.

The study of the interaction of growth modes is underpinned by their individual responses, and these
have been eschewed, in part, by others. For example, the first author reports on the bending actuation of
a disk (Seffen and Guest 2011), and the principle underlying extensional growth of a flat disk is confirmed
in numerical simulations by Klein et al. (2007). Inevitably, we repeat–and declare—this work as part the
broader presentation of this paper, but the imperative and, hence, novelty of this study lies with discussing
the relative shape-control efficiency of the two growth modes by describing all possible shapes of the disk in
closed form. Most studies simulating morphogenesis extract meaningful trends from exhaustive computations
because the problem details are not amenable to a compact theoretical analysis without a loss of accuracy. A
flat disk is geometrically very simple but analysis of its growth response is non-trivial, resulting in a virtual
dearth of compact formulae describing key relationships. Adopting the same approach in Seffen and Guest
(2011) and Fernandes et al. (2010), we manage a theoretical approach by assuming that first-order (uniform)
changes in shape occur, and these reasonably follow if the growth strains themselves correlate to uniform
imposed curvatures, even if the current shape of disk does not match this “target” shape. To this end, we
extend earlier work from the authors (Seffen and Guest 2011, Fernandes et al. 2010) to explicitly include
and discuss the effect of extensional growth, and we complement matters by performing a non-linear, large
displacement finite element analysis, which makes no assumptions about the uniformity of shape and the
order of magnitude of the geometrical non-linearities. The comparison of numerical and analytical results
clearly proves the (surprisingly) moderate sacrifice in the accuracy of shape and the pertinence of our strongly
simplified model for the analysis of uniform bending and/or extensional growth. If instead the growth strains
are non-uniform, the shape of disk would be described by higher-order modes throughout, as observed by
Klein et al. (2007) in their experiments where practical arrangements do not confer a uniform change; their
results would naturally extend the results here but are the subject of further work.

Section 2 describes the geometrical definitions and assumptions in detail, in order to establish the meaning
of kinematical concepts not used by all researchers. In particular, we carefully discuss how the target shape
of disk and its actual shape differ in view of strict compatibility rules. This is not often clear to engineers,
and importantly, it allows us to incorporate the effect of extensional growth strains into earlier formulations
on bending growth alone, developed separately by both authors, with relative ease (Seffen 2007, Vidoli and
Maurini 2008, Fernandes et al. 2010). This formulation is sketched in Section 3 where the final governing
equations of shape are presented and compared to expressions in previous studies for the sake of clarity.
Section 4 then considers “single” mode solutions, where extension and bending growth are treated separately,
and the predictions of shape are compared to a non-linear finite element analysis using simple distributions
of growth strains. The modes are then compared together by setting a common limit on the maximal growth
strain, as if they had the same constitutive growth capabilities. Section 5 formally presents “double” mode
growth in which extensional and bending growth strains are both present. Their interaction is first plotted
as a regime map, which identifies regions with a particular degree of stability. From a design perspective,
this map can be interrogated quickly without calculating the exact shape of disk. The largest possible
displacements arising from the relative influence of each mode is then revealed as another map and, finally,
we consider how the associated strain energy varies. In Section 6, we refer briefly to the case of natural
growth, where the shape induced by both modes is followed exactly by the disk so that as the disk deforms,
no strain energy is stored but it retains its stiffness, and this opens up interesting possibilities for developing
large-displacement actuators that are structurally robust. Section 7 concludes this study.
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2 Definitions of Geometry and Assumptions

The disk is initially flat, it is thin with a constant (uniform) thickness and has an elliptical planform of
major- and minor semi-axes, a and b. During growth or actuation, in-plane strains develop, leading to a
change of the outwards shape, mainly in the displacements normal to the disk surface when the disk is very
thin. These displacements are assumed to be shallow but finite so that equilibrium is related by the deformed
configuration of disk. The underlying variation of strains through the disk thickness can be condensed into
properties of the middle surface alone, namely tensors of in-plane strain, ε, and of out-of-plane curvature,
κ. These tensors describe the current shape of the disk and, correspondingly, Gauss’s Theorema Egregium
suggests a connection between the variations of the strain tensor and the Gaussian curvature, denoted by
G(ε). Writing the strains in terms of direct components, εx and εy, and a shear strain, γxy, for orthogonal
coordinates x and y in the original plane of disk, the linearised form reads as (Calladine 1983)

G(ε) = −∂
2εxx
∂y2

− ∂2εyy
∂x2

+
∂2γxy
∂x∂y

(1)

and, recognising that the Gaussian curvature is set by detκ = κxκy − κ2xy for ordinary curvatures, κx and
κy, and twisting curvature, κxy, the connection is succinctly written as

G(ε) = detκ (2)

The current shape depends on the response of the disk to so-called inelastic deformations conferred by
growth or actuation processes, denoted by subscript “A”. These processes are assumed to produce planar
strain distributions through the thickness, which may be decoupled into components of middle surface strains,
εA, and curvatures, κA. Here, the subscript “A” collectively denotes growth or actuation but importantly,
the distinction between extensional and bending effects has been set—separately from the physical origin
of each process that causes them. We do note that either of εA or κA may be zero, or both may occur
simultaneously and may be coupled to each other. For the sake of generality, we shall assume that they
are separately prescribed, which has implications for the elastic response of the disk. By definition, εA and
κA are connected to Gaussian curvature using the same linearised approximations as for the current shape
before, i.e. they produce components G(εA) and det(κA); but we cannot say that G(εA) is equal to det(κA)
since εA and κA are independent. Alternatively, if the current shape follows from setting ε = εA and κ = κA,
Eqn 2 is not satisfied and the target shape defined by εA and κA cannot be reached. Elastic components of
deformation must be induced and, again, there are two middle surface quantities denoted by subscript “E”,
εE and κE, which define the difference between the current and target shapes according to εE = ε− εA and
κE = κ − κA. The degree of difference in both will depend on the final equilibrium conditions, which are
most simply addressed by considering the strain energy stored in the disk.

In order to enable an approach soluble in closed form, we further simplify the nature of the inelastic
terms. Foremost, we assume that detκA and G(εA) do not vary with x or y within the disk, thereby
resulting in uniform Gaussian curvatures. Recent studies (Freund 2000, Guest and Pellegrino 2006, Seffen
and McMahon 2007, Seffen 2007, Vidoli and Maurini 2008) have indicated that the disk responds in a similar
manner by adopting uniform curvatures, which reduces the calculations substantially. This is not, however,
a restrictive assumption in view of common growth or actuation processes. For example, a heated bimetallic
disk attempts to curve equally and uniformly in all directions, and a rolled sheet can be cylindrically curved
into a circular arc, so we specify separate components of bending growth, κxA and κyA, in the x and y
directions, respectively, and a uniform twisting growth, κxyA, such that detκA = κxAκyA−κ2xyA, a constant.
In the case of extensional growth, uniformity stems from a quadratic strain field since G(εA) has second-order
derivatives of the components of εA: indeed, if we assume that εA is isotropic and proportional to x2 + y2,
then a parallel form of Eqn 2 yields

G(εA) = −∂
2εA
∂y2

− ∂2εA
∂x2

= gA, a constant (3)
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where gA replaces G(εA) for simplicity. Quadratic strain fields can arise often in Nature because of the way
in which nutrients for growth are absorbed through the surface. For example, long strips of kelp are more
exposed on their outer edges in fast-flowing rivers, resulting in a cross-wise variation of growth strain that is
approximately parabolic (Koehl et al. 2008); finding ways to actuate a quadratic strain field in an engineering
structure remains to be realised, and efforts may be garnered by the results of this study, in which we chose
idealised strain fields for the simplest, quantitative comparison between both modes.

3 Strain Energy Formulation and Governing Equations

The disk is thin and homogenous, and the material response is linear because strains remain small despite
relatively large displacements. The constitutive elastic behaviour is taken to be orthotropic following Seffen
(2007), who considered shells without growth strains but which can be adapted to include the definitions
of εA and κA from Section 2 by replacing the elastic deformations with εE = ε − εA and κE = κ − κA.
Correspondingly, the strain energy stored in the disk can be found by considering separate components of
strain energy density in bending and in extension, which are integrated over the entire middle surface. A
conservative behaviour is also assumed so that the disk returns to being flat when the growth strains are
“switched off”, and no external loads are applied to the disk, generally.

The bending strain energy bending density has a quadratic form equal to (1/2)κTED
TκE, where D is

a 3 × 3 matrix comprising elements of bending and torsional rigidities—see Vidoli and Maurini (2008) for
example—and κE is the vector of elastic curvatures, [κxE κyE 2κxyE]T, using Voight notation. Because
the elastic curvatures are uniform throughout the disk, the total bending component, denoted by UB, pre-
multiplies the density by the elliptical planform area of the disk, and the final form reads in terms of the
current curvatures, κ, and target curvatures, κA, as:

UB =
πabEt3

24(1− ν2/β)

[
(κx − κxA)2 + 2ν(κx − κxA)(κy − κyA) + β(κy − κyA)2 + 4α(κxy − κxyA)2

]
(4)

E is the Young’s modulus in the x-direction and β is the relative modulus in the y-direction; α is the relative
shear modulus and ν relates to the Poisson ratio. For the isotropic case, β = 1 and α = (1−ν)/2, otherwise,
specifying general values allows us to model a range of orthotropic materials. Mathematically, −1 < ν < 1
and β > ν2 for positive definiteness of the constitutive material matrix and, from a practical viewpoint,
materials are generally not weaker in shear so α is only ever equal to, or larger than, its isotropic value.

The extensional strain energy density also has a quadratic form, which is first written in terms of εE,
but which can be expressed commensurately in terms of curvature by the following route. Recall that the
assumption of uniform curvatures implies a quadratic variation in the expected distribution of current strains,
ε, via Eqns 1 and 2. To find the exact variation, the components of ε in Eqn 1 are replaced by εE + εA, and
the differential operator turns εA into gA on the right-hand side. The elastic strains, εE, are then replaced by
elastic stresses, by inverting the constitutive elasticity matrix to find the required relationships. The stresses
are written in terms of an Airy stress function, Φ, as performed in Seffen (2007) so that Eqn 1 now becomes
a fourth-order differential equation with a constant “forcing” term equal to detκ − gA. A polynomial for
Φ can be selected so that differential equation is satisfied whilst upholding the boundary conditions of zero
normal force and shear force on the periphery of the disk. The stresses and hence, strains are determined
and substituted back into the strain energy density, and this expression is integrated over the disk area to
reveal a total component, US, equal to

US =
Etπa5b5

48(1− ν2/β)

α(β − ν2)

3a4βα+ 3b4α+ a2b2[β − ν2 − 2να]
(det k − gA)2 (5)

The total strain energy, U = US + UB, is made dimensionless by defining
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Ū = U · 12a3(1− ν2/β)

Eπbt5
, κ̄ = κ · a

2

t
, ρ =

a

b
, φ =

α(β − ν2)

6ρ4βα+ 6α+ 2ρ2[β − ν2 − 2να]

so that

Ū =
φ

2
(det k̄ − ḡA)2 +

1

2

[
(κ̄x − κ̄xA)2 + 2ν(κ̄x − κ̄xA)(κ̄y − κ̄yA) + β(κ̄y − κ̄yA)2 + 4α(κ̄xy − κ̄xyA)2

]
(6)

where det k̄ = κ̄xκ̄y − κ̄2xy: note that φ = (1 − ν2)/16 for a circular isotropic disk. Since Ū is algebraic,

statical equilibrium configurations are obtained by setting ∂Ū/∂κ̄ = 0 for each of κ̄x, κ̄y and κ̄xy. The
resulting general governing equations are non-linear coupled expressions of the current shape, which can be
written in a slightly decoupled form as:

κ̄x + µκ̄y = κ̄xA + νκ̄yA (a); µκ̄x + βκ̄y = νκ̄xA + βκ̄yA (b);

(2α− µ+ ν)κ̄xy = 2ακ̄xyA (c); µ = ν + φ(κ̄xκ̄y − κ̄2xy − ḡA) (d) (7)

These are similar to the expressions furnished by Seffen and Guest (2011) for a pre-stressed disk in which
growth is analogous to plastic bending, but only because of how they are written above. Here, we now
account for extensional growth via gA in µ everywhere, which results in new solutions both for extensional
growth alone and when both modes are present.

Despite their compactness, any solution to these expressions is generally formidable but which may be
guided in the following way. Equations 7(a)-(c) are, first, explicitly soluble for κ̄x, κ̄y and κ̄xy in terms of the
Gaussian curvature parameter, µ, and the components of κ̄A. Once found, these expressions are substituted
back into µ in Eqn 7(d), which also includes ḡA, and the following seven-order polynomial emerges after
tidying up:

φ
{[

(β + µ2)(κ̄xA + νκ̄yA)(νκ̄xA + βκ̄yA)− µ(νκ̄xA + βκ̄yA)2 − µβ(κ̄xA + νκ̄yA)2
]
(2α− µ+ ν)2

−4α2κ̄2xyA(β − µ2)2
}
− (φḡA + µ− ν)(2α− µ+ ν)2(β − µ2)2 = 0 (8)

The roots in µ of this characteristic equation determine the curvatures for any value and combination of the
growth strains, as well as specified material and geometrical properties, and are typically found by numerical
solution. Importantly, the roots must be real for the resulting shape to be physically possible.

Some roots are admissible in closed form, as performed in Seffen (2007) for initially curved, stress-free
disks, but only after simplifying the characteristic equation for the sake of tractability. This entails a coupling
of some of the independent terms—the growth strains here, so not all possible solutions can be examined.
However, the descriptions of shape are vital in expounding the evolution of growth, and therefore we choose to
seek out as many closed-form solutions. When considering Eqn 8, note that it can be simplified immediately
by setting the repeating terms, (β − µ2) and (2α − µ + ν), equal to zero, which then sets conditions upon
the remaining terms for overall satisfaction. These same conditions fortuitously allow the original governing
equations to be solved elegantly by inspection, to reveal another solution regime in which µ varies rather
than being a constant root value. These cases are now treated in turn.

(a.i) µ = 2α+ ν, µ 6= ±
√
β

This solution is only viable when κ̄xyA is equal to zero, otherwise the characteristic equation and, ulti-
mately, Eqn 7(c) are not satisfied. Correspondingly, the twisting curvature is not specified directly. Solutions
for κ̄x and κ̄y must be obtained first from solving Eqns 7(a) and (b) together using µ = 2α+ ν, before sub-
stituting back into Eqn 7(d), in order to solve for κ̄xy. In this case, the combination of growth strain values
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must enable κ̄xy to be real, and a separate study has shown that the shear modulus must be less than its
isotropic value for stable shapes; however, as noted before, practical materials do not usually behave in this
way, and we do not pay any further attention to these twisted solutions.

(a.ii) µ = ±
√
β, µ 6= 2α+ ν

In this case, there are two root values of µ, either
√
β or −

√
β, and these predicate separate relationships

upon the growth strains, which are represented together via the “±” sign. Consider first when κ̄xyA is set
equal to zero so that there is no twisting curvature from Eqn 7(c). Satisfaction of the characteristic equation
is now obtained by setting the term inside square brackets equal to zero. After some manipulation, this
produces the rather compact requirement:

±
√
β(νκ̄xA + βκ̄yA) = κ̄xA + νκ̄yA ⇒ κ̄yA =

κ̄xA

±
√
β

(9)

which is practicable and enables a wide range of solution shapes. Using either of Eqns 7(a) or (b) and the
definition of µ, it may be shown that:

κ̄x ±
√
βκ̄y =

(
1∓ ν√

β

)
κ̄xA,

±
√
β − ν
φ

= κ̄xκ̄y − ḡA (10)

These are two soluble equations in κ̄x and κ̄y, which can be re-stated in terms of either parameter: we choose
κ̄x and eliminate κ̄y, to reveal

µ = ±
√
β, κ̄y 6= κ̄x : κ̄yA =

κ̄xA

±
√
β
⇒ φκ̄2x − φ

[
1± ν√

β

]
κ̄xAκ̄x +

√
β
[√

β ∓ ν ± φḡA
]

= 0 (11)

The final quadratic equation is to be read as two equations, depending on whether κ̄yA = κ̄xA/
√
β or

κ̄yA = −κ̄xA/
√
β. The roots of either equation produce explicit expressions for κ̄x, which can be substituted

back in to Eqn 10 to find the same for κ̄y, and this is presented momentarily.
For the case of κ̄xyA 6= 0, then κ̄xy is uniquely defined by 2ακ̄xyA/(2α+ν∓

√
β). Setting κ̄yA = κ̄xA/±

√
β

gives similar soluble expressions to Eqn 10 but where the product κ̄xκ̄y is replaced by κ̄xκ̄y− κ̄2xy. These can
be solved in the same way but are considered no further: there is also little evidence of this type of growth
strain in practice.

(a.iii) µ 6= ±
√
β, µ 6= 2α+ ν

In this case, there are no obvious roots of the characteristic equation. However, if the twisting terms are
zero and we retain κ̄yA = κ̄xA/±

√
β, then Eqns 7 may be solved in a very simple way. Specifically, κ̄xy is

zero via Eqn 7(c), and we note that Eqns 7(a) and (b) are multiples of each other when κ̄y is set equal to
κ̄x/±

√
β. Correspondingly, µ can be eliminated between these expressions, so that the curvature solutions

do not depend on µ, rather, they prescribe its value separately in Eqn 7(d) quite unlike the previous cases
of constant roots. Using either of Eqns 7(a) or (b) and (d), the intermediate step produces:

κ̄x =
κ̄xA(

√
β ± ν)√

β ± µ
, µ = ν + φ

(
κ̄2x
±
√
β
− ḡA

)
(12)

and, after substituting for µ into the first expression, another solution regime is found, which reads as the
following cubic equation in κ̄x:

κ̄y =
κ̄x

±
√
β

: κ̄yA =
κ̄xA

±
√
β
⇒ φκ̄3x +

√
β
[√

β ± ν ∓ φḡA
]
κ̄x −

√
β
[√

β ± ν
]
κ̄xA = 0 (13)

8



Equations 11 and 13 are specific governing equations because they describe one of the curvatures explicitly.
They also depend on the same growth strain condition, namely κ̄yA = κ̄xA/

√
β, and so they apply equally

to the disk. Obviously, the choice of internal sign declares the form of bending growth, but the prevailing
solution regime offers the most stable shapes, and these are treated in detail in Sections 4 and 5.

(a.iv) µ = ±
√
β, µ = 2α+ ν

This case is similar to (a.i) merged with (a.ii), with the proviso on material properties that
√
β = 2α+ ν

for positive values of constants: µ = −
√
β cannot apply. Thus, κ̄x and κ̄y are governed by Eqn 10, and κ̄xy

follows from Eqn 7(d) and, once again, stable shapes occur only when the shear modulus is less than its
isotropic value. Although we have noted that these twisted solutions are not of interest in general, the single
case involving isotropic parameters presents a special case in which κ̄xy = 0, and this emerges later in the
detailed solutions.

(b) Shape stability

The stability of shape is assessed by substituting the expressions for κ̄x and κ̄y (and κ̄xy = 0) into
the following generalised stiffness matrix of the disk, whose elements comprise ∂2Ū/∂κ̄2x, ∂2Ū/∂κ̄xκ̄y etc
beforehand:  1 + φκ̄2y µ+ φκ̄yκ̄x −2φκ̄yκ̄xy

µ+ φκ̄xκ̄y β + φκ̄2x −2φκ̄xκ̄xy
−2φκ̄xyκ̄y −2φκ̄xyκ̄x 4α− 2(µ− ν) + 4φκ̄2xy

 (14)

Shapes are stable only if this matrix is positive definite—when its three eigenvalues are positive; if any is
zero, the disk is neutrally stable in that mode; a negative eigenvalue produces an unstable equilibria. Note
that ḡA features directly in this matrix via µ, and the contribution of κ̄xA or κ̄yA is implied through the
solution curvatures.

(c) Summary of analysis

We can determine the out-of-plane shape of a uniform elliptical disk subjected to growth strains, which
foist a change in its Gaussian curvature by extensional and/or bending growth (or actuation processes), by
focussing on the roots of a characteristic equation. These can be found numerically for any combination of
growth strains but we choose, instead, to prescribe specific relationships between the bending components
according to κ̄yA = κ̄xA/±

√
β and κ̄y = κ̄x/±

√
β, but not at the same time, for solutions in closed-form.

Because they are formulaic in nature, the character and stability becomes apparent despite the reduced range
of possible growth strains, but this is more instructive and is the focus of the rest of this paper. We make
one more restriction by setting β = 1 for marginal convenience henceforth: this stipulates direct isotropy
but it does not detract from the generality of results, for example, see Fernandes et al. (2010). We do retain
an independent shear modulus, for its value does affect the stability of shapes as is now discussed, first, for
single mode growth and then for interacting, or double mode, growth.

4 Single Mode Growth

(a) Extensional growth, ḡA 6= 0, (κ̄xA, κ̄yA) = 0

When the bending components, κ̄xA and κ̄yA, are set equal to zero in Eqns 11 and 13, three sets of closed-
form solutions are found. The first has (κ̄x, κ̄y) = 0, and this is valid in either direction as ḡA increases or
decreases, until ḡA reaches a critical value denoted as ḡ∗A such that
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ḡ∗A =
∓1 + ν

φ
(15)

Since the magnitude of the Poisson ratio is never larger than unity, ḡ∗A = (1 + ν)/φ is positive and ḡ∗A =
−(1− ν)/φ is negative. When |ḡA| < |ḡ∗A|, the stability matrix can be verified as being positive definite for
(κ̄x, κ̄y) = 0.

When ḡA reaches positive ḡ∗A, the disk now buckles into an out-of-plane mode of equal curvatures defined
by

κ̄x = κ̄y = ±

√
ḡA −

(1 + ν)

φ
(16)

The ± sign in this second set indicates that the disk can deflect upwards or downwards—it is able to occupy
both in a bistable manner, which is confirmed after substituting these expressions into Eqn 14 provided
ḡA ≥ (1 + ν)/φ.

The third set arises when ḡA is less than the critical negative value, ḡ∗A = −(1 − ν)/φ. The disk has
buckled again but its shape has equal and opposite curvatures:

κ̄x = −κ̄y = ±

√
− (1− ν)

φ
− ḡA (17)

Again, there are two sets of shapes but this time, their stability depends on the shear modulus, α; in
particular, upon the eigenvalue associated with twist—the final element in the stability matrix, which can be
shown to be equal to 4α− 2φ(κ̄xκ̄y− ḡA). After substituting for κ̄x and κ̄y above, this term is positive when
α > (1− ν)/2, and the above are valid bistable shapes. Otherwise, it is zero for material isotropy, indicating
that there is no stiffness in this direction: the disk is neutrally stable in a torsional manner with principal
shapes according to the above expressions. We may think of any intermediate shapes being described by the
above but where the coordinate axes have been rotated by some nominal angle about a vertical axes. Recall
that we are not considering α < (1− ν)/2 suffice to say that all solutions would be unstable in this case—a
different solution regime governs.

Figure 1 compares these predictions to a finite element analysis using the software package ABAQUS
(Hibbitt et al. 2011). The disk is circular and comprises triangular shell elements, and a small initial out-of-
plane displacement is imposed upon the flat shape, in order to seed the potential for buckling. The growth
strain is specified using an inelastic strain field, εA = εA(x, y), with the elementary distribution

εA(x, y) = −ε̄ (x2 + y2)

a2
⇒ ḡA = 4ε̄

a2

t2
(18)

using Eqn 3. The maximum value, ε̄, would be defined by the growth or actuation strain capabilities of the
actual material, and we use it here to control the degree of positive and negative growth by increasing or
decreasing its value from zero, respectively. A geometrically non-linear, large-displacement analysis incorpo-
rating a linearly elastic, isotropic material response is specified, and the disk is centrally fixed against rigid
body movement, being free from externally applied forces and moments everywhere else. No restrictions are
imposed upon the expected profile of curvatures, and Fig. 1 records the highest displacements availed by
the edge of the disk. The discrepancy between theory and computation diverges slightly as growth proceeds
but the trends are encouragingly similar despite the ratio of displacement to disk thickness being well above
unity—the notional limit of shallow displacements, and despite our assumption of linearity via Eqn 1: for
non-shallow displacements overall, the agreement is unexpectedly good. Additional pictures of the post-
buckled shape indicate that there is constant Gaussian curvature throughout most of the disk except for a
boundary layer on the periphery, where the internal bending moments fall away to zero non-uniformly in
accordance with an exact solution. Thus, our assumption of uniform shape is not valid close to the edge
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but this local absence of correctness has minimal influence on the edge displacements because of the small
width of the boundary layer. Note that it is difficult to see the equivalent strain at buckling owing to the
large range of growth overall.

(b) Bending growth, ḡA = 0, (κ̄xA, κ̄yA) 6= 0

Recall that κ̄yA = +κ̄yA or κ̄yA = −κ̄xA for Eqns 11 and 13 to apply and, in order to distinguish formally
this application, we denote the former as a case of equal-sense growth and the latter as opposite-sense: in
the previous case of ḡA 6= 0, there is no commensurate distinction in the governing equations although we
may think of similar behaviour depending on the sign of ḡA. Each of these cases is now treated separately
for the sake of clarity and completeness—the solution curvatures are non-trivial expressions, and they are
also similar to the solutions found by (Seffen and Guest 2011), as noted before.

(b.i) Equal-sense bending growth

The disk curvatures are the same with respect to using Eqn 13 but different in Eqn 11 and, since the
growth strains are always the same (κ̄xA = κ̄yA), it is reasonable to expect that the disk deflects with equal
curvatures initially as the growth increases from zero. Thus, Eqn 13 is considered first with the term ḡA = 0.
The final form and conditions for its application may be written as:

κ̄yA = κ̄xA : κ̄y = κ̄x; 0 ≤ κ̄xA < κ̄∗xA ⇒ κ̄x +
φ

(1 + ν)
κ̄3x = κ̄xA (19)

It is possible to solve for κ̄x explicitly in terms of κ̄xA but this is not a compact expression and, therefore,
is not presented. The growth limit for this mode is defined as κ̄∗xA, which is quantified momentarily, and is
the limit of stable behaviour when considering the eigenvalues of Eqn 14. Thereafter, the disk curvatures
cannot be the same, and Eqn 11 now governs. It can be solved explicitly under the following conditions to
reveal the exact disk curvatures as:

µ = 1, κ̄yA = κ̄xA : κ̄y 6= κ̄x, κ̄xA > κ̄∗xA ⇒ φκ̄2x − φ(1 + ν)κ̄xκ̄xA + (1− ν) = 0

⇒ κ̄x =
κ̄xA(1 + ν)

2

1±

[
1−

(
κ̄∗xA
κ̄xA

)2
]0.5 , κ̄y =

κ̄xA(1 + ν)

2

1∓

[
1−

(
κ̄∗xA
κ̄xA

)2
]0.5 (20)

The term κ̄∗xA (and κ̄∗yA) defines the growth strain at which the real roots of the governing equation become

available and is found to be equal to
√

4(1− ν)/φ(1 + ν)2. A formal stability investigation also confirms
that there is a switch from one stable solution to the other at κ̄∗xA.

Compared to the effects of ḡA, the disk distorts out-of-plane with equal curvatures from the outset as it
attempts to reach κ̄xA and κ̄yA under Eqn 19. It then buckles when the imposed Gaussian curvature reaches
a value of κ̄∗xAκ̄

∗
yA. At this point, the Gaussian curvature of the disk is κ̄xκ̄y = (1− ν)/φ, and this remains

fixed during post-buckling since µ = 1 irrespective of the value of κ̄xA and κ̄yA. The individual curvatures,
κ̄x and κ̄y, increase or decrease according to their closed-form solutions in Eqn 20 as growth increases, to
form an open cylindrical shape in the limit: but their product remains conserved and the post-buckling
growth mode is almost developable. Furthermore, when α > (1− ν)/2, it also has two stable configurations,
depending on the internal signs of Eqn 20. For material isotropy, post-buckling is neutrally stable and the
disk can swap shapes without a change in the stored energy; when α < (1−ν)/2, a different regime of stable
twisted shapes replaces the current set, but these are not being considered as noted before.

The maximum and minimum displacements on the edge of the disk are compared in Fig. 2 for both
theory and a finite element analysis of the same computational scheme as before, but where the imposed
curvatures are specified by another strain field, εA = εA(z), which only varies through the thickness, and
linearly, such that (dimensional)
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εA(z) =
2zε̄

t
⇒ κxA = κyA =

2ε̄

t
(21)

where, again, ε̄ is a maximum material strain.
At buckling, there is a clear divergence, or bifurcation, in displacements, with rapid and disparate changes

in values over a short increment in growth strains. The computation also captures this feature and, as with
extensional growth, the overall trends are exceptionally close even for large displacements. It is also clear
that the larger curvature tends towards a linear variation with increasing growth strain and, again, the
shapes of disk closely match the assumption of uniformity.

(b.ii) Opposite-sense bending growth

When κ̄xA = −κ̄yA, it may be verified that the shape of the disk is defined by the following solution sets:

κ̄yA = −κ̄xA : κ̄y = −κ̄x; 0 ≤ κ̄xA < κ̄∗xA ⇒ κ̄x +
φ

(1− ν)
κ̄3x = κ̄xA (22)

and

κ̄yA = −κ̄xA : κ̄y 6= κ̄x, µ = −1; κ̄xA > κ̄∗xA ⇒ φκ̄2x − φ(1− ν)κ̄xκ̄xA + (1 + ν) = 0

⇒ κ̄x =
κ̄xA(1− ν)

2

1±

[
1−

(
κ̄∗xA
κ̄xA

)2
]0.5 , κ̄y = − κ̄xA(1− ν)

2

1∓

[
1−

(
κ̄∗xA
κ̄xA

)2
]0.5 (23)

with κ̄∗xA (= −κ̄∗yA) equal to
√

4(1 + ν)/φ(1− ν)2. Initially, the disk deflects into a saddle shape before
buckling into an almost developable mode at κ̄∗xA. As with the previous case, the Gaussian curvature is
conserved in this mode but post-buckling is always bistable. A finite element analysis was not performed for
the sake of brevity.

(c) Summary and comparison of modes

Both growth modes attempt to induce a change in the Gaussian curvature of the disk, which can be
prescribed as a positive or negative change. The disk responds differently but buckling is common to both
modes: during extensional growth, buckling precedes an uptake of Gaussian curvature by the disk whereas
buckling during bending growth signifies that the disk has acquired maximum Gaussian curvature. If our
descriptor of shape-change is taken to be some measure of the current Gaussian curvature, then exten-
sional growth always dominates bending, at least beyond buckling. But if we are interested in maximising
displacements—if, for example as engineers, we are designing an actuator of shape, Gaussian curvature is
no longer important; rather, it is the performance of a single curvature because displacements are largest on
the edge and given by κ̄t/2 under the assumption of uniformity. The previous closed-form curvature expres-
sions provide some compact insight when there are large, post-buckled growth strains, when ḡA >> ḡ∗A and
κ̄xA >> κ̄∗xA. For positive growth strains, the asymptotic limits describing one of the bistable shapes can be
shown to be:

extensional : κ̄xκ̄y → ḡA; κ̄x/
√
ḡA → 1, κ̄y/

√
ḡA → 1

bending : κ̄xκ̄y = (1− ν)/φ, κ̄x/κ̄xA → 1 + ν, κ̄y/κ̄xA → 0

As noted before, the Gaussian curvature arising from bending growth does not depend on κ̄xA but has a
constant finite value: each of its constituent curvatures tends towards a very large number and zero but their
product is always fixed and independent of κ̄xA. For the other bistable mode, κ̄x and κ̄y simply swap values.

When there are negative growth strains, then:
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extensional : κ̄xκ̄y → −ḡA; κ̄x/
√
ḡA → 1, κ̄y/

√
ḡA → −1

bending : κ̄xκ̄y = −(1 + ν)/φ, κ̄x/κ̄xA → 1− ν, κ̄y/κ̄xA → 0

In either set of expressions, the curvatures are not correlated across modes unless the growth strains are
related to each other, and usefully so. In the above, there is little difference between the largest displacements
if we assume that

√
ḡA is the same size as κ̄xA, but this is an arbitrary statement. Furthermore, the above

limits are simply expressed but unlikely to be reached in practice—at least, for engineering materials, where
actuation strains are typically no more than 1% (Huber et al. 1997), and understanding the performance at
lower growth strains close to, and around, buckling is imperative.

The most straightforward scheme is led by the finite element approach, in which the distributions of
growth strains are the simplest they can be so that G(εA) and detκA from Section 2 are constant but which
are now tied together by the fundamental material limit, ε̄. Equations 18 and 21 are employed but with a
slight modification to the bending growth strain so that both equal- and opposite-sense growth are specified.
The final dimensionless expressions read as:

ḡA = 4ε̄
a2

t2
; κ̄xA = γ|ε̄|a

2

t2
, κ̄yA = γε̄

a2

t2
(24)

The sign of ε̄ determines when there is positive or negative extensional growth, as well as the sign of κ̄yA:
when ε̄ > 0, the sign is positive and there is equal-sense growth, and vice versa; the absolute sign in κ̄xA
above ensures that it always takes a positive value. The constant term, γ, accounts for the effectiveness of
bending relative to the maximum growth strain, and has an upper value of two when the strains are equal
to ±ε̄ on the disk upper and lower surfaces, which is the absolute range in view of the limit of linear elastic
behaviour. When γ is less than two, then bending growth strains are not optimally distributed through the
disk thickness, as might arise when not all of the material is capable of furnishing growth strains.

Notwithstanding, a comparison of the largest displacements between growth modes is shown in Fig. 3
after substituting ḡA and κ̄xA back into the specific governing equations. On the abscissa, we retain the
control parameter, ε̄(a/t)2, so that geometrical, as well as material properties can be compared, and on the
ordinate, the ratio of maximum displacements, dS/dB, where superscripts S and B refer to extension and
bending, respectively. We also consider positive and negative growth, and specify three values of γ equal to
1/3, 1 and 2.

Initially, each displacement ratio is zero and then rises steeply after buckling. It is larger than unity when γ
is smaller and closer to zero and, more so, when growth is negative. The discontinuity of slope and subsequent
downturn in the ratio are due to the sharp increase in one of the bending curvatures after bifurcating.
Thereafter, the trend is generally downwards since the largest bending displacement approximately varies
with growth in a linear fashion, as displayed in Fig. 2, whilst the extensional displacements grow in accordance
with

√
ε̄. Conditions on the ratio cross-over can be calculated if desired, but Fig. 3 testifies that generally,

extensional displacements are higher only when ε̄(a/t)2 is much less than 100—when disks tend to be thick or
when growth strains tend to be small. Also plotted are the asymptotic displacement ratios for each value of
γ, which can be verified as being 2t/(γ(1± ν)

√
|ε̄|a). These approximations very quickly match predictions

and may be used as an informative measure of performance.
There are of course, other ways to compare shape performance without focussing on displacements, for

example, by comparing the strain energy stored in the disk, and one such case is reported later. Beforehand,
we consider the complementary effects of both growth modes.

5 Double Mode Growth

The obvious differences in shape performance between the previous single modes of growth suggest a possible
richness of behaviour when they act together. Along with the variation in shape, there is the degree of stability
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and its connection to buckling; specifically, that bistable or neutrally stable configurations are wrought during
post-buckling. Analytically, the governing equations of deformation produce two real roots, which happen to
be stable. Given the algebraic nature of solution, it is possible to establish regions of interest for multistable
behaviour from the properties alone of the specific governing equations, Eqns 11 and 13. In this regard, the
discriminant of each of the polynomial expressions is key (Seffen 2007) for when the discriminant is negative,
there are at least two real roots and thus, potentially, bistable behaviour. The boundaries between regions
of different stabilities are therefore established by setting the discriminants equal to zero and plotting the
corresponding loci in “growth” space, (ḡA, κ̄A), before assessing stability, which is confirmed separately by
solving explicitly for some—not all—equilibria within the regions of interest and testing their eigenvalue
performance using Eqn 14. Recall that we only consider the shear modulus, α, to be isotropic or larger in
value.

Consider, first, the full governing equations for equal-sense bending growth (κ̄xA = κ̄yA), which are
repeated below with β = 1, in order to underline their discriminant expressions:

φκ̄3x + [(1 + ν)− φḡA]κ̄x − κ̄xA(1 + ν) = 0; φκ̄2x − φκ̄xκ̄xA(1 + ν) + (1− ν) + φḡA = 0 (25)

The discriminants are found straightforwardly (Weisstein 2006) and are denoted as d1 and d2:

4[φḡA − (1 + ν)]3 − 27φκ̄2xA(1 + ν)2 = d1; φ2κ̄2xA(1 + ν)2 − 4φ[(1− ν) + φḡA] = d2 (26)

These are then set equal to zero and plotted in Fig. 4 with coordinates (ḡA, κ̄xA), where κ̄xA = κ̄yA in the
first two quadrants. It is then straightforward to verify that those coordinate points which lie above the locus
of d1 = 0 as drawn ensure that this discriminant is negative, and that this region has possibly more than
one stable equilibria. The corresponding behaviour for the second discriminant has any point lying below
the curve of d2 = 0. In fact, the former is a bistable region only when α is larger than (1− ν)/2, otherwise,
it refers to neutrally stable disks when isotropy is upheld: the latter region always conforms to bistability.
Interestingly, the loci can cross over in the upper portion of the first quadrant so that each bistable region
overlaps. This produces a region of tristable shapes, and this overlapping, in physical terms, can be thought
of as two sets of bistable shapes “mixing” but where two of the equilibria—originally very similar in shape—
have now converged into a single stable shape; the other two shapes are sufficiently different to remain
distinct. For isotropic disks, stability is lost in this region because the lower bistable region overlaps the
neutrally stable region, and the disk equilibria are a mixture of these modes. Finally, there is a monostable
region, which encloses the origin, where the discriminants, d1 and d2 are greater than zero.

For opposite-sense bending growth (κ̄xA = −κ̄yA), the corresponding discriminants of the specific gov-
erning equations may be verified as:

4[−φḡA − (1− ν)]3 − 27φκ̄2xA(1− ν)2 = d3; φ2κ̄2xA(1− ν)2 − 4φ[(1 + ν)− φḡA] = d4 (27)

The third and fourth quadrants in Fig. 4 are now created by plotting the ordinate, κ̄xA (= −κ̄yA), downwards.
The stability complexion is, however, very different because one of the roots afforded by d3 being negative is
never stable, as confirmed separately. Only d4 < 0 produces bistable solutions, which are not affected by the
shear modulus and, hence, opposite-sense bending growth is simply divided into two regions by the curve,
d4 = 0, as shown. There is an additional horizontal boundary extending outwards from ḡ∗A = −(1 − ν)/φ
along the ḡA axis, in order to distinguish the bistability in the equal-sense region above from monostability
beneath.

In the complete picture, each region can be labelled as follows: I, monostable; II, bistable when α >
(1− ν)/2 otherwise neutrally stable; III, bistable; IV, tristable for orthotropy or mono- and neutrally stable
for isotropy. Equal- and opposite-sense bending growth regions are demarcated by extra labels of “a” and
”b”, and the four intercepts on the axes, labelled A-D, confirm the four single-mode buckling values (κ∗xA, g

∗
A)

from Section 4. Some sense of the shapes of disk in each region are given in Fig. 5.
The corresponding degree of shape-change in the disk can be tackled in several ways but we take our

lead from Fig. 3 by wishing to incorporate the influence of the fundamental material strain limit, ε̄. This is
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important for actuator design but the corresponding definitions of ḡA and κ̄xA in Eqn 24 are tied by ε̄, so we
need to introduce an additional parameter, in order to separate their effects meaningfully. This is achieved
most simply by specifying a weighted sum of each contribution in Eqn 24:

ḡA = (1− |η|)4ε̄ a
2

t2
; κ̄xA = |ηε̄|a

2

t2
, κ̄yA = η|ε̄|a

2

t2
(28)

The parameter, η, ranges from -1 to 1 such that when η = 0, there can be only extensional growth; when
η = ±1, there is only bending growth but the sign of η determines the sign of κ̄yA, which is equal in
magnitude to κ̄xA: for η > 0, there is equal-sense bending growth, and for η < 0, opposite-sense behaviour.
The sign of ε̄ only determines whether there is positive or negative extensional growth and does not affect
the direction of bending growth. Note that γ is set equal to unity in the above compared to Eqn 24, merely
to set the maximum strain range anywhere in the disk equal to ε̄.

Figure 6 indicates the maximum possible displacement of the disk under these conditions, which is
plotted as a series of contours of the ratio of displacement to disk thickness. It is clear that these are largest
when confined to corners of the plot—when ε̄ is high and when bending growth dominates—and the abrupt
changes in the direction of contours arises when there is a change in the responsible equilibrium shape of
largest displacement. The strain energy stored in the disk for each responsible equilibrium shape in Fig. 6
is then calculated via Eqn 6 and plotted in Fig. 7 with the same coordinate axes. The landscape rises as we
move towards the corners, suggesting that the disk acquires more strain energy during bending growth, but
otherwise, it is generally featureless except, to note, that it dips towards zero in places. Careful examination
shows that, in fact, these are exactly zero-value contours, which are indicated as the pair of dotted lines
in the first and third quadrants. By overlaying the same lines onto Fig. 6, we see that the corresponding
maximum displacement along them is non-zero, which presents a peculiarity: that some growth-induced
displacements are permissible but store no strain energy. This is resolved in the following section as we note
that the continuous nature of these zero-energy contours must indicate some special relationship between
extensional and bending growth modes.

6 Natural Growth

The specific governing equation, Eqn 13, can be factorised when ḡA is set equal to κ̄2xA (κ̄y = κ̄x) or −κ̄2xA
(κ̄y = −κ̄x), leading to the solution set κ̄x = κ̄xA = ±κ̄y, depending on the choice of sign. In these cases,
µ = ν follows, and the eigenvalues of the stability matrix can be verified as being 1 ± ν + φκ̄2xA and 4α,
which are always positive and give rise to a stable performance in either case. At the same time, this
factorisation produces no strain energy in the disk when the solution curvatures and growth strains are
substituted back into Eqn 6. Interestingly, as ḡA (and κ̄xA) increase, or decrease, there is no increase in Ū as
growth proceeds; but the positive eigenvalues stipulate that any perturbation away from these equilibrium
states always produces a restorative rise in strain energy. This is quite different from the neutral stability
reported earlier, where the disk is stiff in the direction of the imposed growth strains but has zero torsional
stiffness orthogonal to them. Here, the structure is stiff in the sense of departures from the growth mode,
but it has effectively zero stiffness in the sense or growth proceeding. This is similar in performance to a
recently-discovered class of pin-jointed, tensegrity structures, where special pre-stressing elements allows for
joint displacements without energy penalty (Schenk et al. 2007).

The fundamental reason for this behaviour can be gleaned from thinking about the conditions of shape
alone. Recall from Section 2 that the current shape must obey the compatibility requirement, detκ = G(ε),
but that the imposed strains are not obliged to; however, it is clear that detκA = G(εA) = gA in the present
case, and that detκ = detκA. In other words, both compatibility equations are satisfied, thereby precluding
the self-stresses that lead to a build-up of strain energy. The coupled growth mode here is a natural mode
since the disk exactly follows the target shape. In an overall sense, energy must be invested in the disk so
that κ̄xA and ḡA are wrought in the first place, but there is no extra component due to elastic stresses, and
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the complete performance of the system is limited only by the thermodynamical capabilities of practical
growth and actuation processes.

7 Conclusions

The distinct topics of growth and of actuation of shape in thin shells have been treated together and
compared in this paper. We have distinguished between them in a simple way, by assuming that they confer,
respectively, extensional and bending strains upon an initially flat disk, and we have considered this as our
“growth” scenario of two growth modes, but which can be applied to both natural and artificial systems. The
distribution of strains have been deliberately selected so that growth ultimately imposes uniform changes in
the Gaussian curvature. The disk responds elastically by trying to match the change insofar as compatibility
demands but generally lags behind it because of the build-up in stored strain energy. Both growth modes
produce different characteristics of shape but buckling is an inherent property: bending growth buckles
into an almost developable mode of constant Gaussian curvature whereas extensional growth increases the
Gaussian curvature only after buckling. The displacement performance is different because it is controlled
by the largest curvature, not the Gaussian, and we have shown that extensional growth produces larger
displacements when the product of maximum material growth strain, ε̄, and (a/t)2 is typically less than 100
and usually less than 25, and vice-versa. In general, more than one post-buckling equilibrium configuration
can exist for given levels of growth, either singly or in combination and, in practice, the disk grows into one
of these shapes and only “moves” into the others under externally applied forces. There are neutrally stable
shapes in which the disk has no torsional stiffness although it remains stiff in bending, otherwise, bistability,
and sometimes tristability, prevails in the post-buckling regimes. Where possible, closed-form expressions of
shape have been determined, and a convenient map of regimes with well-defined boundaries has been used
to convey the overall stability, displacement- and strain energy performances. Finally, we note that natural
growth is possible when the shape of the disk exactly matches the imposed growth strains, but only when the
latter are related by the condition, ḡA = ±κ̄2xA: it is possible to create both positive and negative Gaussian
curvature from a flat disk without storing any extensional and bending strain energy.
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Gaussian Curvature
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Figure 1: Comparison of the largest out-of-plane displacements, d, on the edge of a circular disk subjected to
extensional growth. The disk has radius a = 0.1 m, thickness t = 0.001 m, and the material is isotropic with
Poisson’s ratio ν = 0.3. The parameter, ε̄, is the maximum growth strain given by Eqn 18, and is a growth control
parameter: when ε̄ > 0, the disk grows into a cap of positive Gaussian curvature with all edge points at maximum
displacement; ε̄ < 0 produces a saddle shape with only two points maximally displaced upwards and downwards;
close to the origin, there is no displacement before buckling at ε̄ ≈ 0.6× 10−3. Solid lines are theoretical predictions
from Section 2 and dots are from a non-linear finite element analysis (FEA). The indicated shapes are also taken from
the FEA after the disk buckles for growth in either direction. The legend shows the degree of Gaussian curvature in
both cases, and over the bulk of the disk it is constant, which affirms the assumption of uniform curvatures. Near
the periphery, it attenuates to zero because the real boundary condition enforces zero moment there.
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Gaussian Curvature
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Figure 2: Maximum and minimum edge displacements for equal-sense bending growth of a circular disk with the
same properties as in Fig. 1. The load-control parameter, ε̄, is defined within the growth strain profile of Eqn 21.
The solid lines are theoretical predictions derived from Eqns 19 and 20 before and after buckling, respectively, with
the upper curve referring to displacements under κ̄x, and the lower to κ̄y : the bifurcation around ε̄ = 0.3 × 10−3

signifies buckling, which is also present in the finite element results, given by the dots. The bistable shapes are
taken from a point in the post-buckling simulation, and show a considerably reduced degree of Gaussian curvature
compared to Fig. 1. Again, there are boundary condition edge effects.
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Figure 3: Ratio of maximum displacements of a circular disk during growth, where dS is the displacement due to
extensional growth alone, and dB is due to bending alone. The specific growth strain distributions are given by
Eqn 24 in which ε̄ is a common maximum growth strain. The disk has the same properties as in the previous figures,
and the solid lines are for different values of γ, which measures the effectiveness of bending growth: the green highest
lines occur when γ takes its largest theoretical value of 2, which is assumed in the finite element analysis of Fig. 2;
the blue intermediate lines have γ = 1; and the red lower lines have γ = 1/3. The dashed lines are derived from
simpler asymptotic conditions, and close to the origin displacements are zero before buckling. Portions of any curve
which lie above the horizontal line of unity ratio, signify higher displacements during extensional growth, and vice
versa.
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Figure 4: Stability performance according to independent extensional (abscissa) and bending (ordinate) growth
modes for a circular disk of the same properties as in the previous figures. The ordinate shows the magnitude of κ̄xA
when there is equal-sense bending growth (κ̄xA = κ̄yA), which is plotted upwards, and when there is opposite-sense
bending growth (κ̄xA = −κ̄yA), which is plotted downwards. In the top half, the discriminants, d1 (red) and d2
(green) from Eqn 26, apply and are set equal to zero to reveal the solid loci, and in the bottom half, the same is
performed for d4 (blue) from Eqn 27: a final boundary (black) separates opposite- and equal-regions behind the
intercept of d1 = 0. Four regions are then identified around these loci, and labelled I to IV, with further labels, a and
b, for equal- and opposite-sense bending growth, respectively. Region I conforms to monostable disk shapes; region
III is always bistable; region II is either bistable if the shear modulus is larger than the isotropic value, otherwise
it is neutrally stable for α = (1 − ν)/2; region IV always has shapes that combine the properties of regions II and
III. The four single-mode buckling parameters are identified as A to D, and correspond to the formulae for κ̄∗xA and
ḡ∗A of Section 4. Note that when α is less than its isotropic value, different solution regimes emerge, which are not
treated here.

A B C D IV.a

Figure 5: Bistable disk shapes associated with each of the buckling points, A-D, in Fig. 4. The corresponding values
of extensional and bending growth strains, (ḡ∗A, κ

∗
xA), from Section 4 are: A (0,

√
4(1 − ν)/φ(1 + ν)2); B ([1+ν]/φ, 0);

C (0,
√

4(1 + ν)/φ(1 − ν)2); D (−[1 − ν]/φ, 0). In region IV.a, there can be tristable behaviour in which the disk
is nearly cylindrically curved in orthogonal directions, or cap-like and inverted. When there is material isotropy,
bistability is lost in some regions, and the shapes in A and D are neutrally stable, along with the two cylindrical
forms from IV.a.
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Figure 6: Contours of the ratio of the largest possible displacement to disk thickness during mixed-mode growth.
The largest material strain, ε̄, has the same physical meaning as in earlier figures: here, a positive value corresponds
to positive extensional growth and vice versa. The degree of contribution from either mode is specified as a linear
weighted sum through η such that η = 0 implies only extensional growth and η = ±1 gives purely bending growth
with equal-sense behaviour governed by the range, 0 < η < 1 and opposite-sense growth belonging to −1 < η < 0.
Displacements are largest in the corners, when the growth mode is dominated by bending strains, and for small
values of ε̄a2/t2, the displacement ratio is not very sensitive to η. The dotted lines are defined in Fig. 7.
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Figure 7: Contours of the lowest amount of strain energy stored in the disk during mixed-mode growth. The
coordinate axes are the same as in Fig. 6. The strain energy generally rises with increasing ε̄ and in favour of
bending growth. The dotted lines are contours of zero stored energy and conform to natural growth shapes.
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