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Abstract

We consider the complexity of the firefighter problem where a budget of b ≥ 1 fire-
fighters are available at each time step. This problem is known to be NP-complete even
on trees of degree at most three and b = 1 [14] and on trees of bounded degree (b+3) for
any fixed b ≥ 2 [4].

In this paper we provide further insight into the complexity landscape of the problem
by showing a complexity dichotomy result with respect to the parameters pathwidth and
maximum degree of the input graph. More precisely, first, we prove that the problem
is NP-complete even on trees of pathwidth at most three for any b ≥ 1. Then we show
that the problem turns out to be fixed parameter-tractable with respect to the combined
parameter “pathwidth” and “maximum degree” of the input graph. Finally, we show that
the problem remains NP-complete on very dense graphs, namely co-bipartite graphs, but
is fixed-parameter tractable with respect to the parameter “cluster vertex deletion”.

1 Introduction

The firefighter problem was introduced by Hartnell [17] and received considerable attention
in a series of papers [2, 7, 11, 12, 14, 18, 20, 21, 23, 24]. In its original version, a fire breaks
out at some vertex of a given graph. At each time step, one vertex can be protected by a
firefighter and then the fire spreads to all unprotected neighbours of the vertices on fire. The
process ends when the fire can no longer spread. At the end all vertices that are not on
fire are considered as saved. The objective is at each time step to choose a vertex which is
protected by a firefighter such that a maximum number of vertices in the graph is saved at
the end of the process. In this paper we consider a more general version which allows us to
protect b ≥ 1 vertices at each step (the value b is called budget).

The original firefighter problem was proved to be NP-hard for bipartite graphs [23], cubic
graphs [21] and unit disk graphs [15]. Finbow et al. [14] showed that the problem is NP-hard
even on trees. More precisely, they proved the following dichotomy theorem: the problem is
NP-hard even for trees of maximum degree three and it is solvable in polynomial-time for
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by the ERASMUS program.

1



graphs with maximum degree three, provided that the fire breaks out at a vertex of degree
at most two. Furthermore, the problem is polynomial-time solvable for caterpillars and so-
called P-trees [23]. Later, Bazgan et al. [4] extended the previous results by showing that
the general firefighter problem is NP-hard even for trees of maximum degree (b+ 3) for any
fixed budget b ≥ 2 and polynomial-time solvable on k-caterpillars. From the approximation
point of view, the problem is e

e−1 -approximable on trees ( e
e−1 ≈ 1.5819) [7] and it is not

n1−ε-approximable on general graphs for any ε > 0 unless P = NP [2]. Moreover for trees
in which each non-leaf vertex has at most four neighbours, the firefighter problem is 1.3997-
approximable [20]. Very recently, a significant progress has been achieved on the approxima-
bility status of the problem for trees. Chalermsook et al. claimed in [8] that the integrability
gap of the standard LP relaxation can be arbitrarily close to e

e−1 and finally Adjiashvili et al.
claimed to prove a PTAS for the firefighter problem on trees [1]. Costa et al. [11] extended
the e

e−1 -approximation algorithm on trees to the case where the fire breaks out at f > 1
vertices and b > 1 firefighters are available at each step. From a parameterized perspective,
the problem is W[1]-hard with respect to the natural parameters “number of saved vertices”
and “number of burned vertices” [3]. Furthermore, it admits an O(2τkτ)-size kernel where τ
is the minimum vertex cover of the input graph and k the number of burned vertices [3].
Cai et al. [7] presented first fixed-parameter tractable algorithms and polynomial-size kernels
for trees for each of the following parameters: “number of saved vertices”, “number of saved
leaves”, “number of burned vertices”, and “number of protected vertices”.

In this paper we provide a complexity dichotomy result of the problem with respect to
the parameters maximum degree and pathwidth of the input graph. In Section 2 we first
provide the formal definition of the problem as well as some preliminaries. In Section 3 we
extend the hardness results on trees by proving that the problem is also NP-complete on trees
of pathwidth three. The presented proof is also a simpler proof of the NP-completeness of
the problem on trees. In Section 4 we devise a parameterized algorithm with respect to the
combined parameter “pathwidth” and “maximum degree” of the input graph. In Section 5 we
show that the problem is also NP-hard on co-bipartite graphs which are very dense graphs,
but fixed-parameter tractable with respect parameter “cluster vertex deletion” (cvd). This
last result strengthens the previous O(2τkτ)-size kernel as it suppresses the dependence with k
and the cvd number is smaller than the vertex cover number τ . The conclusion is given in
Section 6.

2 Preliminaries

Graph terminology. Let G = (V,E) be an undirected graph of order n. For a subset
S ⊆ V , G[S] is the induced subgraph of G. The neighborhood of a vertex v ∈ V , denoted by
N(v), is the set of all neighbors of v. For a vertex set V ′ ⊆ V we define NV ′(v) = N(v) ∩ V ′.
We denote by Nk(v) the set of vertices that are at distance at most k from v. The degree of a
vertex v is denoted by degG(v) and the maximum degree of the graph G is denoted by Δ(G).

A linear layout of G is a bijection π : V → {1, . . . , n}. For convenience, we express π by
the list L = (v1, . . . , vn) where π(vi) = i. Given a linear layout L, we denote the distance
between two vertices in L by dL(vi, vj) = j − i.

The cutwidth cw(G) of G is the minimum k ∈ N such that the vertices of G can be arranged
in a linear layout L = (v1, . . . , vn) in such a way that, for every i ∈ {1, . . . , n− 1}, there are
at most k edges between {v1, . . . , vi} and {vi+1, . . . , vn}.
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Figure 1: The parameterized complexity of the Firefighter problem with respect to some
structural graph parameters. An arc from a parameter k2 to a parameter k1 means that there
exists some function h such that k1 ≤ h(k2). For any fixed budget, a dotted rectangle means
fixed-parameter tractability for this parameter and a thick rectangle means NP-hardness even
for constant values of this parameter.

The bandwidth bw(G) of G is the minimum k ∈ N such that the vertices of G can be
arranged in a linear layout L = (v1, . . . , vn) so that |dL(vi, vj)| ≤ k for every edge vivj of G.

A path decomposition P of G is a pair (P,H) where P is a path with node set X and
H = {Hx : x ∈ X} is a family of subsets of V such that the following conditions are met

1.
⋃

x∈X Hx = V.

2. For each uv ∈ E there is an x ∈ X with u, v ∈ Hx.

3. For each v ∈ V , the set of nodes {x : x ∈ X and v ∈ Hx} induces a subpath of P .

The width of a path decomposition P is maxx∈X |Hx|−1. The pathwidth pw(G) of a graph G
is the minimum width over all possible path decompositions of G.

We may skip the argument of pw(G), cw(G), bw(G) and Δ(G) if the graph G is clear
from the context.

A star is a tree consisting of one vertex, called the center of the star, adjacent to all the
other vertices.

Problem definition. We start with an informal explanation of the propagation process
for the firefighter problem. Let G = (V,E) be a graph of order n with a vertex s ∈ V , let
b ∈ N be a budget. At step t = 0, a fire breaks out at vertex s and s starts burning. At any
subsequent step t > 0 the following two phases are performed in sequence:

1. Protection phase : The firefighter protects at most b vertices not yet on fire.

2. Spreading phase : Every unprotected vertex which is adjacent to a burned vertex starts
burning.

Burned and protected vertices remain burned and protected until the propagation process
stops, respectively. The propagation process stops when in a next step no new vertex can be
burned. We call a vertex saved if it is either protected or if all paths from any burned vertex
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to it contain at least one protected vertex. Notice that, until the propagation process stops,
there is at least one new burned vertex at each step. This leads to the following obvious
lemma.

Lemma 1 The number of steps before the propagation process stops is less or equal to the
total number of burned vertices.

A protection strategy (or simply strategy) Φ indicates which vertices to protect at each step
until the propagation process stops. Since there can be at most n burned vertices, it follows
from Lemma 1 that the propagation unfolds in at most n steps. We are now in position to
give the formal definition of the investigated problem.

The Firefighter problem:
Input: A graph G = (V,E), a vertex s ∈ V , and positive integers b and k.
Question: Is there a strategy for an instance (G, s, b, k) with respect to budget b such
that at most k vertices are burned if a fire breaks out at s?

When dealing with trees, we use the following observation which is a straightforward
adaptation of the one by MacGillivray and Wang for the case b > 1 [23, Section 4.1].

Lemma 2 Among the strategies that maximize the number of saved vertices (or equivalently
minimize the number of burned vertices) for a tree, there exists one that protects vertices
adjacent to a burned vertex at each time step.

Throughout the paper, we assume all graphs to be connected since otherwise we can
simply consider the component where the initial burned vertex s belongs to.

3 Firefighting on path-like graphs

Finbow et al. [14] showed that the problem is NP-complete even on trees of degree at most
three. However, the tree constructed in the proof has an unbounded pathwidth. In this
section we show that the Firefighter problem is NP-complete even on trees of pathwidth
three. For that purpose we use the following problem.

The Cubic Monotone 1-In-3-Sat problem:
Input: A CNF formula with no negative literals in which every clause contains exactly
three variables and every variable appears in exactly three clauses.
Question: Is there a 1-perfect satisfying assigment (a truth assignment such that each
clause has exactly one true literal) for the formula?

The NP-completeness of the above problem is due to its equivalence with the NP-complete
Exact Cover by 3-Sets problem [16].

Theorem 3 For any budget b ≥ 1, the Firefighter problem is NP-complete even on trees
of pathwidth three.

Proof : Clearly, Firefighter belongs to NP. Now we provide a polynomial-time reduction
from Cubic Monotone 1-In-3-Sat. We start with the case where b = 1 and later explain
how to extend the proof for larger values of b.
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In the proof, a guard-vertex is a star with k leaves where the center is adjacent to a vertex
of a graph. It is clear that if at most k vertices can be burned, then the guard-vertex has to
be saved.

Let φ be a formula of Cubic Monotone 1-In-3-Sat with n variables {x1, . . . , xn} and
m initial clauses {c1, . . . , cm}. Notice that we have n = m since there is a total of 3n = 3m
literals in φ. First, we extend φ into a new formula φ′ by adding m new clauses as follows.
For each clause cj we add the clause c̄j by taking negation of each variable of cj . A perfect
satisfying assignment for φ′ is then a truth assignment such that each clause cj has exactly
one true literal (1-perfect) and each clause c̄j has exactly two true literals (2-perfect). Clearly,
we have that φ has a 1-perfect satisfying assignment if and only if φ′ has a perfect one. To
see this, observe that a clause cj has exactly one true literal if and only if c̄j has two true
literals.

Now we construct an instance I ′ = (T, s, 1, k) of Firefighter from φ′ as follows (see
Figure 2). We start with the construction of the tree T , the value of k will be specified later.

• Start with a vertex set {s = u1, u2, . . . , up} and edges of {su2, u2u3, . . . , up−1up}
where p = 2n − 1 and add two degree-one vertices vxi and vx̄i adjacent to u2i−1 for
every i ∈ {1, . . . , n}.

Then for each i ∈ {1, . . . , n} in two steps:

• Add a guard-vertex gi (resp. ḡi) adjacent to vxi (resp. vx̄i).

• At each vertex vxi (resp. vx̄i) root a path of length 2 · (n − i) at vxi (resp. vx̄i) in
which the endpoint is adjacent to three degree-one vertices (called literal-vertices) de-
noted by �xi

1 , �xi
2 , and �xi

3 (resp. �x̄i
1 , �x̄i

2 , and �x̄i
3 ). Each literal-vertex corresponds

to an occurence of the variable xi in an initial clause of φ. Analogously, the literal-
vertices �x̄i

1 , �x̄i
2 , and �x̄i

3 represent the negative literal x̄i that appears in the new clauses
of φ′.

Notice that each literal-vertex is at distance exactly p+ 1 from s.

• For each variable xi (resp. x̄i), i ∈ {1, . . . , n}, there are exactly three clauses containing
xi (resp. x̄i). Let cj (resp. c̄j), j ∈ {1, . . . ,m}, be the first one of them. Then root a
path Qxi

j (resp. Qx̄i
j ) of length 3 · (j − 1) at �xi

1 (resp. �x̄i
1 ), and add a guard-vertex gxi

j

adjacent to the endpoint of Qxi
j . To the endpoint of Qx̄i

j (i) add a degree-one vertex dx̄i

(a dummy-vertex) and (ii) root a path Dx̄i
j of length 3 where the last vertex of the

path is a guard vertex gx̄i
j . Repeat the same for the two other clauses with xi (resp. x̄i)

and �xi
2 , �xi

3 (resp. �x̄i
2 , �x̄i

3 ).

To finish the construction, set k = p+ n
2 (11n+ 7).

In what follows, we use Lemma 2 and thus we only consider strategies that protect a
vertex adjacent to a burned vertex at each time step. Recall that the budget is set to one in
the instance I ′. Now we show that there is a perfect satisfying assignment for φ′ if and only
if there exists a strategy for I ′ such that at most k vertices in T are burned.

“⇒” : Suppose that there is a perfect satisfying assignment τ for φ′. We define the
following strategy Φτ from τ . At each step t from 1 to p + 1, if t is odd then protect vx̄�t/2�
if x�t/2� is true, otherwise protect vx�t/2� . If t is even, then protect the guard-vertex g�t/2�
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vx1 vx̄1

g1 ḡ1

s = u1

u2

u11

u10

vx̄6vx6

g6 ḡ6

Figure 2: An example of part of a tree constructed from the formula φ = (x1 ∨ x3 ∨ x6) ∧
(x1 ∨ x2 ∨ x3)∧ (x3 ∨ x4 ∨ x5)∧ (x2 ∨ x4 ∨ x5)∧ (x1 ∨ x4 ∨ x6)∧ (x2 ∨ x6 ∨ x5). Guard vertices
are represented by a dot within a circle.

if vx̄�t/2� has been protected, otherwise protect ḡ�t/2�. At the end of time step p+1, the number

of burned vertices is exactly p+
∑n

i=1(3 + 2(n− i) + 1) = p+ 3n+ n2. Moreover, the literal-
vertices that are burned in T correspond to the true literals in φ′. Thus, by construction
and since τ satisfies φ′, the vertices adjacent to a burning vertex are exactly one guard-
vertex gxa

1 , two dummy vertices dx̄b , dx̄c and 3n−1 other vertices where xa∨xb∨xc is the first
clause, a, b, c ∈ {1, . . . , n}. At step p + 2, we must protect the guard vertex gxa

1 . During the
steps p + 3 and p + 4, the strategy must protect one vertex lying on the path Dx̄b

1 and Dx̄c
1 ,

respectively. Thus 3(3n− 3) + 5 = 9n− 4 more vertices are burned at the end of step p+ 4.
More generally, from time step p+ 3(j − 1) + 2 to p+ 3(j − 1) + 4, for some j ∈ {1, . . . ,m},
the strategy Φτ must protect a guard-vertex gxa

j and one vertex of each path Dx̄b
j and Dx̄c

j ,
where xa, xb, xc appear in the clause cj , a, b, c ∈ {1, . . . , n}. Thus 9(n− (j − 1))− 4 vertices
get burned. It follows that the number of burned vertices from step p + 2 to p + 3m + 1
is

∑m
j=1[9(n − (j − 1)) − 4] = 9

2m(m + 1) − 4m. Putting all together, we arrive at a total

of p+ 3n+ n2 + 9
2m(m+ 1)− 4m = p+ n

2 (11n+ 7) = k burned vertices.
“⇐”: Conversely, assume that there is no perfect satisfying assignment for φ′. Observe

first that any strategy Φ for I ′ protects either the pair vxi and ḡi or the pair vx̄i and gi for
each i ∈ {1, . . . , n}. As a contradiction, suppose that there exists i ∈ {1, . . . , n} such that Φ
does not protect vxi and vx̄i . Then in some time step both vxi and vx̄i get burned. Hence, it
is not possible to protect both gi and ḡi, and at least one will burn implying that more than k
vertices would burn, a contradiction. Furthermore, vxi and vx̄i cannot be both protected,
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otherwise we would have protected a vertex not adjacent to a burned vertex at some step. Now
consider the situation at the end of step p+1. By the previous observation, the literal-vertices
that are burned in T can be interpreted as being the literals in φ′ set to true. As previously,
the number of burned vertices so far is exactly p +

∑n
i=1(3 + 2(n − i) + 1) = p + 3n + n2.

Let ng and nd be the number of guard-vertices and dummy-vertices adjacent to a burned
vertex, respectively. As it follows from the previous construction, we know that ng = 3− nd

with 0 ≤ ng ≤ 3 and 0 ≤ nd ≤ 3. We have the following possible cases:

(1) ng > 1. In this case, a guard-vertex gets burned, and hence more than k vertices would
burn.

(2) ng = 1. Let gxa
1 be that guard-vertex and let dx̄b , dx̄c be the nd = 3 − ng = 2 dummy-

vertices where xa, xb, xc are variables of the first clause. At time step p + 2, we must
protect gxa

1 . Furthermore, during the step p+3 (resp. p+4), any strategy must protect
a vertex lying on the path Dx̄b

1 (resp. Dx̄c
1 ). Indeed, if a strategy does otherwise, then

at least one guard-vertex gx̄b
1 or gx̄c

1 gets burned. Thus 2 dummy-vertices are burned.

(3) ng = 0. Hence we have exactly nd = 3 − ng = 3 dummy-vertices dx̄a , dx̄b , dx̄c adjacent
to burned vertices. Using a similar argument as before, we know that during the step
p+2 (resp. p+3, p+4), a strategy must protect a vertex lying on the path Dx̄a

1 (resp.
Dx̄b

1 , Dx̄c
1 ). Thus 3 dummy-vertices are burned.

Notice that at step p+ 5, we end up with a similar situation as in step p+ 2. Now consider
an assignment for φ′. Since φ′ is not perfect satisfiable, φ is not 1-perfect satisfiable as well.
There are two possibilities:

• There exists a clause cj in φ with more than one true literal. Thus, we end up with
case (1), and there is no strategy for I ′ such that at most k vertices are burned.

• There is a clause cj in φ with only false literals. This corresponds to case (3), and the
number of burned vertices would be at least 1 + p + n

2 (11n + 7) (at least one extra
dummy-vertex gets burned) giving us a total of at least k + 1 burned vertices. Hence
there is no strategy for I ′ where at most k vertices are burned.

It remains to prove that the pathwidth of T is at most three. To see this, observe that
any subtree rooted at vxi or vx̄i has pathwidth two. Let Pxi and Px̄i be the paths of the
path-decompositions of these subtrees, respectively. We construct the path-decomposition
for T as follows. For every i ∈ {1, . . . , n−1}, define the node Bi = {u2i−1, u2i, u2i+1}. Extend
all nodes of the paths Pxi and Px̄i to P ′

xi
and P ′̄

xi
by adding the vertex u2i−1 inside it.

Finally, connect the paths P ′
x1
, P ′̄

x1
and the node B1 to form a path and continue in this way

with P ′
x2
, P ′̄

x2
, B2, P

′
x3
, P ′̄

x3
, B3, . . . , Bn−1, P

′
xn
, P ′̄

xn
.

Finally, we consider the case where b > 1. We start from the above reduction and alter
the tree T as follows. Let w1 be the vertex s (corresponding also to u1). Add a path
{w1w2, w2w3, . . . , w5nw5n+1} to T together with b− 1 guard-vertices added to each wi. First,
one can easily check that the pathwidth remains unchanged, since the added component has
pathwidth two and is only connected to the root s. Second, it can be seen that at each time
step, only one firefighter can be placed “freely”, as the other b − 1 firefighters must protect
b− 1 guard-vertices. It follows that we end up with a similar proof as above. This completes
the proof. �

As a side result, we also obtain the following.
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Proposition 4 For any budget b ≥ 1, the Firefighter problem is NP-complete even on
line graphs.

Proof : We use a polynomial-time reduction from the Firefighter problem on trees.
Consider an instance I = (T, s, b, k) of Firefighter that consists of a tree T = (V,E) and
the root s. Let vi,j be the jth vertex at level i of the tree T . We construct an instance
I ′ = (G, s′, b, k) of Firefighter in which a line graph G is defined as follows: add a vertex v
and adjacent it to the root s, let G be the line graph of such tree. Denote by ei,j the unique
edge that connects vi,j to its parent and by s′ the edge vs, the edges ei,j and s′ correspond
to the vertices in G.

As follows from the construction, there is a one-to-one correspondence between the vertices
‘vi,j ’ in T and ‘ei,j ’ in G. Therefore, given a strategy Φ for I we can define a corresponding
strategy Φ’ for I ′, and vice versa. Clearly, a vertex ei,j in G is protected (resp. saved, resp.
burned) by Φ if and only if the corresponding vertex vi,j in T is protected (resp. saved, resp.
burned) by Φ’. Hence, there exists a strategy in I ′ such that at most k vertices are burned
if and only if there exists a strategy in I such that at most k vertices are burned. The rest
follows from Theorem 3. �

4 Path-like graphs of bounded degree

As previously shown, for any fixed budget b ≥ 1, the Firefighter problem is NP-complete
on trees of bounded degree b+3 [14, 4] and on trees of bounded pathwidth three (Theorem 3).
It is thus natural to explore the complexity of the problem when both the maximum degree
and the pathwidth of the input graph are bounded.

First we introduce some definitions. Let L = (v1, . . . , vn) be a linear layout of a graph G
such that for every i ∈ {1, . . . , n − 1}, there are at most k + 1 edges between {v1, . . . , vi}
and {vi+1, . . . , vn}. A vertex-interval I of L is any ordered vertex subset (vi, . . . , vi+k) of L
for some i, k > 0. Denote by �(I) (resp. r(I)) the leftmost (resp. rightmost) vertex in I.

Lemma 5 Let G = (V,E) be a graph of cutwidth cw and F ⊆ V be a set of initially burned
vertices. Then there exists a protection strategy such that the statements (1) and (2) hold
after 2 · cw ·|F | steps of propagation:

(1) The number of burned vertices is at most (2 · cw ·|F |)2·cw ·|F |.

(2) There is a set of disjoint vertex-intervals I such that for every I ∈ I, the vertices �(I),
r(I) are burned and every vertex v outside I which is adjacent to a vertex in I is
protected.

Proof : (1) Notice that after 2 · cw ·|F | steps of propagation there are at most (|F | ·
Δ(G))2·cw ·|F | burned vertices regardless of any strategy. Since we have Δ(G) ≤ 2 ·cw(G) [22],
the result follows.

(2) Initially suppose that F contains only one vertex s ∈ F . Denote by F ′ the set of
burned vertices after 2 · cw steps of propagation without protecting any vertices. Define the
vertex-interval Is such that l(Is) and r(Is) are the leftmost and the rightmost burned vertices
from F ′, respectively. By the definition the number of edges with one vertex in Is and the
other one in V \ Is is less or equal to 2 · cw. Thus, we can define the strategy that consists
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of protecting one vertex v ∈ V \ Is adjacent to a vertex in Is in each step t = 1, . . . , 2 · cw.
Observe that those vertices are not burned before they are protected, otherwise they would
have been included in Is.

If |F | > 1, we repeat the previous ideas in the sequence of the steps from t = 1, . . . ,
2 · cw ·|F |. In each step t we consider one by one all vertices which started to burn in step
t − 1 of the propagation and if it is necessary to make a modification of the vertex-intervals
to ensure that all of them are disjoint: if any two vertex-intervals intersect each other, we
replace them by a vertex-interval corresponding to the union of these two vertex-internals
which obviously has the required properties. After 2 · cw ·|F | steps of propagation we can
define the set I of at most |F | disjoint vertex-intervals such that the left and rightmost
vertices of each interval are burned and due to the properties of the graph, there are at most
2 · cw ·|F | vertices in V \ I which are adjacent to a vertex in an interval I ∈ I which can be
protected in 2 · cw ·|F | steps. �

Now we show the key combinatorial characterization of the number of burned vertices
in a graph of bounded cutwidth. To make the formulas easier to read, we use the Knuth’s

tetration operator ↑↑ defined as x ↑↑ n = xx
. .

. x

︸ ︷︷ ︸
n times

.

Theorem 6 Let G = (V,E) be a graph of cutwidth cw and F ⊆ V be a set of initially burned
vertices. Then there exists a protection strategy such that the total number of burned vertices
is bounded by q(cw, F ), where

q(cw, F ) =

{
((2 cw)cw · |F |) ↑↑ 2cw if cw > 0,

|F | otherwise.

Proof : We will prove the statement by induction on the cutwidth. The theorem is obviously
true when the cutwidth is 0, since the graph does not contain any edge. Suppose now that
the statement is true for any graph of cutwidth at most c, c ≥ 0. We show that it also holds
for graphs of cutwidth (c+ 1).

Let H = (V,E) be a graph of cutwidth (c + 1) and F ⊆ V be a set of burned ver-
tices. We apply the strategy defined in Lemma 5 for the initial 2 · (c + 1) · |F | steps of
propagation. After the application of this strategy, the number of burned vertices so far is
at most |F ′| = (2 · (c+ 1) · |F |)2·(c+1)·|F |. Furthermore, every vertex v �∈ ⋃

I∈I I (defined in
Lemma 5) is either protected or saved. Hence we only need to protect the vertices in the
graph H ′ induced by the vertices

⋃
I∈I I. Observe that we can safely remove every edge uv

from H ′ for which u and v are burned. Indeed, such a burned edge cannot have any influence
during the subsequent steps of propagation. As it follows from the definition of a vertex-
interval, either there is a path from �(I) to r(I) or the vertex-interval is the union of several
overlapping vertex-intervals. In both cases after removing all the burned edges from H ′, the
cutwidth of H ′ decreases by 1. Hence we can apply the induction step on H ′, which has
cutwidth c, together with the set F ′ of the burned vertices. To summarise, we can define the
valid strategy for H as follows: First apply the strategy defined in Lemma 5 for the initial
2 · (c+ 1) · |F | steps on H and then apply the strategy given by induction from this theorem
for the subgraph H ′ of H. The total number of burned vertices in H using this new strategy
is at most
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q(c, F ′) =
(
(2c)c · |F ′|) ↑↑ 2c

=
(
2c · cc · (2 · (c+ 1) · |F |)2·(c+1)·|F |

)
↑↑ 2c

≤
(
2c · (c+ 1)c · (2 · (c+ 1) · |F |)2c+1·(c+1)c+1·|F |

)
↑↑ 2c

≤
(
(2c+1 · (c+ 1)c+1 · |F |)2c+1·(c+1)c+1·|F |

)
↑↑ 2c

≤ (
2c+1 · (c+ 1)c+1 · |F |) ↑↑ 2c+1

=
(
(2 · (c+ 1))c+1 · |F |) ↑↑ 2c+1

= q(c+ 1, F )

This concludes the proof. �

Remark 7 Notice that Theorem 6 is still valid even if the number of firefighters available
at each step is not the same (for example if there are b1 firefighters at time step one, b2
firefighters during the second time step, etc.).

Using the fact that cw(G) ≤ pw(G) ·Δ(G) [10] for every graph G, we can easily deduce
the following corollary.

Corollary 8 Let G = (V,E) be a graph of pathwidth pw and maximum degree Δ. Let F ⊆ V
be a set of initially burned vertices. There exists a protection strategy such that the total
number of burned vertices is bounded by q(pw,Δ, F ), where

q(pw,Δ, F ) =

{(
(2 pw ·Δ)pw ·Δ · |F |) ↑↑ 2pw ·Δ if pw ·Δ > 0

|F | otherwise

We are now in position to give the main result of this section.

Theorem 9 The Firefighter problem is fixed-parameter tractable with respect to the com-
bined parameter “pathwidth” and “maximum degree” of the input graph.

Proof : Let I = (G, s, b, k) be an instance of Firefighter where G has maximum degree Δ
and pathwidth pw. First we claim that the problem can be solved by a f(k,Δ) · nO(1)-time
algorithm denoted by B further. To see this observe that whenever b ≥ Δ then one can
protect all the vertices in N(s) at step one. If b < Δ we simply apply the f(k, b) · nO(1)-time
procedure from [3], so the claim follows.

Now consider the following algorithm denoted by A. For each value k′ = 1, . . . , k, ex-
ecute B on I ′ = (G, s, b, k′): If B returns “yes” then A halts and returns “yes”. If B has
returned the answer “no” for all k′ = 1, . . . , k then A returns “no”.

Using Corollary 8 we know that whenever k′ ≥ q(pw,Δ, {s}) = f ′(pw,Δ) the algorithm B
necessarily returns “yes” and A stops. It follows that B is called at most f ′(pw,Δ) times.
The overall running time is then bounded by

O(f ′(pw,Δ) · f(k,Δ) · nO(1)) = O(f ′(pw,Δ) · f(f ′(pw,Δ),Δ) · nO(1))

= f ′′(pw,Δ) · nO(1)
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for some function f ′′. This completes the proof. �
Since for any graph G, we have that pw(G) ≤ cw(G) and Δ(G) ≤ 2 · cw(G) [22] and

cw(G) ≤ bw(G)(bw(G)+1)
2 [5], we easily deduce the following theorem.

Theorem 10 The Firefighter problem is fixed-parameter tractable with respect to the pa-
rameter “cutwidth” and to the parameter “bandwidth”.

5 Firefighting on dense graphs

As trees are rather sparse graphs, it seems natural to ask for the tractability of the problem
when the graphs are essentially made up of cliques. In the following we show that even if a
graph can be partitioned into two cliques (also known as a co-bipartite graph), the problem
turns out to be NP-complete. Notice that the problem is trivial for cliques.

Theorem 11 The Firefighter problem is NP-complete and W[1]-hard for the parameter k
even on co-bipartite graphs.

Proof : We construct a polynomial-time reduction from the Clique problem on regular
graphs which has been proved to be W[1]-hard [6, Th. 2.1]. This proof is based on the
one presented in [3]. We use a different construction, but the proof of correctness remains
essentially the same. Let (G = (V,E), k) be an instance of Clique where G is a Δ-regular
graph of size n. We construct the instance (G′, s, b, k′) of Firefighter from (G, k) as follows.
We start with the construction of G′.

• Add a new vertex s adjacent to all vertices of G.

• Set b = max{n− k, kΔ− (
k
2

)} and k′ = k + 1.

• Create two cliques C1 and C2 of b − (n − k) + k′ and b − (kΔ − (
k
2

)
) + k′ vertices,

respectively. We later refer to these cliques as guard-cliques.

• Make s adjacent to any b− (n− k) vertices of C1.

• Choose a subset S of b− (kΔ− (
k
2

)
) vertices of C2 and make every vertex of V adjacent

to every vertex in S.

• Remove every edge uv ∈ E and add an edge-vertex euv adjacent to u and v. We denote
by F the set of all edge-vertices.

• Finally, add edges to make V and F ∪ C1 ∪ C2 cliques.

Observe that the graph G′ can be partitioned into two cliques {s} ∪ V and F ∪ C1 ∪ C2.
It is clear that if at most k′ vertices can be burned in G′ then some vertices of both

guard-cliques must be saved. As a consequence, at step one, there are only n− k firefighters
that can be placed freely because of the guard-clique C1.

We claim that (G, k) is a yes-instance of Clique if and only if (G′, s, k′, b) is a yes-instance
of Firefighter.

“⇒”: Suppose that we have a clique C ⊆ V of size k and consider the following strategy.
At step one, the strategy uses the n−k remaining firefighters to protect all the original vertices

11



V in G′ except those in the clique C. At step two, all k vertices of C are burned. Since those
vertices are adjacent to b − (kΔ − (

k
2

)
) vertices of the guard-clique C2, it remains exactly

kΔ− (
k
2

)
possible vertices to protect. Observe that there are exactly kΔ− (

k
2

)
edge-vertices

adjacent to the vertices in the clique C. Hence, there is enough firefighters to protect all of
them and then no more than k + 1 = k′ vertices are burned at the end of the process.

“⇐”: Conversely, suppose that there is no clique of size k in G. At step one, any valid
strategy has to place the n − k remaining firefighters on vertices that are not edge-vertices;
otherwise at least k + 2 > k′ vertices will burn. At step two, since there is no clique of size
k, there will be at least kΔ− (

k
2

)
+1 edge-vertices adjacent to the k burned vertices. For the

same reason as before, there remains kΔ−(
k
2

)
firefighters which is not enough to protect these

edge-vertices. Therefore, given any valid strategy there will be at least k + 2 > k′ burned
vertices. �

We note that if the budget b is fixed, then one can solve the problem in polynomial time
on co-bipartite graphs. To see this, observe that there are at most 3 propagation steps in
such a graph. Hence the total number of protected vertices is bounded by a constant, which
implies that the problem is polynomial-time solvable [3].

As a final result we show that the Firefighter problem is fixed-parameter tractable
with respect to the parameter cluster vertex deletion number, that is the minimum number
of vertices that have to be deleted to obtain a disjoint union of complete graphs.

Recall that in Theorem 3 we prove NP-completeness of the Firefighter problem on
trees on pathwidth three. Whenever a problem is NP-hard on graphs of bounded treewidth
or pathwidth, it is a common approach to ask for the parameterized complexity of the problem
with respect to the more general parameter as vertex cover. However, the class of graphs of
a small vertex cover is rather limited and therefore it is natural to look for the parameters
that generalise it. Among them the cluster vertex deletion number appears to be a suitable
intermediate parameterisation between vertex cover and cliquewidth [13].

Theorem 12 The Firefighter problem is fixed-parameter tractable with respect to the pa-
rameter “cluster vertex deletion”.

Proof : Let (G = (V,E), s, b, k) be an instance of the Firefighter problem with |V | = n
and let � be the cluster vertex deletion number of G. Let L be a minimum cluster vertex
deletion set in G that can be found in time O(2� · �3 log �+ n3) as it follows from [19].

It is easy to observe that in every three steps at least one new vertex from L gets burned.
Hence all non-protected vertices in G are necessarily burned after 3� steps. Since the number
of propagation steps can be at most 3�, at most 3�b vertices can be protected in G.

Let C be a set of disjoint cliques (of various sizes) in the graph G[V \ L]. Define an
equivalence relation on C: C1, C2 ∈ C are equivalent if and only if C1, C2 have the same set
L′ of neighbours in L. The cliques C1, C2 are called L′-dependent. For any L′ ⊆ L let [L′]
be a set of all L′-dependent cliques. Obviously, there are at most 2� equivalence classes that
define a partition of C.

The non-protected vertices in a clique C ∈ [L′], for L′ ⊆ L, can be saved: (a) either
by protecting some vertices outside the clique C or (b) by protecting some vertices in C.
Obviously, case (a) is independent from the strategy used for the vertices in the clique C. In
case (b), the non-protected vertices in C can only be saved if all neighbours of the burned
vertices from L′ are protected in C. This follows from an easy observation: if a vertex v ∈ L′
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with a non-protected neighbour in C starts burning, then no strategy can save non-protected
vertices in C from burning, all such vertices get burned in the next step. Therefore the
only way to save non-protected vertices in C is to protect all neighbours of v in C. Due to
the fact that at most 3�b vertices can be protected, if v has more than 3�b neighbours in
C, only protected vertices in C can be saved. Therefore if v has more than 3�b neighbours
in C, the exact number of neighbours in C doesn’t make any difference for any strategy,
because all non-protected vertices in C will get burned. Based on this observation we define
an equivalence relation on the set [L′].

Fix a set L′ = {v1, . . . , vq} ⊆ L, q ≥ 1 and define an equivalence relation ν on [L′]: C1,
C2 ∈ [L′] are equivalent if and only if for each vertex vi ∈ L′, 1 ≤ i ≤ q one of the options
(i)–(ii) holds:

(i) each of the neighbour sets NC1(vi), NC2(vi) has more than 3�b vertices or,

(ii) |NC1(vi)| = |NC2(vi)| ≤ 3�b and for each 1 ≤ j ≤ q (i �= j) with |NC1(vj)| ≤ 3�b (hence
also |NC2(vj)| ≤ 3�b) there is the same amount of vertices in the intersection of the
neighbourhoods |NC1(vi) ∩NC1(vj)| = |NC2(vi) ∩NC2(vj)|.

The equivalence relation ν defines a partition on the set [L′], let [L′
ν ] be an equivalence class

of the set [L′]. Each equivalence class [L′
ν ] can contain any number of ν-equivalent cliques

of various sizes. Due to the restriction 3�b on size of the neighbour sets, the number of
equivalence classes [L′

ν ] of the set [L′] exponentially depends on � and b only. Any protection
strategy can only protect 3�b vertices, therefore any strategy can protect vertices in at most
3�b cliques in each [L′

ν ] class. In the following we show that in each class [L′
ν ] it is enough

to focus only on the clique from seq([L′
ν ]), where seq([L′

ν ]) are at most 3�b largest cliques in
[L′

ν ] ordered in size (starting from the largest).
Fix an equivalence class [L′

ν ] of [L
′]. In the following we discuss a strategy for [L′

ν ] that
saves the maximum number of vertices in [L′

ν ] supposing a given amount of vertices in the set
[L′

ν ] can be protected. If we fix a vertex v ∈ L′ and a clique C ∈ [L′
ν ] such that |NC(v)| ≤ 3lb,

then each clique from [L′
ν ] contains exactly |NC(v)| neighbours of v due to the definition of

the ν-equivalence. This enables us to define the set Ls ⊆ L′:

Ls = {v | v ∈ L′ and |NC(v)| ≤ 3lb for a clique C ∈ [L′
ν ]}.

If a vertex u ∈ L′ \ Ls starts burning then only the protected vertices in [L′
ν ] can be saved

from burning. Therefore if we have to select at most 3�b cliques from [L′
ν ] without loss of

generality we can restrict to the set seq([L′
ν ]) of cliques. If no vertex in L′ \ Ls gets burned,

then protecting suitable neighbour sets of v ∈ Ls in a clique C ∈ [L′
ν ] can save some vertices

in C. As | ∪u∈Ls NC(u)| has the same value for all cliques in [L′
ν ], if we want to save the most

vertices in the class [L′
ν ], the strategy must focus to protect the neighbour sets of Ls in the

largest cliques from [L′
ν ]. Due to the assumption on the number of selected cliques we can

again only focus on the cliques from seq([L′
ν ]).

To summarise, the graph G has at most 2� equivalence classes [L′] (one for each subset
L′ of L), and each set [L′] can be further partitioned to equivalence classes [L′

ν ] depending
on the number of neighbours of the vertices L′ in the cliques. Hence, the graph G consists
of a minimum cluster deletion set L of size � and an exponential number (exponential on
� and b only) of equivalence classes [L′

ν ] for any subset L′ of L. Therefore all cliques from
G[V \L] can be partitioned into F (�, b) equivalence classes, where the value of F (�, b) depends
exponentially only on � and b.
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In the following we show that if there is a strategy with at most k burned vertices then we
can find it in time which exponentially depends only on � and b. We discuss different options
which 3�b vertices should be protected in a way that covers all possible strategies that could
potentially lead to burning at most k vertices. The rest follows from a simple linear check
whether there exists a valid protection strategy which protect these vertices, see e.g. [3] and
whether at most k vertices get burned.

Suppose that a set L1 ⊆ L of vertices of size �1, 1 ≤ �1 ≤ �, is protected. Then �2 = 3�b−�1
vertices can be protected in the graph G[V \ L]. Due to the previous discussion, those �2
protected vertices can be split among the F (�, b) equivalence classes in

(F (l,b)+�2−1
�2

)
different

way. Hence the number of different cases exponentially depends on � and b only.
Now suppose that we can protect �′2 ≤ �2 vertices inside the equivalence class [L′

ν ] for a
fixed L′ ⊆ L and a fixed neighbour set of L′ in the cliques. As it was already discussed above,
for all strategies maximising the number of saved vertices in the equivalence class [L′

ν ] it is
enough to focus on (at most) 3�b chosen cliques from seq([L′

ν ]), hence the number of cliques
we need to consider depends only on � and b. Now a brute-force algorithm can generate all
options how these �′2 vertices can protect the whole neighbour sets of the vertices from Ls

in at most 3�b cliques from seq([L′
ν ]), taking into account also their order. If there is not

enough vertices to protect a whole neighbour set, then it makes no difference which vertices
are protected. Such an algorithm runs in exponential time in b, �, but not n. Hence the
problem is fixed-parameter tractable with respect to the parameter “cluster vertex deletion”.

�

6 Conclusion

The main result of this paper is that the Firefighter problem is NP-complete even on trees
of pathwidth three but fixed-parameter tractable with respect to the combined parameter
“pathwidth” and “maximum degree” of the input graph. The combination of these two
results with the NP-completeness of the problem on trees of bounded degree [14] indicates
that the complexity of the problem depends heavily on the degree and the pathwidth of the
graph. We left as an open question whether the problem is polynomial-time solvable on
graphs of pathwidth two.
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