A. Pinna, S. Heise, R. Flassig, A. De-la-fuente, and S. Klamt, Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation, BMC Systems Biology, vol.7, issue.1, p.23924435, 2013.
DOI : 10.1093/bioinformatics/bts679

M. Kalisch and P. Bühlmann, Estimating high-dimensional directed acyclic graphs with the PC-algorithm, The Journal of Machine Learning Research, vol.8, pp.613-636, 2007.

A. Pinna, N. Soranzo, D. La-fuente, and A. , From Knockouts to Networks: Establishing Direct Cause-Effect Relationships through Graph Analysis, PLoS ONE, vol.5, issue.10, p.20949005, 2010.
DOI : 10.1371/journal.pone.0012912.t007

URL : http://doi.org/10.1371/journal.pone.0012912

D. Chickering, Optimal structure identification with greedy search, The Journal of Machine Learning Research, vol.3, pp.507-554, 2003.

P. Bühlmann, M. Kalisch, and L. Meier, High-Dimensional Statistics with a View Toward Applications in Biology, Annual Review of Statistics and Its Application, vol.1, issue.1, pp.255-278, 2014.
DOI : 10.1146/annurev-statistics-022513-115545

D. Chickering, D. Heckerman, and C. Meek, A Bayesian approach to learning Bayesian networks with local structure, Proceedings of the Thirteenth conference on Uncertainty in artificial intelligence, pp.80-89, 1997.

W. Luo, K. Hankenson, and P. Woolf, Learning transcriptional regulatory networks from high throughput gene expression data using continuous three-way mutual information, BMC Bioinformatics, vol.9, issue.1, p.18980677, 2008.
DOI : 10.1186/1471-2105-9-467

URL : http://doi.org/10.1186/1471-2105-9-467

J. Watkinson, L. Kc, X. Wang, T. Zheng, and D. Anastassiou, Inference of Regulatory Gene Interactions from Expression Data Using Three-Way Mutual Information, Annals of the New York Academy of Sciences, vol.1, issue.Suppl 1, pp.302-313, 2009.
DOI : 10.1111/j.1749-6632.2008.03757.x

F. Emmert-streib, G. Glazko, D. Matos-simoes, and R. , Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Frontiers in genetics, p.22408642, 2012.

R. De-matos-simoes, M. Dehmer, and F. Emmert-streib, Interfacing cellular networks of S. cerevisiae and E. coli: Connecting dynamic and genetic information, BMC Genomics, vol.14, issue.1, p.23663484, 2013.
DOI : 10.1093/nar/gkj134

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.
DOI : 10.1093/biostatistics/kxm045

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019769

F. Fu and Q. Zhou, Learning Sparse Causal Gaussian Networks With Experimental Intervention: Regularization and Coordinate Descent, Journal of the American Statistical Association, vol.94, issue.501, pp.288-300, 2013.
DOI : 10.1198/016214506000000735

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.296.6956

R. De-matos-simoes and F. Emmert-streib, Bagging Statistical Network Inference from Large-Scale Gene Expression Data, PLoS ONE, vol.8, issue.3, p.22479422, 2012.
DOI : 10.1371/journal.pone.0033624.t003

K. Basso, A. Margolin, G. Stolovitzky, U. Klein, R. Dalla-favera et al., Reverse engineering of regulatory networks in human B cells, Nature Genetics, vol.14, issue.4, pp.382-390, 2005.
DOI : 10.1101/gad.906601

J. Pearl and . Verma, Equivalence and synthesis of causal models, Proceedings of Sixth Conference on Uncertainty in Artijicial Intelligence, pp.220-227, 1991.

D. Marbach, R. Prill, T. Schaffter, C. Mattiussi, D. Floreano et al., Revealing strengths and weaknesses of methods for gene network inference, Proceedings of the National Academy of Sciences, vol.100, issue.13, pp.6286-6291, 2010.
DOI : 10.1073/pnas.1230759100

G. Altay and F. Emmert-streib, Inferring the conservative causal core of gene regulatory networks, BMC Systems Biology, vol.4, issue.1, p.20920161, 2010.
DOI : 10.1186/1752-0509-4-132

M. Maathuis, M. Kalisch, and P. Bühlmann, Estimating high-dimensional intervention effects from observational data. The Annals of Statistics, pp.3133-3164, 2009.
DOI : 10.1214/09-aos685

URL : http://arxiv.org/abs/0810.4214

A. Rau, F. Jaffrézic, and G. Nuel, Joint estimation of causal effects from observational and intervention gene expression data, BMC Systems Biology, vol.7, issue.1, p.24172639, 2013.
DOI : 10.1080/01621459.2012.754359

URL : https://hal.archives-ouvertes.fr/hal-01193793

P. Spirtes, C. Glymour, and R. Scheines, Causation, prediction, and search, 2000.
DOI : 10.1007/978-1-4612-2748-9

J. Pearl, Causality: models, reasoning and inference, 2000.
DOI : 10.1017/CBO9780511803161

B. Duriez, M. Sobrier, P. Duquesnoy, M. Tixier-boichard, E. Decuypere et al., A naturally occurring growth hormone receptor mutation: in vivo and in vitro evidence for the functional importance of the WS motif common to all members of the cytokine receptor superfamily, Molecular endocrinology, vol.7, issue.6, pp.806-814, 1993.

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.16646809, 2004.
DOI : 10.2202/1544-6115.1027

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.8477

A. Hauser and P. Bühlmann, Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs, Journal of Machine Learning Research, vol.13, pp.2409-2464, 2012.

F. Emmert-streib, M. Dehmer, and B. Haibe-kains, Gene regulatory networks and their applications: understanding biological and medical problems in terms of networks. Frontiers in cell and developmental biology, p.25364745, 2014.

P. Hsu, E. Lander, and F. Zhang, Development and Applications of CRISPR-Cas9 for Genome Engineering, Cell, vol.157, issue.6, pp.1262-1278, 2014.
DOI : 10.1016/j.cell.2014.05.010