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, an estimate of the fractal dimension of the attractors of some nonlinear parabolic equations is established.

Introduction

Let M be a precompact set in a metric space X. We recall the definition of the fractal dimension of M (see, for instance, Temam [START_REF] Temam | Infinite dimensional dynamical systems in mechanics and physics[END_REF]). According to Hausdorff criteria the set M can be covered by a finite number of ε-balls in X for every ε > 0. Denote by N ε (M, X) the minimal number of ε-balls in X which cover M . Then the Kolmogorov ε-entropy of the set M in X is defined to be the following number

H ε (M, X) ≡ log 2 N ε (M, X),
and the fractal dimension of M can be defined in the following way

dim F (M ) = dim F (M, X) = lim sup ε→0 + H ε (M, X) log 2 1 ε
.

In the present paper, we shall be dealing with estimates of the fractal dimension of the invariant sets (attractors) of the semigroups generated by infinite-dimensional dynamical systems. The usual way of estimating the fractal dimension of invariant sets involving the Liapunov exponents and k-contraction maps (see, for instance, Temam [START_REF] Temam | Infinite dimensional dynamical systems in mechanics and physics[END_REF]) requires the semigroup to be quasidifferentiable with respect to the initial data on the attractor. It is well known that the Hausdorff dimension is less than or equal to the fractal dimension. In this sense, in [START_REF] Chepyzhov | A note on the fractal dimension of attractors of dissipative dynamical systems[END_REF], Chepyzhov and Ilyin show that the Hausdorff and fractal dimension have the same upper bound generalizing to the infinite-dimensional case the method of Chen [START_REF] Chen | A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors[END_REF].

To avoid the differentiability hypothesis, Zelik, in [START_REF] Zelik | The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension[END_REF], presents a new approach to estimate the dimension of invariant sets. The basic tool of his method is the following very general property.

Theorem 1 (Zelik) Let V and H be Banach spaces, V be compactly embedded in H and let K be a compact subset of H. Assume that there exists a map L : K → K such that L(K) = K and the following 'smoothing' property is valid

L(k 1 ) -L(k 2 ) V ≤ C |k 1 -k 2 | H , ∀k 1 , k 2 ∈ K, C > 0.
(1)

Then, the fractal dimension of K in H is finite and can be estimated in the following way:

dim F (K, H) ≤ H 1 4C (B V (0, 1), H) ,
where C is the same as in (1) and B V (0, 1) means the unit ball centered at 0 in the space V .

In the present work, we show (see Theorem 2) an estimation of the Kolmogorov ε-entropy of B V (0, 1) in H where H is a Hilbert space and V is a Sobolev-like subspace of H. Then we deduce from Zelik's result an estimate of the fractal dimension of the attractor of some nonlinear parabolic equations in terms of the physical parameters. This result is quite explicit and rather close from the estimate obtained in [START_REF] Chepyzhov | A note on the fractal dimension of attractors of dissipative dynamical systems[END_REF] under slightly different but quite related assumptions.

Main results

Let H be a separable Hilbert space with scalar product (•, •) H and norm |•| H . Let V be a dense subspace of H, endowed with a Hilbert structure such that the inclusion map of V into H is compact. Then H is included in V ′ with continuous imbedding. By • V and (•, •) V we denote the norm and the scalar product in V , respectively. We will denote by •, • the duality product between V ′ and V .

Let A ∈ L(V, V ′ ) be the duality map: V → V ′ . It is a self-adjoint monotone operator such that A -1 ∈ L(V ′ , V ) ⊂ L(H, H) is a compact, positive, self-adjoint operator from H to itself.
As a consequence of the Hilbert-Schmidt Theorem there exists a nondecreasing sequence of positive real numbers, 0 < λ 1 ≤ λ 2 ≤ ... ≤ λ j ≤ ......, with lim j→∞ λ j = +∞ and there exists an orthonormal basis {w j : j ≥ 1} of H with A w j = λ j w j for all j ≥ 1.

The sequence (λ j ) is the sequence of eigenvalues repeated according to their multiplicity.

We now assume that (λ j ) satisfies the following growth assumption:

(H1) There exist positive constants c and α such that

λ j ≥ cj α .
Under the last assumption, the first goal in this section is to prove an estimate of the Kolmogorov ε-entropy of B V (0, 1) := {u ∈ V, u V ≤ 1}. In order to do that, we shall identify H with l 2 through the identification u -→ (u j ) j∈N * where u = j u j w j .

Theorem 2 Assume the assumption (H1). Then, the Kolmogorov ε-entropy of B V (0, 1) in H satisfies

∀ε > 0, H ε (B V (0, 1), H) < log 3 + α log 2 2 cε 2 1/α . (2) 
Proof. Let u ∈ B V (0, 1). We observe that

u ∈ B V (0, 1) ⇐⇒ ∞ j=1 λ j u 2 j ≤ 1.
Let W ⊂ H be the Hilbert space of vectors u for which j cj α u 2 j < ∞ with the norm

u W = c j j α u 2 j 1/2 . Then u ∈ B W (0, 1) ⇐⇒ ∞ j=1 cj α u 2 j ≤ 1.
Using (H1), we have that B V (0, 1) ⊂ B W (0, 1) and therefore

H ε (B V (0, 1), H) ≤ H ε (B W (0, 1), H). (3) 
If we denote µ j = c -1 j -α , we can write B W (0, 1) as an ellipsoid given by

E = {(u j ) ∞ j=1 | ∞ j=1 u 2 j µ j ≤ 1}.
For a given ε > 0, let us give first an upper bound for N √ 2ε (E, H). Let d be the smallest integer such that µ d+1 ≤ ε 2 . We consider the truncated ellipsoid

E = {u ∈ E | u j = 0 for all j ≥ d + 1}.
Given any ε-cover {u 1 , ..., u N } of E, i.e. for each u ∈ E, there exists some i ∈ {1, ..., N } such that

d j=1 (u j -u i j ) 2 ≤ ε 2 .
For any u ∈ E, we have

∞ j=d+1 u 2 j ≤ µ d+1 ∞ j=d+1 u 2 j µ j ≤ ε 2 ,
and hence for some i ∈ {1, ..., N },

∞ j=1 (u j -u i j ) 2 = d j=1 (u j -u i j ) 2 + ∞ j=d+1 u 2 j ≤ 2ε 2 .
Therefore, {u 1 , ..., u N } forms a √ 2ε-cover of the full ellipsoid E. We now view E as a subset of R d , i.e.

E = {u ∈ R d | d j=1 u 2 j µ j ≤ 1},
and we prove the inequality

N ε ( E, R d ) ≤ vol( E + ε 2 B d (1)) vol( ε 2 B d (1)) , (4) 
where

B d (1) = {u ∈ R d | d j=1 |u j | 2 ≤ 1}.
The proof of ( 4) is actually simple: first of all let us consider any finite family of points

A = {(a i ) i∈J } ⊂ E for which all balls B(a i , ε 2 ) are pairwise disjoint. Then we have i B(a i , ε 2 ) ⊂ E + ε 2 B d (1), hence vol( ε 2 B d (1))card(A) = i∈J vol(B(a i , ε 2 
)

) ≤ vol( E + ε 2 B d (1)).
To conclude, it is sufficient to remark that since the cardinality of such finite sets is bounded, we can consider such a set A with maximal cardinality. Then for any a ∈ A in E , the ball B(a, ε 2 ) intersects at least one of the balls B(a k , ε

2 ), implying ||a -a k || ≤ ε. It follows that the balls B(a i , ε) with a i ∈ A give an ε-covering of E. The result follows immediately. Since ε 2 < µ j for all j ∈ {1, ..., d}, we can see that E contains the ball

εB d (1) = {u ∈ R d | d j=1 |u j | 2 ≤ ε 2 }, hence vol( E + ε 2 B d (1)) ≤ vol( 3 2 E). (5) 
From ( 4) and ( 5), we deduce

N ε ( E, H) ≤ 3 d ε d vol( E) vol(B d (1)) .
Since the ellipsoid E is the image of the the unit ball by the linear transform

(x 1 , ..., x d ) -→ ( √ µ 1 x 1 , ..., √ µ d x d ) it follows classically that vol( E) vol(B d (1)) = d j=1 √ µ j
and we can deduce that

N ε ( E, H) ≤ 3 d ε d d j=1 (cj α ) -1/2 = 3 d ε d 1 √ c d (d!) -α/2 ≤ 3 d ε d 1 √ c d d e -α 2 d
, using the fact that µ j = c -1 j -α and the elementary inequality

d! ≥ d e d .
Since µ d+1 ≤ ε 2 , we deduce that

N ε ( E, H) ≤ 3 d d + 1 d α 2 d e α 2 d ≤ 3 d e αd ,
and therefore

H ε ( E, H) ≤ d log 3 + α log 2 . Since ε 2 < µ d = c -1 d -α , we have d < c -1/α ε -2/α
, and we obtain

H ε ( E, H) < log 3 + α log 2 1 cε 2 1/α .
Then we deduce

H ε √ 2 (E, H) < log 3 + α log 2 1 cε 2 1/α .
So that by an obvious change of notation

H ε (E, H) < log 3 + α log 2 2 cε 2 1/α
. and (3) completes the proof.

Remark 3 This upper bound is rather sharp: for a lower bound of the entropy, we observe that the ellipsoid E contains the truncated ellipsoid E, which contains the ball εB d [START_REF] Chen | A note on Kaplan-Yorke-type estimates on the fractal dimension of chaotic attractors[END_REF]. Then, we have

N ε 2 (E, H) ≥ N ε 2 (εB d (1), H) ≥ 2 d , (6) 
as a consequence of the obvious inequality

card(A)vol( ε 2 B d (1)) ≥ vol(εB d (1)) = 2 d vol( ε 2 B d (1))
valid for any ε 2 -covering of εB d (1) in H with centers forming the set A. Indeed the orthogonal projections in H of the covering balls on the d-dimensional space are covering balls of the projection (equal to εB d (1)) with centers in the d-dimensional space and the matter is reduced to d dimensions. When λ j ≤ Cj α , we can deduce

H ε (B V (0, 1), H) ≥ H ε (E, H). (7) Since ε 2 ≥ µ d+1 = C -1 (d + 1) -α , we have d ≥ C -1/α ε -2/α -1,
and from (6), we obtain

H ε 2 (E, H) ≥ 1 Cε 2 1/α -1,
and by an obvious change of notation

H ε (E, H) ≥ 1 4Cε 2 1/α -1.
Therefore, from (7), we obtain

H ε (B V (0, 1), H) ≥ 1 4Cε 2 1/α -1.
which is not so far from (2).

Now, consider

Au + g(u) = λu, (8) 
where g : V → V ′ is a continuous nondecreasing function and λ is a positive constant.

We define by C the set of equilibria of (8) and we consider the identity map I : C → C.

The second goal in this section is to estimate the fractal dimension of C. First, we prove the following result.

Proposition 4 For all u, v ∈ C,

u -v V ≤ √ λ |u -v| H .
Proof. Let u and v belong to C and set u -v, where u and v are solutions to (8). Then, we obtain

Au -Av, u -v + g(u) -g(v), u -v = λ |u -v| 2 H .
Since g is non-decreasing, the conclusion follows easily.

Finally, using Theorems 1 and 2 together with Proposition 4, we deduce the following result.

Theorem 5 Assume the assumption (H1). Then, any compact subset K ⊂ C has a finite fractal dimension with

dim F K < log 3 + α log 2 32λ c 1/α .
Remark 6 As we shall see in the next section, in the applications to concrete elliptic equations, the function N (λ) = min {n ∈ N, λ n+1 ≥ λ} behaves like some positive power of λ for large values of λ . The following example now shows that for general monotonic maps g, the estimate given by Theorem 5 is optimal up to a multiplicative constant in such a case, therefore essentially optimal as far as the growth as a function of λ is concerned and a general monotone map g is allowed. Let us consider λ > 0, n ∈ N such that λ n < λ ≤ λ n+1 and set

g(u) := n j=1
(λ -λ j )P j (u), where P j is the orthogonal projection from H to the eigenspace of A corresponding to the eigenvalue λ j . Now the equation Au + g(u) = λu reduces to

Au = n j=1 λ j P j (u) + λ(u - n j=1 P j (u)),
so that

X n = n j=1 P j (H) = n j=1 ker(A -λ j I) ⊂ C.
Consequently, in this case C contains a vector space of dimension

d = card {j ∈ N * , λ > λ j } = N (λ).
In particular for the unit ball K of this finite dimensional space, which is a compact subset of C we find

dim F K ≥ N (λ). When λ k ≤ Ck α , then N (λ) ≥ λ C 1/α -1.
This confirms the optimality of the upper estimate up to a constant for λ large.

3 Application to some elliptic equations (Ω) we denote the norm in H 1 0 (Ω), which is associated to the inner product ((•, •)) := (∇•, ∇•) . We will denote by •, • the duality product between H -1 (Ω) and H 1 0 (Ω). By • L ∞ (Ω) we denote the norm in L ∞ (Ω).

Let Ω ⊂ R N , N ≥ 1,
Let A = -∆ D with ∆ D the Dirichlet Laplacian on Ω. We denote by λ 1 the first eigenvalue of the A. Let λ j denote the j th eigenvalue of Ω for the Dirichlet boundary problem. We use the estimate (see Li and Yau [START_REF] Li | On the Schrödinger equation and the eigenvalue problem[END_REF] for more details)

λ j ≥ N C N N + 2 j 2/N V -2/N , ( 9 
)
where V is the volume of Ω, and

C N = (2π) 2 B -2/N N
, with B N = volume of the unit N -ball.

Taking into account (9), in particular, we have (H1) with α = 2 N and c = 4πN

N + 2 (Γ(1 + N 2 )) 2/N |Ω| -2/N ,
where |Ω| denotes the N -dimensional measure of Ω. As a consequence we find the following result.

Corollary 7 Let g be any nondecreasing continuous function of the real variable s with super-linear growth at infinity. Let C be the set of solutions of the equation

u ∈ H 1 0 (Ω) ∪ L ∞ (Ω); -∆u + g(u) = λu. Then C is compact with a finite fractal dimension such that dim F C < 32 N/2 log 3 + 2 N log 2 N + 2 4πN N/2 1 Γ (1 + N/2) |Ω| λ N/2 .
Proof. Compactness is an immediate consequence of super-linear growth at infinity. Then it is sufficient to apply Theorem 5 with K = C

Application to parabolic equations

Now, we consider the following problem

u t -∆u + g(u) = λu in Ω, (10) 
with the zero Dirichlet boundary condition,

u = 0 on ∂Ω, (11) 
and the initial condition

u(x, 0) = u 0 (x), for x ∈ Ω, ( 12 
)
where λ is a positive constant and g ∈ C 1 (R) is a non-decreasing function. We assume that the non-linear term g satisfies a dissipativity assumption of the form

g(s)s ≥ β |s| p ∀s ∈ R, (13) 
and the following growth restriction of the derivative

|g(s 1 ) -g(s 2 )| ≤ γ M p-2 |s 1 -s 2 | for |s 1 |, |s 2 | ≤ M, (14) 
for some β > 0, γ > 0, M > 0 and p > 2. A typical example of a function satisfying the previous conditions is g(s) = β |s| p-2 s, with p > 2. In this case we may take γ = β(p -1).

We define a semigroup {S(t), t ≥ 0} in L 2 (Ω) by

S(t)u 0 = u(t; 0, u 0 ) ∀u 0 ∈ L 2 (Ω), ∀t ≥ 0, (15) 
where u(t; 0, u 0 ) is the unique solution of (10)-( 12). We denote by A the global attractor associated with the semigroup S defined by (15).

Our aim is to estimate the fractal dimension of A. First, we need the following results.

Proposition 8 Assume (13). Then the attractor A associated with (10)-( 12) is bounded in L 2 (Ω). More concretely, there exists a positive constant C(p, β, λ, Ω) such that

|a| L 2 (Ω) ≤ C, ∀a ∈ A.
Proof. Multiplying (10) by u,

1 2 d dt |u| 2 L 2 (Ω) + |∇u| 2 L 2 (Ω) = (λu -g(u), u) .
Using (13) and Young's inequality applied with the conjugate exponents p 2 and p p-2 , we have

(λu -g(u), u) ≤ Ω λu 2 -β |u| p dx ≤ 2(p -2) p 2 1 β |Ω| λ p p-2 ,
then, using the Poincaré inequality, we obtain

d dt |u| 2 L 2 (Ω) + 2λ 1 |u| 2 L 2 (Ω) ≤ 4(p -2) p 2 1 β |Ω| λ p p-2 .
Multiplying by e 2λ1t and integrating between 0 and t, we obtain

|u(t)| 2 L 2 (Ω) ≤ e -2λ1t |u 0 | 2 L 2 (Ω) + 2(p -2) p 2 1 βλ 1 |Ω| λ p p-2 1 -e -2λ1t .
We observe that if u(t) ∈ A, then there exists u 0 ∈ A such that u(t) = S(t)u 0 . Then, we have

|S(t)u 0 | 2 L 2 (Ω) ≤ e -2λ1t |u 0 | 2 L 2 (Ω) + 2(p -2) p 2 1 βλ 1 |Ω| λ p p-2 1 -e -2λ1t .
Fix t > 0, and consider a ∈ A. Then, there exists u 0 ∈ A such that a = S(t)u 0 , and we have

|a| 2 L 2 (Ω) ≤ e -2λ1t |u 0 | 2 L 2 (Ω) + 2(p -2) p 2 1 βλ 1 |Ω| λ p p-2 1 -e -2λ1t .
If t tends to +∞, we obtain

|a| 2 L 2 (Ω) ≤ 2(p -2) p 2 1 βλ 1 |Ω| λ p p-2 ∀a ∈ A.
Taking into account Proposition 8, we prove the following result Proposition 9 Assume (13). Then the attractor A associated with (10)-( 12) is uniformly bounded in L ∞ (Ω). More precisely,

a L ∞ (Ω) ≤ λ β 1 p-2 , ∀a ∈ A. (16) 
Proof. Using (13), we observe

g(s) -λs ≥ 0 if s ≥ M := λ β 1 p-2 . ( 17 
)
Let u ∈ L 2 (Ω), we define u + (x) = u(x), if u(x) > 0, 0, in other case, and

u -(x) = u(x), if u(x) < 0, 0, in other case.
Multiplying (10) by (u(x) -M ) + , taking into account (17) and using the Poincaré inequality, we have

d dt (u -M ) + 2 L 2 (Ω) ≤ -2λ 1 (u -M ) + 2 L 2 (Ω) .
Multiplying by e 2λ1t and integrating between 0 and t, we obtain

(u(t) -M ) + 2 L 2 (Ω) ≤ e -2λ1t (u 0 -M ) + 2 L 2 (Ω)
. We observe that if u(t) ∈ A, then there exists u 0 ∈ A such that u(t) = S(t)u 0 . Then, we have

Ω (S(t)u 0 -M ) 2 + dx ≤ e -2λ1t Ω (u 0 -M ) 2 + dx.
As A is bounded in L 2 (Ω), then we can deduce that there exists a positive constant C(p, β, λ, Ω), which is independent of u 0 , such that

Ω (u 0 -M ) 2 + dx ≤ Ω (u 0 -M ) 2 dx ≤ 2 |u 0 | 2 L 2 (Ω) + M 2 |Ω| ≤ C,
and, we have

Ω (S(t)u 0 -M ) 2 + dx ≤ Ce -2λ1t .
Fix t > 0, and consider a ∈ A. Then, there exists u 0 ∈ A such that a = S(t)u 0 , and we have

0 ≤ Ω (a -M ) 2 + dx ≤ Ce -2λ1t .
If t tends to +∞, we obtain

Ω (a -M ) 2 + dx = 0 ∀a ∈ A, then (a -M ) + = 0 =⇒ a ≤ M ∀a ∈ A.
We use a similar reasoning for (u + M ) -, and then we have

a L ∞ (Ω) ≤ M ∀a ∈ A. Now, we define C γ,β := 1 2 + γ β , (18) 
and we consider the map S C γ,β λ : A → A. Taking into account Proposition 9, we prove the following result.

Proposition 10 Assume (13) and ( 14). Then, for all u 0 , v 0 ∈ A,

S C γ,β λ u 0 -S C γ,β λ v 0 H 1 0 (Ω) ≤ 2λ 1 + γ β |u 0 -v 0 | L 2 (Ω) ,
where C γ,β is given by (18).

Proof. Let u and v belong to A and set w = u -v and w 0 = u 0 -v 0 , where u and v are solutions to (10)-( 11) with initial data u 0 and v 0 , respectively. Then, we obtain

w t -∆w + g(u) -g(v) = λw in Ω, (19) 
w = 0 on ∂Ω, w(x, 0) = u 0 (x) -v 0 (x), for x ∈ Ω.
We 

(g(u) -g(v))wdx ≥ 0, we obtain 1 2 W ′ (t) + V (t) ≤ λW (t).
Multiplying by 2e -2λt , we obtain e -2λt W (t)

′ + 2e -2λt V (t) ≤ 0.

Integrating between 0 and t, we obtain

e -2λt W (t) + 2 t 0 e -2λs V (s)ds ≤ W (0), yielding W (t) + 2 t 0 V (s)ds ≤ e 2λt W (0). (20) 
Now, multiplying (formally) (19) by ∂w ∂t , we obtain

∂w ∂t 2 L 2 (Ω) + 1 2 V ′ (t) + Ω (g(u) -g(v)) ∂w ∂t dx = λ(w, ∂w ∂t ).
We note that, owing to (14), ( 16) and Hölder's inequality,

Ω (g(u) -g(v)) ∂w ∂t dx ≤ γ β λ Ω |w| ∂w ∂t dx ≤ γ β λW (t) 1/2 ∂w ∂t L 2 (Ω) ,
and by Hölder's inequality

λ(w, ∂w ∂t ) ≤ λW (t) 1/2 ∂w ∂t L 2 (Ω) .
Then, by Young's inequality we have

1 2 V ′ (t) ≤ 1 4 λ 2 1 + γ β 2 W (t).
Then, using (20), we obtain

V ′ (t) ≤ e 2λt 1 2 λ 2 1 + γ β 2 W (0). (21) 
Using the equality Finally, using Theorems 1 and 2 together with Proposition 10 and (9), we deduce the following result.

V (t) = 1 t t 0 V ( 
Proposition 11 Assume (13)-( 14). Then, the global attractor A associated with (10)-( 12) has finite fractal dimension in L 2 (Ω), and satisfies

dim F A < 8 N log 3 + 2 N log 2 N + 2 4πN N/2 1 Γ (1 + N/2) |Ω| 1 + γ β N/2 λ N/2 .
Remark 12 This result is substantially weaker than the estimate obtained in Theorem 3.1. in [START_REF] Chepyzhov | A note on the fractal dimension of attractors of dissipative dynamical systems[END_REF], but to obtain it we do not need any regularity hypothesis on g stronger than C 1 .

Remark 13 We presently do not know if ( 14) is really needed for our method to be employed. In particular the factor 1 + γ β N/2

does not appear in the estimate of [START_REF] Chepyzhov | A note on the fractal dimension of attractors of dissipative dynamical systems[END_REF] and the result of Theorem 5 even suggests that local compactness of the attractor might be a sufficient condition for its fractal dimension to be finite. This aspect seems to have been overlooked systematically in the literature until now and might be an interesting track of research for the future.
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  , where C γ,β is given by (18), we finally deduce from the above inequality an inequality of the form

									s)ds +	1 t	0	t	s V ′ (s)ds,
	and from (20) and (21), we deduce				
				V (t) ≤ λW (0)	e 2λt 2λt	+	1 4	1 +	γ β	2 2λt e 2λt -(e 2λt -1) 2λt	.
	Taking t =	C γ,β λ					
					V	C γ,β λ	≤ C γ,β λW (0),
	with							
				C γ,β =	e 2C γ,β 2C γ,β	+	C γ,β 2	1 +	γ β	2	,
	where we have used that	(2C γ,β -1)e 2C γ,β + 1 2C γ,β	≤ 2C γ,β for C γ,β ≤ 1 2 .
	Finally, we estimate C γ,β . Taking into account that	2 3	1 +	γ β	-1	≤ C γ,β ≤	1 3	for the first term and using
	that C γ,β ≤ 1 1+ γ β	for the second one, we can deduce
					C γ,β ≤		3 4	e	2 3 +	1 2	1 +	γ β	.
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