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ABSTRACT

Astrophysical plasmas are subject to a tight connection between magnetic fields and the diffusion of particles, which
leads to an anisotropic transport of energy. Under the fluid assumption, this effect can be reduced to an advection-
diffusion equation, thereby augmenting the equations of magnetohydrodynamics. We introduce a new method for solving
the anisotropic diffusion equation using an implicit finite-volume method with adaptive mesh refinement and adaptive
time-stepping in the ramses code. We apply this numerical solver to the diffusion of cosmic ray energy and diffusion
of heat carried by electrons, which couple to the ion temperature. We test this new implementation against several
numerical experiments and apply it to a simple supernova explosion with a uniform magnetic field.
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1. Introduction

Diffusive processes are relevant at various scales in astro-
physical systems from the diffusion of cosmic rays (CRs)
in the interstellar medium (e.g. Strong et al. 2007) to the
the diffusion of heat and CRs in cluster of galaxies (e.g.
Rosner & Tucker 1989; Fabian 1994; Narayan & Medvedev
2001). As the diffusion of these charged particles oper-
ate in a magnetised plasma, the diffusion process becomes
anisotropic since it is conducted along magnetic field lines.
Furthermore, for a fully ionised plasma, like the lighter pop-
ulation of particles, electrons conduct heat much faster than
protons, which are virtually in the limit of non-diffusion. In
some situations, it leads to a non-thermal equilibrium be-
tween ions and electrons if the collisional coupling time of
the two temperatures is longer than the diffusion timescale
of electrons. Thus, there could be fluctuations in electron
temperature without the corresponding fluctuation in the
ion temperature.

Those processes have mostly been ignored from
the numerical astrophysics perspective with a few ex-
ceptions. In the intra-cluster medium, it has been
shown that ions and electrons are not perfectly at ther-
mal equilibrium (Chièze et al. 1998; Courty & Alimi
2004; Rudd & Nagai 2009; Wong & Sarazin 2009;
Gaspari & Churazov 2013) and that the transport of
heat produces an electron precursor at the virial radius
of massive dark matter halos (Teyssier et al. 1998). The
transport of heat eventually reduces the cooling flow
at the core of galaxy clusters, transporting the cosmic
shock-driven internal energy of the outskirts towards
the centre (Ruszkowski & Begelman 2002; Jubelgas et al.

2004). Thermal and magnetohydrodynamical instabilities
form because of the anisotropic nature of the conduc-
tion, the so-called magneto-thermal instability (Balbus
2000; Parrish et al. 2008) and the heating-buoyancy
instability (Parrish & Quataert 2008; Bogdanović et al.
2009; Parrish et al. 2009), and their variations with the
adjunction of the diffusion of CRs (Rasera & Chandran
2008). Conduction may also play an important role
in redistributing the mechanical energy deposited by
active galactic nuclei jets (Ruszkowski & Begelman
2002; Brighenti & Mathews 2003; Brüggen et al. 2005;
McNamara & Nulsen 2007), helping to solve the cooling
catastrophe in galaxy clusters. A similar heating source in
the intra-cluster medium is that of comic rays deposited
in active galactic nuclei or at shocks and redistributed by
diffusion (Miniati et al. 2001; Enßlin et al. 2011).

On galactic scales, since CR energy in the inter-
stellar medium (ISM) is at equipartition with kinetic,
thermal, and magnetic energies (Beck & Krause 2005),
they may play a crucial role in the self-regulation of
the ISM dynamics and, thus, of star formation. For in-
stance, the injection of CRs within remnants of supernovae
lead to stronger galactic-scale winds (Jubelgas et al. 2008;
Uhlig et al. 2012; Hanasz et al. 2013; Booth et al. 2013;
Salem & Bryan 2014) and to amplified galactic dynamos
with anisotropic diffusion (Hanasz et al. 2004). Anisotropic
conduction in the ISM affects the shape and size of
cold clouds (Koyama & Inutsuka 2004; Piontek & Ostriker
2004; Choi & Stone 2012), and the expansion of supernova
remnants (Tilley et al. 2006; Balsara et al. 2008a). Also,
CRs can penetrate deep inside cold dense cores and, as
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a consequence, can regulate the ionisation rates of the
gas (e.g. Spitzer & Tomasko 1968; Padovani et al. 2009).

One problem with the implementation of diffusion in nu-
merical simulation is that the stability criterion is ∆tdiff =
∆x2/(2Ddiff), where ∆x is the cell size and Ddiff the
diffusion coefficient. For comparison, the hydrodynami-
cal Courant Friedrich Levy (CFL) condition is ∆th =
C∆x/(u+cs), where u is the gas velocity, cs the fluid sound
speed, and C ≤ 0.8 is the Courant factor. Since the diffusion
stability time step does not scale linearly with resolution,
unlike the hydrodynamical time step, it could be a bottle-
neck to employ an explicit diffusion scheme that must verify
this time step condition at any time, especially for multi-
scale problems where gravity shapes strong contrasts in gas
densities and triggers refinements in resolution.

Implicit numerical solvers in these situations could
be favoured. They do not need to fulfil the time step
constraint on diffusion, and any time step can be cho-
sen (such as the CFL time step), at the expense of
numerical complexity and intensity compared to an ex-
plicit solver. There is a variety of numerical implemen-
tations of anisotropic diffusion from centred symmetric
to centred asymmetric schemes (Günter et al. 2005) us-
ing various slope limiters to preserve the monotonicity
of the system (Sharma & Hammett 2007). Amongst all
these implementations, implicit and explicit solvers have
been developed for astrophysical codes: Hanasz & Lesch
(2003), Parrish & Stone (2005), and Rasera & Chandran
(2008) implemented an explicit method for anisotropic
conduction and diffusion, Balsara et al. (2008b) developed
a semi-implicit solver, Yokoyama & Shibata (2001) and
Meyer et al. (2012) a fully implicit solver.

In this paper, which uses the ramses code (Teyssier
2002), we present the first implementation of an implicit
solver for anisotropic diffusion or conduction on adaptive
mesh refinement (AMR) with adaptive time-stepping. This
new numerical implementation is augmented by modelling
a multi-temperature and energy component with tempera-
ture coupling of ions and electrons. In section 2, we present
the new numerical solver for diffusion or conduction and
temperature coupling. In section 3, we test our method with
several numerical experiments. We discuss future develop-
ments and applications of this method in section 4.

2. Numerical set-up

2.1. Magnetohydrodynamics with heat and cosmic ray
diffusion

The set of differential equations to be solved for magneto-
hydrodynamics of a fluid made of ions and electrons with

heat conduction and CRs diffusion is

∂ρ

∂t
+ ∇.(ρu) = 0 , (1)

∂ρu

∂t
+ ∇.

(

ρuu+ ptot −
BB

4π

)

= 0 , (2)

∂e

∂t
+ ∇.

(

(e + ptot)u− B(B.u)

4π

)

= −∇.Fcond −∇.FCR , (3)

∂B

∂t
− ∇× (u×B) = 0 , (4)

∂eE
∂t

+ ∇.(eEu) = −pE∇.u−∇.Fcond +HEI (5)

∂ecr
∂t

+ ∇.(ecru) = −pcr∇.u−∇.FCR , (6)

where ρ is the gas mass density, u the gas velocity, B the
magnetic field, e = 0.5ρu2 + eth + ecr + B2/8π is the to-
tal energy density, eth = eI + eE is the thermal energy
density, eE and eI are the electron and ion energy densi-
ties, ecr is the energy density of CRs, and total pressure
ptot = (γ − 1)eth + (γcr − 1)ecr + 0.5B2/4π, where γ and
γcr are the adiabatic indexes of the gas and CRs, respec-
tively. All energy components ei are energies per unit vol-
ume ei = Ei/∆x3, where ∆x is the cell size. The heat flux
Fcond is carried by electrons alone, and the temperature
of ions and electrons couple through the energy exchange
term HEI. Since ions are heavier than electrons, their ther-
mal velocity is lower by a factor ∝

√

mE/mI. Therefore,
for a given increase in thermal velocity at a shock, it cor-
responds to a higher temperature increase for ions than for
electrons. It justifies the fact that electron energy is treated
in a separate energy equation that does not fulfil the jump
condition. The same arguments apply to CRs compared to
the thermal gas since velocities of CRs are much higher than
thermal velocities of the ions (a.k.a. CRs are a non-thermal
gas component).

We assume that the thermal components of the gas are
made only of ions and electrons, meaning that the gas is
fully ionised. In some situations, this approximation will
break down (star-forming regions), but it is a good approx-
imation for the warm or hot phases of the ISM and for
the intergalactic gas. CRs also diffuse through the diffusion
flux term FCR. Equation (6) can be repeated for as many
CR energy components required to decompose the CR en-
ergy power spectrum (with different diffusion coefficients).
Introducing multiple CR energy bands requires including
adiabatic and radiative losses for a proper treatment of the
CR power spectrum, so we defer this to future work and
simply assume that CRs are represented by one fluid with
one effective diffusion coefficient and one effective adiabatic
index.

We use the AMR ramses code detailed in Teyssier
(2002). Equations (5) and (6) for electrons and CRs, re-
spectively, are added to the set of MHD equations. The full
set of equations is solved with the standard MHD solver
of ramses described in Fromang et al. (2006), where the
right-hand terms of equation (3) are treated separately as
source terms. The ion internal energy is obtained for free by
subtracting the electron internal energy from the total ther-
mal energy. The induction equation (equation 4) is solved
using constrained transport (Teyssier et al. 2006). Godunov
fluxes are modified to account for the extra energy compo-
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nents and total pressure made of ions, electrons, and CRs.
Therefore, the effective sound speed used for the CFL time
step condition accounts for the extra pressure components
(i.e. total pressure of the fluid).

2.2. Anisotropic diffusion

We explain the method for the conduction of heat through
electrons, but this can be applied to a single tempera-
ture model (ions and electrons at thermal equilibrium) or
for the diffusion of CRs. The difference for CRs is that
the diffusion coefficient DCR is constant throughout the
simulation volume and that it applies to the gradient of
CR energy instead of the gradient of temperature, e.g.
FCR = −DCRb(b.∇)eCR, where b is the magnetic field unit
vector.

In the presence of magnetic fields, the conduction of
heat in a plasma is

∂eE
∂t

= −∇.F cond = −∇.
(

−κ‖b(b.∇)TE

)

−∇. (−κiso∇TE) ,

(7)

where κiso and κ‖ are the isotropic conduction and parallel
along the magnetic field lines coefficients respectively, with
κ‖ = κSp − κiso, and κiso = fisoκSp with fiso an arbitrary
small coefficient for anisotropic diffusion (fiso = 1 is for
isotropic diffusion). In many astrophysical cases, κiso/κ‖ ≪
1 since the Larmor radius is much smaller than the mean
free path of electrons. For instance, in the hot gas of galaxy
clusters with temperature TE = 3 keV, electron density
nE = 10−2 cm−3 and B = 1µG, the Larmor radius is
λL = 108 cm and the mean free path λmfp = 1021 cm. How-
ever, to ensure numerical stability, we set up the isotropic
conduction term to be around one per cent of the parallel
conduction coefficient.

The conduction coefficient for electrons is the Spitzer
(1956) value

κSp = nEkBDC , (8)

where kB is the Boltzmann constant and DC the thermal
diffusivity

DC = 8× 1031
(

TE

10keV

)
5

2

(

nE

5× 10−3 cm−3

)−1

cm2 s−1 .

(9)

2.2.1. Implicit scheme

This diffusion step is performed after the magnetohydrody-
namics step. Here, we explain how the anisotropic conduc-
tion and diffusion equation is solved for a uniform grid, and
the AMR part of the solver is explained in section 2.2.2.
Given the restrictive stability condition for an explicit
scheme on the equation (7), ∆tdiff = ∆x2/(2D), compared
to the behaviour of the CFL condition for the hydrodynam-
ics time step ∆th = ∆x/(u + cs), using an implicit solver
on the equation diffusion will alleviate this numerical sta-
bility constraint. Thus, the diffusion term is solved over one
hydrodynamical time step using implicit integration. Dis-
cretising equation (7) in 1D leads to (we omit subscripts E

and cond for clarity)

en+1
i +∆t

Fn+1

i+ 1

2

− Fn+1

i− 1

2

∆x
= eni , (10)

where the subscript i is for the cell position, and the super-
script n for the time. Each of the fluxes Fn+1 is evaluated
at the cell interface (2 in 1D, 4 in 2D, and 6 in 3D) at time
n+ 1. This can be rewritten as

en+1
i −∆t

κn
i+ 1

2

(T n+1
i+1 − T n+1

i )− κn
i− 1

2

(T n+1
i − T n+1

i−1 )

∆x2
= eni ,

(11)

where ei = nikBT/(γ−1) (ni here is the gas number density,
not time index n). Equation 11 implicitly assumes that the
cells are cubic, which is the case in ramses. We use the
value of κ at time n since we employ an implicit solver,
which requires the constancy of the coefficient during the
integration step. Thus, defining Ci± 1

2

= κi± 1

2

∆t/∆x2 and

Cv,i = nikB/(γ − 1), we obtain

−Cn
i− 1

2

T n+1
i−1 +(Cn

v,i+Cn
i− 1

2

+Cn
i+ 1

2

)T n+1
i −Cn

i+ 1

2

T n+1
i+1 = Cn

v,iT
n
i .

(12)

We discretise equation (7) in 2D (3D can be obtained
from 2D with little effort) assuming the cells have the same
extent in x, y, z directions

en+1
i,j +∆t

Fn+1

i+ 1

2
,j
+ Fn+1

i,j+ 1

2

− Fn+1

i− 1

2
,j
− Fn+1

i,j− 1

2

∆x
= eni,j , (13)

for cell position i, j. These quantities are evaluated with
the centred symmetric scheme proposed by Günter et al.
(2005) for the anisotropic part of the flux. The anisotropic
flux at cell interfaces F ani

i±1/2,j and F ani
i,j±1/2 are evaluated

from their cell corner fluxes F ani
i±1/2,j±1/2, thus

F ani
i+ 1

2
,j =

F ani
i+ 1

2
,j− 1

2

+ F ani
i+ 1

2
,j+ 1

2

2
,

F ani
i,j+ 1

2

=
F ani
i− 1

2
,j+ 1

2

+ F ani
i+ 1

2
,j+ 1

2

2
.

The anisotropic cell corner flux is

F ani
i+ 1

2
,j+ 1

2

= κ̄‖b̄x

(

b̄x
∂̄T

∂x
+ b̄y

∂̄T

∂y

)

, (14)

where barred quantities are arithmetic averages over the
cells connected to the corner; i.e.,

b̄x =
bn
x,i+ 1

2
,j
+ bn

x,i+ 1

2
,j+1

2
,

b̄y =
bn
y,i,j+ 1

2

+ bn
y,i+1,j+ 1

2

2
,

∂̄T

∂x
=

T n+1
i+1,j+1 + T n+1

i+1,j − T n+1
i,j+1 − T n+1

i,j

2∆x
,

∂̄T

∂y
=

T n+1
i+1,j+1 + T n+1

i,j+1 − T n+1
i+1,j − T n+1

i,j

2∆x
,

κ̄‖ =
κn
‖i,j + κn

‖i+1,j + κn
‖i,j+1

+ κn
‖i+1,j+1

4
.
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For the isotropic part of the flux, we use a classical dis-
cretisation, where the fluxes of equation (13) are simply
obtained from the left and right states of the cell interface;
i.e.,

F iso
i+ 1

2
,j =

κn
iso i+1,j + κn

iso i,j

2

T n+1
i+1,j − T n+1

i,j

∆x
. (15)

With this numerical scheme, the matrix system Ax = c

formed by equation (12), with A the matrix including the
Cn and Cn

v coefficients, x the vector of temperature T n+1,
and c the vector of energy densities Cn

v T
n can be gener-

alised in multi-dimensions by equation (13). The sparse
matrix A is positive definite and symmetric, so we can use
the conjugate gradient algorithm to solve this system of
linearised equations as in Commerçon et al. (2011) (for ra-
diation hydrodynamics in their case).

2.2.2. Diffusion with adaptive mesh refinement

We follow the procedure introduced in Commerçon et al.
(2014) for solving the diffusion equation with AMR and
adaptive time-stepping on a level-by-level basis. Each level
ℓ is evolved with a time step ∆tℓ that is twice less than
the coarser level ℓ − 1, ∆tℓ = ∆tℓ−1/2, meaning that level
ℓ evolves with two consecutive time steps before doing one
time step of level ℓ− 1. The adaptive time-stepping is per-
formed for all solvers in ramses including the diffusion
solver presented in this paper, and finer levels are updated
first.

At a given level of refinement ℓ, there are two types of
non-uniform interfaces: the fine-to-coarse interface (inter-
face between a cell at level ℓ and a cell at ℓ − 1) and the
coarse-to-fine interface (interface between a cell at level ℓ
and a cell at ℓ+ 1). In both cases, we use Dirichlet bound-
ary conditions: cell values at level boundaries are imposed.
One could choose Neumann boundary conditions, which im-
pose the fluxes and guarantee energy conservation as what
is done for the hydrodynamical solver. However, as shown
in Commerçon et al. (2014), this sort of imposed flux con-
ditions could lead to negative values for lang time steps.

For the fine-to-coarse interface, we use values of ℓ − 1
at time n as imposed boundary conditions for level ℓ. With
the minmod scheme (van Leer 1979) (monotonised central
is also a valid choice), we interpolate the values of level ℓ−1
on a finer virtual grid at level ℓ to impose the fine-to-coarse
boundary. For the coarse-to-fine interface, we use values of
ℓ+1 at time n+1 as imposed boundary conditions for level
ℓ. We restrict the value of the boundary coarse cell at level ℓ
to the average value of the 2dim cells of level ℓ+1 to impose
the coarse-to-fine boundary. In any case, eq. 13 remains
correct since the level-by-level diffusion solver only deals
with data estimated at the same level of refinement. The
combination of the use of Dirichlet boundary conditions at
level interfaces and of interpolation or restriction operations
does not break the symmetry of matrix A. The imposed
values of the neighbouring cells at different refinement levels
go into the right-hand side (vector c) of the matrix system
Ax = c, because it is the case for the computational domain
imposed boundary conditions.

2.2.3. Limitations of the method

There are two main limitations to our current anisotropic
diffusion solver: the non-energy conservation due to Dirich-

let boundary at level interfaces and the non-monotonicity
preserving nature of the solver. To circumvent the first lim-
itation, one could adopt a unique time step strategy, where
diffusion is solved for all levels at once. This guarantees en-
ergy conservation but slows down the calculation. A good
compromise would be to do the diffusion step rather than
every fine time step of the simulation, but only over coarse
time steps (or even every 10, 100, etc. coarse time steps).
Nevertheless, as shown in Commerçon et al. (2014), Dirich-
let boundary conditions are robust in most cases, and in
practice, energy conservation is acceptable (see tests be-
low).

Concerning the non-monotonicity preserving nature of
the diffusion solver, since the flux at a cell interface (equa-
tion 14) includes a transverse gradient of temperature, it
is not guaranteed that the flux flows from the high tem-
perature cell to the low temperature cell. Thus, the tem-
perature can become negative, and the monotonicity of the
solution is not preserved (see for instance the test prob-
lem illustrated in figure 5 of Sharma & Hammett 2007).
Sharma & Hammett (2007) propose a slope limiter for the
centred symmetric scheme with explicit time integration
that preserves the monotonicity of the solution. However,
employing a slope limiter would not allow us to use the
conjugate gradient algorithm any longer since matrix A be-
comes non-symmetric. In our case, we prefer to conserve the
simple and fast solution offered by the conjugate gradient
algorithm and to fix the negative temperatures created by
the anisotropic conduction solver with tiny positive values.
Future developments will include slope limiters, and the
matrix system will be solved using a bi-conjugate gradient
algorithm instead (as in González et al. 2015).

2.3. Ion and electron temperature coupling

We now explain how we model the coupling of the tem-
perature of ions and electrons in ramses. This coupling
step is performed after the diffusion step. The energy ex-
change rate HEI introduced in equation (5) is written for
a gas that we assume to be fully ionised and composed of
hydrogen and helium

deE
dt

= HEI =
TI − TE

τeq,EI

nEkB
γ − 1

,

deI
dt

= −HEI =
TE − TI

τeq,IE

nIkB
γ − 1

, (16)

with the equilibration timescales

τeq,EI =
3mEmIk

3

2

B

8(2π)
1

2nIZ2
I q

4
E ln Λ

(

TE

mE

+
TI

mI

)
3

2

≃ 3mEmIk
3

2

B

8(2π)
1

2nIZ2
I q

4
E ln Λ

(

TE

mE

)
3

2

, (17)

and

τeq,IE =
3mEmIk

3

2

B

8(2π)
1

2nEZ2
I q

4
E ln Λ

(

TE

mE

+
TI

mI

)
3

2

≃ 3mEmIk
3

2

B

8(2π)
1

2nEZ2
I q

4
E ln Λ

(

TE

mE

)
3

2

, (18)

where mE and mI stand for the electron and ion mass, re-
spectively; nI = ρ/(µImp) is the ion number density with
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mp the proton mass and µI being the ion mean molecular
weight; ZI is the ion charge number; qE the electron charge;
and ln Λ = 40 is the Coulomb logarithm. Since mE ≪ mI,
we neglect the TI/mI term in the energy exchange rates.
For a mixture of hydrogen and helium, the timescale of the
temperature coupling between hydrogen and helium would

be proportional to m
−3/2
H,He ≪ m

−3/2
E . Thus, the equilibra-

tion between hydrogen and helium operates 105 times faster
than the equilibration timescale between hydrogen and elec-
trons or helium and electrons. For hydrogen or helium, the
ratio of mH,He/Z

2
H,He also simplifies to mp (not the case

for heavier elements). Therefore, protons and HeIII can be
considered as one single population sharing the same tem-
perature.

Writing τ̃eq = τeq,EI/nE = τeq,IE/nI, we see that

deE
dt

= −deI
dt

=
TI − TE

τ̃eq

kB
γ − 1

. (19)

The variation in energy is symmetric between the transfer
of ion energy and electron energy, but this is not the case for
the variation in temperature, which is ∂tTE,I ∝ n−1

E,I ∂teE,I.
Therefore, the difference in temperature change between
ions and electrons will be a factor µI/µE, where µE is the
“mean molecular weight of electrons” µE = ρ/(nEmp). For
astrophysical plasmas essentially composed of hydrogen and
helium, the change in temperature between ions and elec-
trons is close to symmetric.

To solve for the system of two non-linear coupled equa-
tions, we rewrite (16) as

G1(T
n+1
E , T n+1

I ) = ∆t
[

−(T n+1
E )−

1

2 + T n+1
I (T n+1

E )−
3

2

]

− K
[

T n+1
E − T n

E

]

= 0 ,

G2(T
n+1
E , T n+1

I ) = ∆t
[

(T n+1
E )−

1

2 − T n+1
I (T n+1

E )−
3

2

]

− K
[

T n+1
I − T n

I

]

= 0 , (20)

where K = 3mpk
1.5
B /[8(2πmE)

0.5nEq
4
E ln Λ]. We introduce

the vector X = (T n+1
E , T n+1

I )T , and rewrite the previous
two equations as

G1(X
k +∆X)−G1(X

k) =

(

∂G1

∂X

)k

∆X ,

G2(X
k +∆X)−G2(X

k) =

(

∂G2

∂X

)k

∆X .

The goal is now to iterate on ∆X to find the value of
G1(X

k + ∆X) = 0 and G2(X
k + ∆X) = 0 as required

by equations (20). The derivatives ∂XGk
1 and ∂XGk

2 are
obtained by differentiating equations (20) with respect to
T k
E and T k

I , where the superscript k replaces the superscript
n+1 in (20). The values of ∆X are obtained with Cramer’s
rule, and ∆X is added to the value of Xk until the variation
in ∆X/Xk < 10−4.

3. Numerical tests

If not indicated, we use a courant factor of C = 0.8 with
adaptive time-stepping between the different levels of re-
finement.
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Fig. 1. Top: Diffusion of a pressure step function as a function
of position at t = 9.3 × 10−4 (black), t = 1.9 × 10−3 (red), t =
5.6× 10−3 (blue) for the simulation (symbols) and the analytic
solution (solid lines). The extra levels of refinement are indicated
as dashed lines. Bottom: Relative errors of the simulation with
respect to the analytic solution.

3.1. Diffusion of a step function

We performed a simple 1D test of the diffusion of a step
function with a constant diffusion coefficient of D = 1
without hydrodynamics. The initial setup is a pressure of
P1 = 0.8 between x = [0.25, 0.75] and P0 = 0.4 outside
with CV = ρkB/(µmp) = 1. We start with a minimum level
of refinement of ℓmin = 3 and refine up to level ℓmax = 7
wherever the relative pressure variation is larger than 10%.
The time step is chosen to be ∆t7 = 7 × ∆tdiff (for level
7), where ∆tdiff is the stability time step for diffusion (only
useful for explicit schemes).

The time evolution of the step function has the following
analytical solution for a constant diffusion coefficient

P (x, t) = P0 +
P1 − P0

2
erf

(

x− x0√
4Dt

)

, (21)

where x0 = 0.25. Figure 1 shows the result of the diffusion
of the step function with the analytical solution at three
different times. The analytical solution is reproduced well,
below a 10% relative error.

3.2. Temperature coupling

Figure 2 shows the result of the one cell problem with two
different initial temperatures for electrons TE,0 = 1010K
and ions TI,0 = 108K. The solid lines indicate the solution
with a time step of τeq,EI,0/50, and points are the solution
with a time step of 20τeq,EI,0. They are in excellent agree-
ment, even for the run where the time step is 20 times the
timescale of temperature coupling.

3.3. Sod test with two energy components

We set up the conditions for a Sod (1978) shock tube with
two temperatures and without conduction or temperature
coupling. The initial left and right gas density is ρL = 1,
ρR = 0.125, the first pressure P1,L = 0.34, P1,R = 0.066 (gas
or ion), the second pressure P2,L = 0.66, P2,R = 0.034 (re-
spectively CR or electron), thus PL = 1 and PR = 0.1, and
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Fig. 2. Electron temperature (red or diamonds) and ion tem-
perature (blue or pluses) as a function of time for the one cell
problem. The solution for a time step of τeq,EI,0/50 is represented
in solid lines and for the time step of 20τeq,EI,0 with symbols.
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Fig. 3. Solution of the Sod (1978) shock tube problem with two
temperatures. There is no diffusion and coupling of the temper-
atures. We plot the velocity (top left), pressure (bottom left),
and density (bottom right) at t = 0.245. The squares correspond
to the result of the simulation and the red lines to the analytical
solution. The light blue and dark blue squares in the pressure
plot stand for the first and second species, respectively, while the
black squares are for the total pressure. The level of refinement
is plotted in the top right panel.

zero velocity. The adiabatic index for the first and second
temperatures is γ1,2 = 1.4. The minimum level of refine-
ment is ℓmin = 3, and we refine up to level ℓmax = 10 wher-
ever the relative gradient of any hydro variable is greater
than 5%. Figure 3 shows the result of the simulation, which
exhibits extremely good agreement with the analytical so-
lution. At the contact discontinuity x = 0.7, the total pres-
sure is continuous, but not the individual pressure terms.
We reproduce the structure of a two-component shock well
(see e.g. Pfrommer et al. 2006 for comparison).

3.4. Shock with two temperatures and heat conduction

We model the formation of a 1D stationary shock typically
arising at the virial radius of a cluster of galaxies. The gas is
of primordial cosmological composition with a 0.76 fraction
of hydrogen and 0.24 of helium and is fully ionised. Thus,

the mean molecular weight of ions, electrons, and gas are
µI = 1.22, µE = 1.13, and µ = 0.59. The right state is
with gas density nR = 10−4 cm−3, gas velocity uR = 2000
km s−1 oriented in the negative x-direction, and ion and
electron temperatures at equilibrium TI,R = TE,R = TR =
4 × 107K. Using the Rankine-Hugoniot jump conditions,
we find that the corresponding left state is nL ≃ 2.3 ×
10−4 cm−3, uL = 875 km s−1, and TI,R = TE,R = TR ≃
8.4 × 107 K for an adiabatic index of γ = 5/3. The box
length is 8 Mpc, with a minimum and a maximum level
of refinement of ℓmin = 4 and ℓmax = 9, respectively, and
with refinement triggered wherever the relative gradient of
any hydro variable is larger than 10%. The left and right
boundaries are imposed with the initial values of left and
right states.

Figure 4 shows the result of the simulation with the two
temperatures including conduction of the electrons and the
temperature coupling between ions and electrons, as well
as the solution for a single temperature with or without
conduction. For the single temperature experiment without
conduction, the initial left and right states are preserved at
time t = 10 Gyr. With the addition of conduction, a ther-
mal precursor forms ∼ 1 Mpc ahead of the shock, which is
present for both the single and the two-temperature exper-
iments.

In the case of the two temperatures, we see that the
electrons have the higher temperature value in the ther-
mal precursor compared to the ions with a slow rise similar
to the thermal precursor in the single-temperature experi-
ment. Ion temperature in the precursor lies below—with a
sharp rise at the shock interface—because the coupling of
the two temperatures is not instantaneous. The increase in
ion temperature right after the shock interface compared to
the average gas temperature is because the ions absorb the
upstream kinetic energy at the shock, and electrons only
lag behind and thermally recouple with the ions. Far away
from the shock front, both temperatures are at equilibrium.
The reader can refer to Zel’dovich & Raizer (1967) for the
detailed description of a two-temperature shock with con-
duction.

3.5. Conduction in a circular loop

Anisotropy can be tested by the propagation of heat
through a magnetic loop, here in 2D (see for comparison
e.g. Sharma & Hammett 2007; Rasera & Chandran 2008).
We initialised a patch of temperature of T = 108 K wher-
ever 2 < r < 3 kpc and 165 < θ < 195◦ in a background
gas with temperature T = 106 K and density n = 1 cm−3.
The size of the box is 10×10 kpc, and we performed two
runs either with a uniform grid 1282 or with AMR with
ℓmin = 4 and ℓmax = 8 and refinement triggered if the rel-
ative gradient of pressure is larger than 20%. We used a
Spitzer conductivity with κ‖ = 0.99κSp and κiso = 0.01κSp.

The result of this numerical experiment is shown in
Fig. 5 for two runs with and without AMR. The initial
patch of temperature has diffused anisotropically along the
circular-loop shape of the magnetic field lines. The results
of the AMR and of the uniform grid runs are in very good
agreement, as shown by the white and red contours.

We also explored the effect of varying the perpendicu-
lar conductivity coefficient with κiso = [0.001, 0.01, 0.1]κSp.
The resulting temperature maps are shown in Fig. 6. As
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Fig. 4. Stationary cosmological shock experience including conduction and two-temperature coupling. The result of the two-
temperature run (blue) is represented with dotted lines for the ion temperature (pressure), in dashed for the electron temperature
(pressure), and solid for the average temperature (total pressure) of the gas at t = 10 Gyr. For comparison, the results of the
single temperature runs are plotted in red with conduction and in black without conduction. An electron precursor forms in the
upstream part of the shock front.
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Fig. 5. Temperature map at t = 2 Gyr for the heat conduction
in a 2D magnetic loop without AMR (grey levels). The solution
with AMR is plotted with red contours for T = 5 × 106 K and
T = 107 K (white contours without AMR).

expected, the spread of temperature perpendicular to the
magnetic field lines increases with the increase in the
isotropic component of the diffusion coefficient.

3.6. Sovinec test

Sovinec et al. (2004) designed a test to measure the numer-
ical perpendicular diffusion κnum for the anisotropic diffu-
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Fig. 6. Temperature map at t = 2Gyr for the heat conduc-
tion in a 2D magnetic loop with AMR and different fractions
of perpendicular conductivity coefficients κiso = 0.1κSp (red
contours), κiso = 0.01κSp (grey levels and white contours),
and κiso = 0.001κSp (blues contours). Two contours are plot-
ted for each simulation result corresponding to temperatures
T = 5 × 106 K and T = 107 K (except for κiso = 0.1κSp where
only T = 5× 106 K is reached).

sion in 2D. The energy evolution follows

∂e

∂t
= −∇.

(

−κ‖b.(b.∇)TE

)

−∇. (−κiso∇TE) +Q , (22)

where Q is a heating source term of the form Q(x, y) =
Q0 cos(πx) cos(πy). The magnetic field is chosen such that
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Fig. 7. Results of the perpendicular numerical diffusion coeffi-
cient κnum as a function of resolution ∆x for the Sovinec et al.
(2004) test problem in a solid line with square symbols. The
numerical diffusion scales with ∆x2

(dotted line).

B.∇TE = 0, i.e. the parallel heat flux component is
suppressed, and only the perpendicular component re-
mains. The analytical stationary solution at the centre is
T (0, 0) = Q0/[2π

2(κiso + κnum)]. For this test κiso = 1
(κSp = 100), ρ = 1, Q0 = 2π2, Bx = cos(πx) sin(πy),
and By = − sin(πx) cos(πy). The box size ranges over
[−0.5, 0.5] × [−0.5, 0.5]. As in Rasera & Chandran (2008),
we imposed the temperature at the boundaries of the sim-
ulation box with Tbound = 0.

We ran the simulation for various uniform grid res-
olutions from 162 to 2562 up to the steady-state solu-
tion, and we measured the value of Tmea(0, 0). We fol-
lowed Sharma & Hammett (2007) to obtain the value of
κnum as follows κnum = Tiso(0, 0)/Tmea(0, 0) − 1, where
Tiso(0, 0) is the the central temperature calculated in the
isotropic limit (κiso = κSp). This measurement is more
accurate than assuming that the isotropic diffusion gives
Tiso(0, 0) = 1 exactly. The result is shown in Fig. 7, and we
see that the perpendicular numerical diffusion coefficient
scales quadratically with resolution ∝ ∆x2 and that, even
at low resolution ∆x = 1/16, the numerical diffusion is a
factor 100 below our explicit perpendicular diffusion coeffi-
cient κiso.

3.7. Supernova explosion in a 3-phase medium: ions,
electrons, and cosmic rays

To fully validate the implementation of anisotropic diffusion
of CRs and conduction of heat through electrons and their
coupling with ions in an astrophysical context, we model
the explosion of a supernova in 3D. The explosion is trig-
gered in a homogeneous medium of density n = 1 cm−3

and with temperatures of electrons and ions at equilibrium
T = 104K, and the background energy density of CRs is
one-third of the total energy. We assume that the gas is
totally ionised and composed of a cosmic mixture of hydro-
gen and helium, thus, µI = 1.22, µE = 1.13, and µ = 0.59.
The magnetic field is uniform along the x-axis of the box
and with a magnitude of 1µG, thus the ratio of internal to
magnetic pressure is initially of β = 45. We inject in the
eight central cells a total of ESN = 1051 erg of energy with

1/3 in CR energy, 1/3 in ion energy, and 1/3 in electron
energy.

The temperature of electrons is conducted at the Spitzer
rate and couples with the ion temperature. Both ion and
electron adiabatic index are equal to γ = 5/3. CRs are
diffused with a diffusion coefficient DCR = 3×1027 cm2 s−1

and have an adiabatic index of γCR = 4/3 corresponding to
ultra-relativistic particles. As currently implemented, our
solver could allow for several CR energy components with
various diffusion coefficients and CR adiabatic indexes. We
use a box size of 500 pc with a coarse grid of level ℓmin = 5
and refine up to ℓmax = 9 wherever the relative gradient of
any hydro variable is more than 20%.

For the first test, we did electron and ion coupling with-
out diffusion or conduction, and the second test was with
isotropic diffusion and conduction. Figure 8 shows the result
of the two simulations after time t = 4 kyr and is compared
to the analytic prediction from Sedov (1959). In the ab-
sence of conduction and diffusion, the analytical solution is
reproduced well, except that the shock interface is smeared
by the numerical diffusion. The electrons and ions are not
yet at thermal equilibrium within the bubble. The solution
is slightly modified with isotropic diffusion of CR energy
and conduction of electron temperature. The gas density
exhibits two peaks: one ahead of the shock front position
and another behind. The ahead over-density is the product
of the conduction of electrons over a few parsec, while the
second over-density lags behind. The total pressure within
the bubble is decreased since the CR and electron energies
have leaked out of the bubble. Figure 9 shows the result at
time t = 100 kyr. Again, the experiment without conduc-
tion and diffusion reproduces the analytical prediction well,
and ions and electrons are at thermal equilibrium. At this
time, the Sedov shock has taken over the electron precur-
sor, which has disappeared. It turns out that electrons and
ions are at thermal equilibrium. However, a large amount
of the CR energy has escaped the bubble, so that there is
less pressure within the bubble, explaining why the shock
front slightly lags behind.

The final experiment was run with anisotropic conduc-
tion of electrons and anisotropic diffusion of CRs. Figure 10
shows 2D slices in the middle xz plane of several quanti-
ties: temperatures, density, CR energy, velocity, and mag-
netic field amplitude at two different times t = 5 kyr and
t = 100 kyr. We see that the electron temperature and CR
energy are diffused along the x-axis. The ion temperature
catches up with the electron temperature in the heat pre-
cursor, but it takes some time for the two species to reach
thermal equilibrium. A jet-like nozzle forms in the horizon-
tal direction due to the anisotropic over-pressurised region,
although it propagates more slowly than the genuine shock
front. Nevertheless, at later times, the explosion approaches
spherical with still some degree of anisotropy in the bub-
ble expansion. In particular, the shock front moves faster
along magnetic field lines (x-axis) than perpendicular to
them (note the amplification of the magnetic field due to
the compression along the z-axis). This results in an aspher-
ical bubble shape, which is in advance in the x-direction but
behind in the z-direction (as for the y-direction).

4. Conclusion

We have presented the implementation of a new solver
for the anisotropic diffusion along magnetic field lines of
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Fig. 8. Spherically averaged values of density (left), pressure (middle), and velocity (right) as a function of radius at t = 4 kyr
for the 3D Sedov explosion without diffusion (top), and with isotropic diffusion (bottom). The solid lines are the result of the
simulation, and the dashed line is the analytic prediction for the standard Sedov solution. The pressure is decomposed into total
pressure (black), ion pressure (blue), electron pressure (red), and CR pressure (magenta). Without diffusion, the analytic solution
is reproduced well. With diffusion, there are both a CR precursor and an electron precursor.

Fig. 9. Same as Fig. 8 at t = 100 kyr. The shock front takes over the conduction front of electrons. A CR pressure precursor is
still visible in the conduction and diffusion case with a subtle effect on the Sedov shock front position, which slightly lags behind
the solution without conduction and diffusion.
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Fig. 10. Map cuts in the xz plane for the 3D Sedov explosion including anisotropic electron heat conduction and anisotropic CR
diffusion at t = 5 kyr (first two rows) and t = 100 kyr (last two rows). From left to right and top to bottom: the ratio of electron
to ion temperature, the ion temperature, the electron temperature, the gas density, the magnetic field amplitude, the gas velocity
amplitude, the ratio of CR to internal energy, and the CR energy density. The black dotted circles are the shock front positions of
the standard Sedov solution R(t) ≃ 1.1527(ESN/ρ)

1/5t2/5. The explosion exhibits a nozzle-like heat/CR precursor in the horizontal
direction due to the anisotropic nature of the diffusion (along the horizontal magnetic field).

CRs and of heat with two-temperature components, elec-
trons, and ions in the AMR code ramses. This solver is
implicit in time and supports adaptive-time-stepping on
an AMR level-by-level basis. The implicit anisotropic dif-
fusion scheme uses a conjugate gradient method adapted
from Commerçon et al. (2011, 2014). We tested this new
implementation against several basic numerical experi-
ments with, for some cases, typical astrophysical conditions,

as well as a first simple application to a supernova explosion
in a uniform medium. This preliminary work indicates that
anisotropic conduction or diffusion, together with tempera-
ture coupling, is relevant to several astrophysical problems,
as already highlighted in the literature, and, in particular,
may affect the propagation of remnants of supernovae.

Future applications of this new part of the ramses code
will include the study of active galactic nuclei jets in the
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intra-cluster medium, virial shocks in cosmological simu-
lations of galaxy clusters, CR-driven galactic winds, su-
pernovae explosions, and thermal instabilities in the ISM,
amongst others.
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