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Abstract

Fully-Automatic Facial Expression Recognition (FER) from still images is a challenging task as it
involves handling large interpersonal morphological differences, and as partial occlusions can occasionally
happen. Furthermore, labelling expressions is a time-consuming process that is prone to subjectivity, thus
the variability may not be fully covered by the training data. In this work, we propose to train Random
Forests upon spatially defined local subspaces of the face. The output local predictions form a categorical
expression-driven high-level representation that we call Local Expression Predictions (LEPs). LEPs can be
combined to describe categorical facial expressions as well as Action Units (AUs). Furthermore, LEPs can
be weighted by confidence scores provided by an autoencoder network. Such network is trained to locally
capture the manifold of the non-occluded training data in a hierarchical way. Extensive experiments show
that the proposed LEP representation yields high descriptive power for categorical expressions and AU
occurrence prediction, and leads to interesting perspectives towards the design of occlusion-robust and
confidence-aware FER systems.

Introduction
Automatic Facial Expression Recognition (FER) from still images is an ongoing research field which is key
to many human-computer applications, such as consumer robotics or social monitoring. To address these
problems, a lot of emphasis has been put by the psychological community in order to define models that are
both accurate and exhaustive enough to describe facial expressions.

Perhaps one of the most long-standing model for describing the expressions is the discrete categorization
proposed by Paul Ekman within his cross-cultural studies [1], in which he introduced six universally
recognized basic expressions (happiness, anger, sadness, fear, disgust and surprise). Along with a neutral
state, this has been used as an underlying expression model for most attempts at developing a prototypical
expression recognition system [2], [3]. However, this model faces limitations for dealing with spontaneous
facial expressions [4], as many of our daily affective behaviors may not be translated in terms of prototypical
emotions. Nevertheless, the annotation process is rather intuitive, thus there exists a large corpus of labelled
data.

Another approach is the continuous affect representation [5] that consists in projecting expressions
onto a restricted number of latent dimensions. A popular example of such model is the valence/activation
(relaxed vs. aroused)/power (feeling of control)/expectancy (anticipation) model. It is often simplified as a
two-dimensional valence-activation representation. However, using such a low-dimensional embedding of
facial expressions can cause the loss of information. Indeed, expressions such as surprise are not represented
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correctly whereas others can not be separated well (fear vs. anger). Last but not least, the annotation process
is less intuitive than with the categorical representation.

Finally, an alternative facial expression model is the Facial Action Coding System (FACS) [6]. It consists
in describing facial expressions as a combination of 44 facial muscle activations that are refered to as Action
Units (AUs). AUs is a face representation that may be less subject to interpretation. It can theoretically
be used in accordance with the so-called Emotional FACS (EMFACS) rules in order to describe a broader
range of spontaneous expressions. However, the main drawback of the FACS-coding approach is that the
annotation tends to be a time-consuming process. Furthermore, FACS coders have to be highly trained,
hence limiting the quantity of available data.

In the meantime, as stated in [7], FER from still images is a challenging task as there may exist
large variability in the morphology or in the expressiveness of different persons. Furthermore, countless
configurations of partial occlusion can occasionally happen (e.g. with hand or accessories). As a result,
this variability cannot be fully covered by restricted amounts of available training data. For those reasons,
this paper introduces a new categorical expression-driven representation that we call Local Expression
Predictions (LEPs). LEPs can be learned efficiently on the available expression datasets, and can serve
multiple purposes such as occlusion handling for (global) categorical expression recognition, as well as
confidence-aware AU detection.

1 Related work
In this section we review recent approaches covering FER, with an emphasis on methods addressing the
problem of partial occlusions. We also describe methods for AU detection.

1.1 Occlusion handling in categorical FER
Most recent approaches covering FER from still images work in controlled conditions, on a frontal view and
lab-recorded environments [2, 3]. Shan et al. [8] evaluated the recognition accuracy of Local Binary Pattern
(LBP) features. Zhong et al. [9] proposed to learn active facial patches that are relevant for FER. Zhao et
al. [10] designed a unified multitask framework for simultaneously performing facial alignment, head pose
estimation and FER. Such approaches showed satisfying results in constrained scenarios, but they can face
difficulties on more challenging benchmarks [11].

Eleftheriadis et al. [12] used disciminative shared Gaussian processes to perform pose-invariant FER. Liu
et al. [13] introduced a deep neural network that learns local features relevant for Action Unit prediction, and
use it as an intermediate representation for categorical FER. The authors also studied the use of unlabelled
data [14] to regularize the network training, further enhancing its predictive capacities for FER in the wild.
However, none of these approaches explicitly addresses the problem of facial occlusions that are likely to
happen in such unconstrained cases.

Kotsia et al. [15] studied the impact of human perception of facial expressions under partial occlusions,
and the predictive capacities of automated systems thereof. Cotter et al. [16] used sparse decomposition to
perform FER on corrupted images. Ghiasi et al. [17] use a discriminative approach for facial feature point
alignment under partial occlusions. Those approaches rely on explicitly incorporating synthetic occluded data
in the training process, and thus struggle to deal with realistic, unpredicted occluding patterns. Zhang et al.
[18] trained classifiers upon random Gabor-based templates. They evaluated their algorithms on synthetically
occluded face images, showing that their approach leads to a better recognition rate when the same occluded
examples are used for training and testing. Should this not be the case, unpredicted mouth/eye occlusions
still lead to a significant loss of performance. Huang et al. [19] proposed to automatically detect the occluded
regions using sparse decomposition residuals. However, the proposed approach may not be flexible enough,
as the occlusion detection only outputs binary decisions, and as the face is explicitly divided into only three
subparts (eyes, nose and mouth). This limits the capacities of the method to deal with unpredicted forms
of occlusion. Finally, another approach consists in learning generative models of non-occluded faces, as
it was done by Ranzato et al. [20]. When testing on a partially occluded face image, the occluded parts
can be generated back and expression recognition can be performed. The pitfall of such an approach is
that training can be computationally expensive and does not allow the use of heterogeneous features (e.g.
geometric/appearance descriptors).
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1.2 Action Unit detection

Figure 1: LEPs and applications to categorical expression recognition, occlusion handling in FER and
AU detection. Randomized trees are trained upon local subspaces generated under the form of random
facial masks (a), on which binary feature candidates are generated and selected (b). The local predictions
outputted by the trees can be aggregated into categorical expression-driven high-level LEP representations
(c). Given an occluded face image (e), an occlusion-robust categorical expression prediction can be outputted
by weighting LEPs with confidence scores (f) given by a hierarchical autoencoder network (d). Furthermore,
LEP features can be used to predict AU occurrence (h), for which an AU-specific confidence measurement
can be provided (i). Best viewed in color.

AU detection is traditionally performed by applying binary classification upon high-dimensional, low-
level image descriptors such as LBP or Local Phase Quantification (LPQ) features [21]. Senechal et al.
proposes to embed heterogeneous (geometric/appearance) features within a multi-kernel SVM framework
[22]. These features can be extended to spatio-temporal volumes with the Three Orthogonal Planes (TOP)
paradigm, as proposed in [4] for LBP-TOP and [21] for LPQ-TOP. In the meantime, Chu et al. [23] introduced
a new learning algorithm that personalizes a generic classification framework by attenuating person-specific
biases. Nicolle et al. [24] proposed an AU intensity prediction by a novel multi-task formulation of the
metric learning for kernel regression method. However, there seems to be a gap between low-level feature
descriptors (e.g. LBP, LPQ, SIFT) and high-end learning algorithms applied to AU detection, that could be
filled by learning representations from a large corpus of categorical expression-labelled examples.

Recently, Ruiz et al. [25] introduced a new framework where categorical expressions are learnt from
prior knowledge between this visible task and a set of hidden tasks that correspond to AU detection
predictions. Thus, they exploit relationships between those two tasks to learn AU detectors with (SHTL)
or without (HTL) FACS-labelled training data, by explicitly combining AUs into categorical expressions a
la EMFACS. Conversely, we propose to describe AUs as a combination of Local Expression Predictions
(LEPs). Furthermore, to the best of our knowledge, this is the first time that a confidence assessment is
provided for AU detection.

2 Method Overview
In this work, we introduce a new Local Expression Prediction (LEP) representation that can be learned from
data labelled with categorical expressions, as described in Figure 1. During training, local subspaces are
generated under the form of random facial masks (a), onto which binary candidate features can be selected
(b) to train randomized trees. The local LEPs (c) outputted by local subspace Random Forests can be used
for multiple purposes that are depicted below. Furthermore, we also introduce a hierarchical autoencoder
network (d), which can be used to capture the local manifold of non-occluded faces around separate aligned
feature points. When applied on a potentially occluded face image (e), the reconstruction error outputted by
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such a network provides a confidence measurement of how close a face region lies from the training data
manifold (f), with high and low confidences depicted in green and red respectively. This local confidence
measurement can be used to weight LEPs (g) in order to provide an occlusion-robust expression prediction
(WLS-RF). Finally, LEPs can be used to predict AU occurrence (h). Once again, the autoencoder network
can be used to provide AU-specific confidence measurements (i). Our contributions are thus the following:

(1) A method for training random trees upon spatially-defined local subspaces, which consists in
generating random masks covering a specified fraction of the face. These local trees can be combined
to produce high-level expression-driven representations that we refer to as LEPs, which can be used for
categorical FER or AU prediction.

(2) A hierarchical autoencoder network for learning local non-occluded face manifolds, which can be
used to provide local confidence measurements.

(3) The confidence measurements outputted by the autoencoder network can be used to enhance robust-
ness to occlusions for categorical FER, as well as to assess confidence for AU detection.

The rest of the paper is organized as follows: in Section 3 we discuss the proposed autoencoder network
architecture (Section 3.1) and how it is trained to capture the local manifold around facial feature points
(Section 3.2). Section 4 describes how we learn the Local Expression Predictions via local subspace random
forests (Section 4.1) with heterogeneous binary feature candidates (Section 4.2). In particular, we explain in
Section 4.3 how those local representations can be effectively combined and weighted to produce occlusion-
robust predictions, and in Section 4.4 how LEPs can be used for confidence assessment in AU detection.
Finally, in Section 5 we show that our approach significantly improves the state-of-the-art for categorical
FER on multiple datasets (described in Section 5.1), both on the non-occluded (Section 5.3.1) and occluded
cases (Section 5.3.2). We also demonstrate in Section 5.4 the interest of our LEP representation for AU
activation prediction and the relevance of the AU-specific confidence measurement. Finally, Section 6
provides a conclusion as well as a few perspectives raised in the paper.

3 Manifold Learning of non-occluded faces with a hierarchical au-
toencoder network

Given a number of aligned facial feature points that can be provided by an off-the-shelf alignment algorithm
(such as the SDM tracker [26]), we use an autoencoder network to model the local face pattern manifold.
This network will thus be used to provide a local confidence measurement that is used to weight LEPs for
occlusion-robust FER.

3.1 Network architecture
Autoencoders are a particular type of neural network that can be used for manifold learning. Compared
with other approaches such as PCA [27], autoencoders offer the advantage to theoretically be able to model
complex manifolds using non-linear encoding and regularization criteria, such as denoising [28] or contractive
penalties [29]. As compared to manifold forests [30], autoencoders can be trained on high-dimensional
features without falling into the pitfall of low-rank deficiency. Furthermore, they benefit from an efficient
training using stochastic gradient descent, as well as the possibility of online fine-tuning for subject-specific
calibration.

As shown in Figure 2, we use a 2-layer architecture. First, we extract Histograms of Oriented Gradients
(HOG) within the neighbourhood of each feature point aligned on the face image I . The choice of learning a
manifold of HOG patterns rather than gray levels comes from the fact that HOG are used for both facial
alignment and the LEP generation pipeline. Thus, the reconstruction error of these patterns provides a
confidence measurement that is relevant for both tasks. In order to ensure fast HOG extraction, we use
integral feature channels as introduced in [31]. Horizontal and vertical gradients are computed on the image
and used to generate 9 feature maps. The first of these contains the gradient magnitude, and the 8 remaining
correspond to a 8-bin quantization of the gradient orientation. Then, integral images are computed from
these feature maps to output the 9 feature channels. Also, storing the gradient magnitude within the first
channel allows to normalize the histograms as in standard HOG implementations. Thus, HOG features can be
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computed very efficiently by using only 4 access to previously stored integral channels (plus normalization).
Note that those feature channels can be computed only once for the three steps of the pipeline.

Figure 2: Architecture of our hierarchical autoencoder network. The network is composed of 2 layers:
the first one (L1) captures the texture variations (HOG descriptors) around the separate aligned feature
points. The second one (L2) is defined over 5 face subparts, each of which embraces multiple points whose
appearance variations are closely related. The network outputs a confidence score α(k) for each of the Np
feature points.

The local descriptor Ψ(k) for a specific feature point k consists in the concatenation of gradient magni-
tudes and quantized orientation values in 5× 5 cells around this feature point, with a total window size equal
to a third of the inter-ocular distance. This descriptor of dimension 225 then feeds the Np autoencoders (one
per feature point) of the first layer (L1) which are trained to reconstruct non-occluded patterns. Because
occlusion of local patterns extracted at the feature point level are not independent (i.e. a feature point close
to an occluded area is more likely to be occluded itself), we employ a second layer (L2) of autoencoders,
that are trained to reconstruct non-occluded patterns of groups of encoded feature point descriptors. Those
groups represent five face subparts (left and right eyes, nose, left and right parts of the mouth) from which
the local patterns are closely related. Specifically, L1 is composed of 125 units for each landmark. L2 layer
for a feature point group contains 65×N units ( 12 compression), where N is 12,12,8,11 and 11 respectively
for left/right eye, nose and left/right mouth areas.

3.2 Training the network
Autoencoders are generally trained in an unsupervised way, one layer at a time, by optimizing a reconstruction
criterion. The input descriptor Ψ(k) at feature point k is first encoded via the L1 encoding layer into an
intermediate representation y(k) = h1(Ψ(k)):

y(k) = σ
(
w(k).Ψ(k) + b(k)

)
(1)
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Where σ is a sigmoid function, w(k) and b(k) are respectively the neuron weight matrix and bias vector
of the L1 neuron layer for feature point k. The output is then typically computed as the input reconstruction
Ψ̃(k) = g1(y(k)) using an affine decoder with tied input weights to reduce the number of parameters:

Ψ̃(k) = w(k)T .y(k) + c(k) (2)

Where c(k) is the decoder bias vector. Then the set of K encoded descriptors {Ψ̃(k)}k=1...K associated
to feature points k = 1...K that belong to the face subpart m are concatenated to form the input ξ(m) of the
layer L2 for that subpart. Once again, the input of the L2 layer is successively encoded into a intermediate
representation z(m) = h2(ξ(m)) and decoded in the same way into a reconstructed version ξ̃(m) = g2(z(m)):

z(m) = σ
(
w′(m).ξ(m) + b′(m)

)
(3)

ξ̃(m) = w′(m)T .z(m) + c′
(m) (4)

Thus, each layer is trained separately using stochastic gradient descent and backpropagation. More
specifically, the input descriptors for each layer are presented sequentially. For example, a forward pass
through the L1 layer provides a reconstructed version Ψ̃(k) of Ψ(k). The squared L2-loss is then computed
and weighted by a learning rate parameter to provide the parameter update (δw(k), δb(k), δc(k)). We tried
various combinations of training parameters and the best reconstruction results were obtained by applying
15000 stochastic gradient updates with alternating sampling between the expression classes in the databases.
Indeed, we want the network to be able to reconstruct local variations of all possible expressive patterns on
an equal foot. We also use a constant learning rate of 0.01 as well as a weight decay of 0.001, which seems
to provide good results in testing. Finally, we found that adding 25% randomly generated masking noise
provided satisfying results. From a manifold learning perspective, the goal of using such denoising criterion
is to learn to project corrupted examples (e.g. partially occluded ones, which lie further from the manifold)
back on the training data manifold. Such example will be reconstructed closer to the training data and its
confidence shall be smaller.

3.3 Local confidence measurement
Given a face image I, we define the point-wise confidence α(k)(I) for point k as the L2-loss (i.e. the recon-
struction error) between the HOG descriptor Ψ(I) extracted from this feature point, and its reconstruction
Ψ̃ outputted by the network, after successively encoding by layers L1 then L2, and decoding in the opposite
order. By abuse of notation, we have:

α(k)(I) = ||Ψ(k) − g1 ◦ g2 ◦ h2 ◦ h1(Ψ(k))||2 (5)

The choice of using an Euclidean distance as a confidence score seems natural as it is optimized during
training. We also introduce a confidence measurement α(τ)(I) defined over triangles τ = {k1, k2, k3} of
the facial mesh as:

α(τ)(I) = min(α(k1)(I), α(k2)(I), α(k3)(I)) (6)

As highlighted in the following experiments, this triangle-wise confidence measurement can thus be used
to weight LEPs to enhance the robustness to partial occlusions to a significant extent.

4 Local Expression Predictions

4.1 Learning local trees with random facial masks
Random Forests (RF) is a popular learning framework introduced in the seminal work of Breiman [32]. They
have been used to a significant extent in computer vision, and for FER tasks in particular [10, 33], due to
their ability to nicely handle high-dimensional data such as images as well as being naturally suited for
multiclass classification tasks.
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In the classical RF framework, each tree of the forest is grown using a subset of training examples
(bagging) and a subspace of the input dimension (random subspace). Individual trees are then grown using a
greedy procedure that involves, for each node, the generation of a number of binary split candidates that
consist in features associated with a threshold. Each candidate thus defines a partition of the labelled training
data. The “best" binary feature is chosen among all features as the one that minimizes an impurity criterion
(which is generally defined as either the Shannon entropy or the Gini impurity). Then, the above steps are
recursively applied for the left and right subtrees with accordingly rooted data until the label distribution
at each node becomes homogeneous, where a leaf node can be set. As stated in [32], the rationale behind
training each tree on a random subspace of the input dimension is that the prediction accuracy of the whole
forest depends on both the strength of individual trees and on the independence of the predictions. Thus, by
growing individually weaker (e.g. as compared to C4.5) but more decorrelated trees, we can combine these
into a more accurate tree collection.

Following this idea, we propose an adaptation of the RF framework that uses spatially-defined Local
Subspaces (LS) instead of the traditional Random Subspaces (RS). Each tree is trained using a restricted
subspace corresponding to a specific part of the face. The aggregation of local models gives rise to local
representations that we call Local Expression Predictions (LEPs). Note that this is not the first time that the
output classification predictions of RFs are used as features for a subsequent task. For instance, Ren et al.
[34] used local binary features to construct a cascaded feature point alignment method. However, contrary
to [34], we construct our LEP representation by locally averaging predictions and not by directly using the
output prediction of the trees. Furthermore, LEPs offer several advantages over using a set of trees defined
on the whole face:

(1) LEPs can be aggregated to provide categorical FER. Those local models (LS-RF) can theoretically
capture more diverse information compared to a global one by “forcing” the trees to use less informative
features, that can still hold some predictive power.

(2) We can use the confidence outputted by the autoencoder network in Section 3 to weight the LEPs for
which the pattern lies further from the training data manifold (WLS-RF). For example, in case of occlusion
or drastic illumination changes, we can still use the information from the other face subparts to predict the
expression.

(3) LEPs can be used as an intermediate representation for the task of describing Action Units (AUs).
Noteworthy, AU classification could benefit from LEPs trained on larger corpus labelled with categorical
expressions, as annotation is less time-consuming than FACS coding.

The local trees are trained using Algorithm 1. For each tree t in the forest, we generate a face mask Mt

defined over triangles τ on facial feature points of a precomputed mean shape f̄ . The mask is initialized
with a single triangle randomly selected from the mesh. Then, neighbouring triangles are added until the
total surface covered by the selected triangles w.r.t. f̄ becomes superior to hyperparameter R, that represents
the (approximate) surface that should be covered by each tree. Finally, tree t is grown on the subspace that
corresponds to the facial mask Mt.

4.2 Candidate feature generation
We use a combination of geometric (i.e. computed from aligned facial feature points) and appearance features
φ(1), φ(2), φ(3), as in [33]. Each of these features have different parameters that are generated on-the-fly
during training by uniform sampling over their respective variation range.

We use two different geometric feature templates which are generated from the set of Np facial feature
points f(I), provided by an off-the-shelf facial alignment algorithm [26]. The first of these templates is the
Euclidean distance between feature points fa and fb, normalized w.r.t. intra-ocular distance iod(f) for scale
invariance (Equation 7).

φ
(1)
a,b(I) =

||fa − fb||2
iod(f)

(7)

Because the feature point orientation is discarded in feature φ(1) we use the angles between feature points
fa, fb and fc as our second geometric feature φ(2)a,b,c,λ. In order to ensure continuity for angles around 0,

φ(2) outputs either the cosine or sine of angle f̂afbfc, depending on the value of the boolean parameter λ
(Equation (8)):
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Algorithm 1 Training Local Subspace Random Forest
input: images I with labels l and feature points f(I)

compute f̄ , the mean shape
compute s(τ(f̄)), surface of triangles τ on mean shape
for t = 1 to T do

randomly select a triangle τi
r ← s(τi)
initialize mask Mt ← {τi}
while r < R do

draw a list of candidate neighbouring triangles
randomly select a triangle τj from that list
r ← r + s(τj)
Mt ←Mt ∪ {τj}

end while
randomly select a fraction S̃t ⊂ S of subjects
balance bootstrap S̃t with downsampling
grow tree t on bootstrap S̃t and input subspace Mt

end for
output: tree predictors pt(l|I) with associated masks Mt

φ
(2)
a,b,c,λ(I) = λ cos(f̂afbfc) + (1− λ) sin(f̂afbfc) (8)

As appearance features, we use HOGs for their descriptive power and robustness to global illumination
changes. Integral HOG feature channels were already computed in Section 3.1 for confidence weight
computation. Thus, we define feature template φ(3)τ,ch,sz,α,β,γ as an integral histogram computed over channel
ch within a window of size sz normalized w.r.t. the intra-ocular distance. Such histogram is evaluated at a
point defined by its barycentric coordinates α, β and γ w.r.t. vertices of a triangle τ defined over feature
points f(I).

Each of these candidate features are associated with a set of thresholds θ to produce binary split candidates.
In particular, for each feature template φ(i), the upper and lower bounds are estimated from training data
beforehand and candidate thresholds are drawn from a uniform distribution in the range of these values.

4.3 Occlusion-robust expression recognition
When testing, a face image I is successively rooted left or right for each tree t depending of the outputs of
the binary tests stored in the tree nodes, until it reaches a leaf. The tree t thus outputs a probability vector
pt(l|I) whose components are either 1 for the represented class, or 0 otherwise. Prediction probabilities are
then averaged among the T trees of the forest (Equation (9)).

p(l|I) =
1

T

T∑
t=1

pt(l|I) (9)

Those prediction probabilities are computed similarly for the global RF (RS-RF) and the LS-RF. However,
for LS-RF the output probabilities of the trees have some degrees of locality and we can write the above
formula as a sum over local probabilities defined for each triangle (Equation (10)).

p(l|I) =
1

T

∑
τ

Zτp(l|I, τ) (10)

Where p(l|I, τ) is the Local Expression Prediction (LEP) probability vector associated with triangle τ
on the facial mesh:

p(l|I, τ) =
1

Zτ

T∑
t=1

δ(τ ∈Mt)pt(l|I)

|Mt|
(11)

8



With δ(τ ∈ Mt) being a function that returns 1 if triangle τ belongs to mask Mt, and 0 otherwise.
|Mt| is the number of times tree t is used in Equation (10), and Zτ is the sum of prediction values for all
expression classes l. Thus, a global expression probability is defined by a (normalized) sum of LEPs. Note
that those LEP vectors p(l|I, τ) are not strictly limited to triangle τ but defined within its neighbourhood,
with a radius that depends on hyperparameter R. The setting of R thus controls the locality of the trees, as it
will be discussed in the experiments.

Moreover, LEPs can be weighted by local confidence measurements to give rise to the Weighted Local
Subspace Random Forest model (WLS-RF):

p(l|I) =

∑
τ
α(τ)Zτp(l|I, τ)∑
τ
α(τ)Zτ

(12)

Where α(τ) is the triangle-wise confidence measurement that is outputted by the autoencoder network
described in Section 3, for triangle τ . This weighting scheme allows to better handle partial occlusions, by
downweighting the local RFs associated with the most unreliable appearance patterns.

4.4 Action Unit detection
4.4.1 From LEPs to Action Units

LEPs are local responses related to categorical facial expressions. Thus, it makes sense to assume that LEPs
can somehow be related to AUs and constitute a good high-level representation for AU recognition. To this
end, Figure 3 describes the AU recognition framework, in which LEP vectors corresponding to each triangle
are extracted by a first layer of local trees, trained on a categorical expression dataset. The concatenation of
all LEP vectors p(l|I, τ) for every expression l (6 universal expressions plus the neutral one) and triangle
τ of the facial mesh gives rise to a 7×Nτ feature vector used by a second layer of trees defined for each
AU (with Nτ the number of triangles of the facial mesh). Thus, the AU recognition layer is trained on
a FACS-labelled dataset using only one feature template φ(0)l,τ = p(l|I, τ), with associated thresholds θ
randomly generated from a uniform distribution in the [0; 1] interval.

As illustrated on Figure 3, we also study the importance of using multiple available expression datasets
for learning the first layer of trees (i.e. LEP representation). We can either train the models on a specific
categorical expression database, or merge the datasets to learn LEP representation from all the available
corpus (M1). Finally, we can also learn LEPs separately from the different categorical expression datasets
and use a concatenation of the LEP feature vectors as an input for the second (AU prediction) tree layer (M2).
Section 5.4 shows that those two approaches enhance the predictive power of the AU detection framework.
Furthermore, those two strategies can complement each other well. Indeed, M1 requires to simultaneously
load multiple datasets at training time, M2 involves computing multiple LEP features for evaluation. Thus, a
combination of those two strategies can be used to fulfil the target memory/time requirements.

Also note that we voluntarily keep the AU recognition layer simple so as to showcase the usefulness
of LEP representation for the AU prediction task, as compared to low-level engineered descriptors and
other state-of-the-art methods. However, as shown in other works on expression recognition [24], recent
approaches such as multi-task formulations (e.g. training a single RF for predicting multiple AUs) can
significantly improve performances.

4.4.2 Confidence assessment for AU prediction

Because AUs are defined locally, chances are that AU activation relatively to an occluded area can not be
predicted at all. Thus, we use the weights outputted by the autoencoder network to automatically derive a
confidence score relatively to each AU indexed by m. To this end, we define as N (m)

l,τ the number of times

that the LEP feature φ(0)l,τ was selected for splitting at the root of the trees, among all trees in the forest. This
is highlighted on Figure 4. The reason for exclusively considering features at the root of the trees is that
those features are selected from large numbers of training examples, as opposed to features from nodes
deeper in the trees, that are essentially more noisy.
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Figure 3: AU recognition using LEP features.

Note that, while most approaches focus on describing expressions as a combination of AUs, we can
decompose each AU as a set of local expression predictions. For example, for AU1 (inner brow raiser) and
AU2 (outer brow raiser), the most relevant LEPs are triangles corresponding to the inner and outer brows,
associated with expression surprise, respectively. AU4 (brow lowerer) mainly uses triangles between the
eyes associated with expression anger. AU9 (nose wrinkler) mainly uses triangles from the nose and cheek
regions, associated with disgust. AU12 (lip corner puller) and AU20 (lip stretcher) respectively use triangles
corresponding to lip corners with expressions happiness and fear.

We then define the AU-specific confidence measurement αm for AU m as the sum of confidences α(τ)

of triangles τ of the facial mesh, weighted by the proportion of LEP features from that triangle, that are used
to describe the activation of AU m:

αm =

∑
τ α

(τ)N
(m)
l,τ∑

τ N
(m)
l,τ

(13)

Thus, the AU-specific confidence measurement is proportional to the confidence of the face regions that
are the most useful for describing the activation of a specific AU. We show in the following section that such
simple setting allows to highlight the cases were the AU predictions are deemed unreliable.

5 Experiments
In this section, we evaluate our approach on several FER benchmarks. Section 5.1 introduces the databases
that are used for test. Section 5.2 sums up our experimental protocols and describe hyperparameter settings
to ensure reproducibility of the results. In Section 5.3.1, we show results for FER on non-occluded data on
three publicly available FER benchmarks that exhibit various degrees of difficulty, showing that our approach
improves the state-of-the-art. Then, in Section 5.3.2, we report results on synthetically occluded images.
Thus, we can precisely measure the robustness of our approach to occlusions. In Section 5.4 we give results
of AU detection, showing that LEPs yield high predictive power for the task of AU detection compared
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Figure 4: LEPs heat map for each of the 14 AUs (CK+ database). Only top-level LEP features are displayed
for each AU. Best viewed in color.

to low-level features or state-of-the-art approaches. We also evaluate the relevance of the AU-specific
confidence measurements. Lastly, Section 5.5 reports evidence of the real-time capacities of the proposed
framework.

5.1 Datasets
5.1.1 Categorical expressions datasets

The CK+ or Extended Cohn-Kanade database [2] contains 123 subjects, each one displaying some of the
6 universal expressions (anger, happiness, sadness, fear, digust and surprise) plus the non-basic expression
contempt. Expressions are prototypical and performed in a controlled lab environment with no head pose
variation. As it is done in other approaches, we use the first (neutral) and three apex frames for each of the
327 sequences for 8-class categorical FER. As some approaches discard the frames labelled as contempt, we
also report 7-class accuracy from 309 sequences.

The BU-4D or BU-4DFE database [3] contains 101 subjects, each one displaying 6 acted categorical
facial expressions with moderate head pose variations. Expressions are still prototypical but they are
performed with lower intensity and greater variability than in CK+, hence the lower baseline accuracy.
Sequence duration is about 100 frames. As the database does not contain frame-wise expression, we
manually select neutral and apex frames for each sequence.

The SFEW or Static Facial Expression in the Wild database [11] contains 700 images from 95
subjects displaying 7 facial expressions in a real-world environment. Data was gathered from video clips
using a semi-automatic labelling process. The strictly person-independent evaluation (SPI) benchmark is
composed of two folds of (roughly) same size. As done in other approaches, we report cross-validation
results averaged over the two folds.

5.1.2 Action Unit datasets

The CK+ database is also FACS-annotated, therefore we report results for the recognition of 14 of the most
common AUs (AU1,2,4,5,6,7,9,10,12,15,17,20,25,26).

The BP4D database [4] contains 41 subjects. Each subject was asked to perform 8 tasks, each one
supposed to give rise to 8 spontaneous expressions (anger, happiness, sadness, fear, digust, surprise,
embarrassment or pain). In [4] the authors extracted subsequences of about 20 seconds for manual FACS
annotations, arguing that these subsets contain the most expressive behaviors. As done in the litterature [4]
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we report results for recognition of 12 AUs (1,2,4,6,7,10, 12,14,15,17,23,24). We randomly extract 10000
images for training and evaluate the AU classifiers on the whole dataset.

The DISFA or Denver Intensity of Spontaneous Facial Actions [35] contains videos of 27 subjects
with different ethnicities and genders that were recorded watching a 4-minute emotive video stimulus. Data
have been manually labeled frame by frame for 12 AUs (1,2,4,5,6,9,12,15,17,20, 25,26) on a 6-level scale by
a human expert, and verified by a second FACS coder. For the purpose of predicting AU occurrence, we
consider AU which intensity is below 1 as non-activated. We randomly extract 6292 images for training and
test on the 125832 images.

5.2 Experimental setup
5.2.1 Evaluation metrics

For both occluded and non-occluded scenarios of categorical FER we use the overall accuracy as a per-
formance metric. We also report confusion matrices to show the discrepancies between recognition of the
expression classes. For AU detection we use the area under the ROC curve (AUC) as a performance metric,
as it is widely used in the literature because it is independent of the setting of a decision threshold. For
all the experiments, RF classifiers are evaluated with Out-Of-Bag (OOB) error estimate, with bootstraps
generated at the subject level to ensure that, for each tree, subjects used for training are not used for testing
this specific tree. The OOB error, according to [32], is an unbiased estimate of the true generalization
error. Moreover, as stated in [36] this estimate is generally more pessimistic than traditional (e.g. k-fold
or leave-one-subject-out) cross-validation estimates, further reflecting the quality of the results. For AU
recognition, LEPs are generated for Out-Of-Bag examples for each tree and AUs are evaluated with OOB
error.

5.2.2 Hyperparameter setting

In order to decrease the variance of the error we train large collections of trees (T1 = 1000 for LEP
generation, T2 = 50 for AU detection). For training the local models, we set the locality parameter R to 0.1
(which means that each local model uses 1/10 of the face total surface) which provided good robustness to
occlusions. Finally, we use 40 φ(1), 40 φ(2) and 160 φ(3) features for learning LEPs, as well as 25 threshold
evaluations per features. For AU detection, we examine 100 φ(0) features at each node, each associated with
25 threshold values. Note however that the values of these hyperparameters (except for R) had very little
influence on the performances. This is due to the complexity of the RF framework, in which individually
weak trees (e.g. that are grown by only examining a few features per node) are generally less correlated, still
outputting decent predictions when combined altogether.

For the occluded scenarios on CK+ and BU4D, the autoencoder networks are trained in a cross-database
fashion (i.e. training on CK+ and testing on BU4D and vice versa). Lastly, on SFEW database, we use the
autoencoder network trained on CK+, as SFEW embraces multiple examples of occluded faces.

5.3 Categorical FER
5.3.1 FER on non-occluded images

In Tables 1, 2, 3 we report the average accuracy obtained by our local subspace Random Forest (LS-RF) and
the confidence-weighted version (WLS-RF). We also compare with standard RF (RS-RF).

Generally speaking, classification results of LS-RF are a little better than those of the RS-RF. Indeed,
forcing the trees to be local allows to capture more diverse information. RS-RF relies quite heavily on the
mouth region, but other areas (e.g. around the eyes, eyebrows and nose regions) may also convey information
that can be captured by local models. Figure 5 displays the proportion of top-level features over all triangles
of the face area.

While more than 90% of the features extracted by RS-RF are concentrated around the mouth, the
repartition for LS-RF is more homogeneous. Hence, LS-RF is less prone to a misalignment of the mouth
feature points, or to occlusions of the mouth region. Furthermore, weighting the local predictions (WLS-RF)
using the confidence score from the autoencoder network allows to enhance the results on BU4D and SFEW.
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Table 1: CK+ database. †: CK
database

CK+ Protocol 7em 8em
LBP [8] 10-fold 88.9† -
CSPL [9] 10-fold 89.9† -
iMORF [10] 10-fold - 90.0
AUDN [13] 10-fold 93.7 92.0
RS-RF OOB 92.6 91.5
LS-RF OOB 94.1 93.4
WLS-RF OOB 94.3 93.4

Table 2: BU4D database
BU4D Protocol % Acc
BoMW [37] 10-fold 63.8
Geometric [38] 10-fold 68.3
LBP-TOP [39] 10-fold 71.6
2D FFDs [40] 10-fold 73.4
RS-RF OOB 73.1
LS-RF OOB 74.3
WLS-RF OOB 75.0

Table 3: SFEW database
SFEW % Acc
PHOG-LPQ [11] 19.0
DS-GPLVM [12] 24.7
AUDN [13] 30.1
Semi-Supervised [14] 34.9
RS-RF 35.7
LS-RF 35.6
WLS-RF 37.1

Table 4: Confusion matrix (CK+-
8em)

ne ha an sa fe di co su
ne 92.4 0.3 0.9 0.6 1.2 0.6 3.97 0
ha 0 100 0 0 0 0 0 0
an 4.4 0 91.1 0 0 2.3 2.3 0
sa 22.6 0 0 77.4 0 0 0 0
fe 1.3 4 0 0 90.7 0 0 4
di 3.4 0 0.6 0 0 96.1 0 0
co 11.1 0 0 3.7 0 0 85.2 0
su 1.6 0 0 0 0.4 0 1.2 96.8

Table 5: Confusion matrix (BU4D)
ne ha an sa fe di su

ne 89.5 0 1.8 4.4 0.9 0.9 2.6
ha 2 89.9 0 0 5 2 1
an 10.1 0 70.7 7.1 2 9.1 1
sa 11 0 15 71 3 0 0
fe 9.8 17.6 2.9 5.9 38.3 11.8 13.7
di 3 4 6.9 1 7.9 73.3 4
su 0 1 0 1 6.2 0 91.8

Table 6: Confusion matrix (SFEW)
ne ha an sa fe di su

ne 50.2 8.8 9.0 10.0 2.0 16.9 3.1
ha 10.6 67.5 6.2 6.9 2.6 3.5 2.6
an 25.4 16.1 31.3 10.1 3.7 0.9 12.5
sa 21.2 21.2 8.1 22.2 7.1 9.1 11.1
fe 14.2 16.2 13.0 5.0 23.1 7.1 21.3
di 31.3 23.7 10.4 7.1 3.7 15.6 8.2
su 15.4 11.0 12.1 3.3 7.7 6.6 44.0

The reason is that subjects from those datasets exhibit uncommon morphological traits, occlusion or lighting
patterns. As such, more emphasis is put on reliable local patterns, resulting in a better overall accuracy.
It also explains why the accuracy is equivalent for LS-RF and WLS-RF on CK+ database, where there
is less variability. On the three databases, LS-RF and WLS-RF models provide better results compared
to state-of-the-art approaches, even though some of these use complex FFD or spatio-temporal features
(LBP-TOP), or use additional unlabelled data for regularization [14]. Note however that the evaluation
protocols are different for some of these approaches. For example, authors in [12] use only the texture
information and not the provided landmarks.

Tables 4, 5, 6 show the confusion matrices of WLS-RF on CK+, BU4D and SFEW respectively. Generally
speaking, expressions neutral, happy and surprise are mostly correctly recognized, as they involve the most
recognizable patterns (smile or eyebrow raise). Anger and disgust are also accurately recognized on CK+
and BU4D but not so much on SFEW. Sadness and fear seems to be the most subtle ones, particularly on
BU4D and SFEW where those expressions can be misclassified as surprise or happy, respectively.

5.3.2 FER on occluded face images

In order to assess the robustness of our system to partial face occlusion, we measured the average accuracy
outputted by RS-RF, LS-RF and WLS-RF on CK+ (8 expressions) and BU4D (7 expressions) databases with
synthetic occlusions. More precisely, for each image we use the feature points tracked on non-occluded
images to highlight the eyes and mouth regions. We then overlay a noisy pattern (see Figure 6), which is
a more challenging setup than black boxes used in [18, 19]. We add margins of 20 pixels to the bounding
boxes to make sure we cover the whole eyes (with eyebrows, as it represents the most valuable source of

Figure 5: Proportion of top-level (tree root) features per triangle. Best viewed in color.
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information from the eye region) and mouth region. Finally, we align the feature points on the occluded
sequences.

Figure 6: Examples of occluded faces from BU4D with aligned feature points. Left: non-occluded, middle:
eyes occluded, right: mouth occluded. Also notice how the presence of an occlusion may have a critical
effect on the quality of the feature point alignment.

Figure 7: Accuracy outputted on occluded CK+ and BU4D databases

Influence of R: Graphs of Figure 7 show the variation of average accuracy vs. hyperparameter R that
controls the locality of the trees, respectively under eyes and mouth occlusion on CK+ database. Performances
of RS-RF fall heavily when the mouth is occluded (from 91.5% to 25.4%), as observed in [18]. This further
proves that the global model relies essentially on mouth features to decipher facial expressions. Forcing the
trees to be more local (e.g. setting R to 0.1 or 0.2) allows to capture more diverse cues from multiple facial
areas, ensuring more robustness to mouth occlusion. It also explains why LS-RF models with R = 0.8− 0.5
can already be quite robust to eyes occlusions, as the majority of the information used on such models likely
comes from mouth area. Nevertheless, on those two occlusion scenarios, WLS-RF achieves a substantially
better accuracy than the unweighted local models. Figure 7 also shows the accuracy comparison for both
eyes and mouth occlusion scenarios on CK+ and BU4D, with R = 0.1. On the two databases, LS-RF is
more robust to partial occlusions than RS-RF. Furthermore, WLS-RF also provides better accuracy than both
LS-RF and RS-RF. Overall, the recognition percentage for WLS-RF under mouth occlusion is 67.1% against
30.3% for [18] in the case where classifiers are trained on non-occluded faces and tested on occluded ones.
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Figure 8: Examples of local FER under realistic occlusions. Top rows: point-wise confidence scores (red:
low confidence, green: high confidence). Middle rows: triangle-wise scores. Bottom rows: weighted local
classification (transparent for low confidences, gray for neutral, red for happy, yellow for angry, blue for sad,
cyan for fear, green for disgust and magenta for surprise). Best viewed in color.

Realistic occlusions: our occlusion model is however quite “boring”, in the sense that the occluding noisy
patterns are not realistic. For that matter, and because there is currently no FER database that includes
annotated partial occlusion ground truth, we also present on Figure 8 qualitative results on more realistic
occlusions. Notice how the autoencoder network (learnt on CK+) assign high confidences (green) to non-
occluded feature points, whereas examples that lie further from the captured manifold (e.g. because of lighting
conditions, self-occlusion with a hand or with an accessory) are given lower values (red). The corresponding
triangles are thus downweighted for FER and appear transparent on the last row. Also note that different
facial regions can vote for different expressions, as shown on the second column (happy+angry/disgust).

5.4 AU detection
5.4.1 Merging multiple datasets

In this section we present results for AU detection using LEP features. Table 7 shows comparison of AUC
for the prediction of AU activations on CK+ database obtained with LEPs trained on CK+, BU4D and SFEW
databases, as well as models obtained via the M1 and M2 strategies.

For nearly every AU on CK+, the best AUC score is provided by the M2 strategy. However LEPs trained
on CK+ only as well as the M1 strategy also provide good prediction results. LEPs trained solely on BU4D
and SFEW seems a bit lackluster, but using the additional categorical expression data in addition to data
from CK+ can be beneficial for prediction accuracy. Interestingly, on BP4D, LEPs trained on CK+ only
seem to have a slight edge over the two LEPs models trained using all the available data. However, the M2
strategy and, to a lesser extent, M1 and training on BU4D only, provide close performances. Furthermore,
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Table 7: AUC scores on CK+, BP4D and DISFA databases
CK+ BP4D DISFA

AU M1 M2 CK+ BU4D SFEW M1 M2 CK+ BU4D SFEW M1 M2 CK+ BU4D SFEW
AU1 97.9 98.4 98.4 94.7 93.3 59.6 62.7 63.6 60.9 52.0 66.1 68.4 71.3 57.6 66.6
AU2 98 98.2 97.7 97.5 97.2 65.4 64.8 62.3 66.0 53.0 53.8 55.2 67.3 59.3 59.4
AU4 93.3 95.4 94.8 83.1 85.6 68.7 63.8 64.4 64.4 55.3 66.7 66.7 67.3 64.0 67.6
AU5 94 97.5 95.5 93.2 95 - - - - - 84.2 85.6 73.3 88.6 73.7
AU6 95.4 95.7 95.5 94.3 94.9 83.1 81.8 82.6 78.5 77.1 89.1 86.0 89.2 86.8 85.1
AU7 89.1 90.2 89.6 88.1 83 76.8 75.0 73.6 72.6 65.0 - - - - -
AU9 97.9 99.3 98.7 98.5 94.8 - - - - - 79.0 77.0 75.4 74.0 53.4
AU10 83.7 85.6 86.5 78.4 81.7 83.7 83.8 83.3 81.0 78.6 - - - - -
AU12 97.6 96 96.2 96 96.5 89.9 90.0 89.8 88.0 87.2 95.5 92.9 93.6 92.8 91.8
AU14 - - - - - 65.2 66.4 63.7 66.5 64.9 - - - - -
AU15 91 88.9 88.3 79 79.5 56.8 58.4 58.5 57.7 56.0 69.5 64.5 63.6 68.8 61.7
AU17 93.9 95.1 93.4 81.5 86.4 55.8 65.7 68.9 65.1 60.6 67.8 61.2 53.5 59.1 58.8
AU20 91.9 93.8 94.5 88.5 85.8 - - - - - 65.0 58.5 50.2 55.5 61.9
AU23 - - - - - 50.1 57.2 60.2 57.5 54.2 - - - - -
AU24 - - - - - 69.6 77.4 78.2 77.7 68.4 - - - - -
AU25 99 99.1 98.8 87.1 97.4 - - - - - 94.8 95.0 94.0 95.6 80.0
AU26 75.7 81.2 79.7 74.9 73.4 - - - - - 79.3 81.4 75.6 78.5 71.5
Avg 92.7 93.7 93.4 88.2 88.9 68.8 70.6 70.8 69.6 64.3 75.9 74.4 72.9 73.4 69.3

Table 8: Comparison with other works
Database AUC(ours) AUC(Other works)
CK+(14AU) 93.7 91.7 (SHTL [25])
BP4D(12AU) 70.8 68.9 (LBP-TOP [4])
DISFA(12AU) 75.9 75.7 (Multi-label CNN [41])

on the DISFA dataset, the M1 and the M2 LEPs models provide the highest AUC. Overall, the M2 and M1
models seem to perform better, followed by the models trained on CK+. This proves that AU detection can
benefit from additional training data labelled with categorical expressions. Finally, LEPs trained on SFEW
did not perform very well, probably due to the fact that the database embraces too much variability for too
few training data. Thus, the categorical expressions can not be captured adequately, as can be seen from the
low accuracies showed in Section 5.3.1.

5.4.2 Comparison with state-of-the-art approaches

Table 8 reports the overall best AUC obtained on the three datasets. It also draws a comparison between
the AUC scores obtained using our method and results reported in recent publications involving similar
protocols (same databases and sets of AUs, same intensity threshold for AU occurrence on DISFA). Our
approach provides better results than SHTL [25] on CK+, as well as accuracy similar to the multi-label
CNN introduced in [41] on DISFA. Furthermore, it provides better performance than baselines LBP-TOP
features used in [4] on BP4D. This demonstrates that even though the AU detection pipeline is not meant to
be optimal, LEPs learned on large amounts of categorical expression data yield high discriminative power for
AU detection tasks. As such, an interesting direction would be to take into account the correlations between
the tasks within a multi-output framework.

5.4.3 Relevance of AU confidence assessment

In order to assess the relevance of the AU-specific confidence measurement, we evaluated its average value
on the occluded versions of the CK+ and BU4D databases generated in Section 5.3.2 for occlusion handling
in categorical FER. From a general perspective, as can be seen on Figure 9, low confidence measurements
can be observed for AUs from the upper face region on the two scenarios involving eye occlusion. The same
holds for AUs from the lower face region and the “mouth occluded” scenario, whereas the confidence scores
are significantly higher in the non-occluded case. Interestingly, confidence scores for AU6 (cheek raiser) and,
to a lesser extent, AU9 (nose wrinkle), are quite low even in the “mouth occluded” case. Indeed, as can be
witnessed on Figure 4.4, the confidence measurement for these AUs also use LEP features from the nose and
mouth area.
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Figure 9: AU confidence scores outputted on occluded CK+ and BU4D database

Table 9: Measured evaluation time per processing step (in milliseconds)
Processing step time (ms)
Feature point alignment 10
Integral channels computation 2
Confidence weights computation 11
LEP computation (1000 trees) 7
12 AU detection (50 trees) 1
Total 31

5.5 Computational load
The proposed framework for occlusion-robust FER (WLS-RF) and AU detection operates in real-time on
video streams, even with large tree collections. Table 9 displays the elapsed time for each step of the
evaluation pipeline. The test was performed on an Intel Core I7-4770 CPU on a single-thread C++/OpenCV
implementation.

It appears that the feature point alignment and confidence weight generation steps are the bottleneck of
the system in term of computational load. However the computational load for the former can be reduced by
the use of more efficient alignment algorithms such as the one in [34]. As for the confidence weights, the
computation time can be significantly reduced by a proper multithreading (e.g. computing the confidence
for each feature point in parallel). As it is, the framework already runs at more than 30 fps even with large
collections of trees. As for training, learning LEPs with 1000 trees on a big database (BU4D containing more
than 8000 face images) took approximately three hours without parallelization. Training the hierarchical
autoencoder network took half a day and learning the 12 AU detectors on DISFA database with 50 trees
required one hour on the same I7-4770 CPU using a loose C++ implementation. Thus, our approach scales
well both in terms of training and testing times, especially when compared to recent deep learning algorithms
[41] for feature representation and learning.

6 Conclusion and perspectives
In this paper, we proposed a new high-level expression-driven LEP representation. LEPs are obtained
from training Random Forests upon spatially defined local subspaces of the face. Extensive experiments
on multiple datasets highlight the fact that the proposed representation improves the state-of-the-art for
categorical FER and yields useful descriptive power for AU occurrence prediction. Furthermore, we
introduced a hierarchical autoencoder network to model the manifold around specific facial feature points.
We showed that the provided reconstruction error could effectively be used as a confidence measurement
to weight the prediction outputted by the local trees. The proposed WLS-RF framework significantly adds
robustness to partial face occlusions.

The ideas introduced in this work open a lot of interesting directions for future works on face analysis.
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First, note that the confidence weights are representative of the spatially defined local manifold of the training
data. Thus, these confidence values can be used to determine which parts of the face are the most reliable in
a general way (e.g. to address unpredicted illumination patterns or head pose variations), and are not limited
to occlusion handling. Furthermore, we could inject confidence weights into the feature point alignment
framework [26] to enhance the robustness of the feature point alignment w.r.t. occlusions. Compared to a
discriminative approach using synthetic data [17], our manifold learning approach could in theory more
efficiently deal with realistic occlusions. Moreover, the applications of LEPs for AU detection and intensity
estimation are multiple. First, it would be interesting to learn LEPs using more expression data such as
the datasets introduced in [42, 43], possibly with a more complex integration strategy. Also, it could be
interesting to investigate the impact of using a more fine-grained facial mesh for FER and AU detection or
intensity estimation using LEP representation, as it was done in [44] for dense facial feature point alignment.
Last but not least, the idea of learning Random Forests upon spatially defined local subspaces instead of
random subspaces is not limited to face analysis, and could theoretically be applied in other fields such as
gesture recognition.
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