C. Alba-simionesco, B. Coasne, G. Dosseh, G. Dudziak, K. E. Gubbins et al., Effects of confinement on freezing and melting, Journal of Physics: Condensed Matter, vol.18, issue.6, pp.15-68, 2006.
DOI : 10.1088/0953-8984/18/6/R01

URL : https://hal.archives-ouvertes.fr/hal-00102544

X. Jiang, J. Huang, B. G. Sumpter, and R. Qiao, Electro-Induced Dewetting and Concomitant Ionic Current Avalanche in Nanopores, The Journal of Physical Chemistry Letters, vol.4, issue.18, pp.3120-3126, 2013.
DOI : 10.1021/jz401539j

M. Salanne, Confinement, Desolvation, and Electrosorption Effects on the Diffusion of Ions in Nanoporous Carbon Electrodes, J. Am. Chem. Soc, vol.137, pp.12627-12632, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221450

K. V. Agrawal, S. Shimizu, L. W. Drahushuk, D. Kilcoyne, and M. S. Strano, Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes, Nature Nanotechnology, vol.49, issue.3, pp.267-273, 2017.
DOI : 10.1126/science.1132898

C. Holm and M. Salanne, Capacitance of Nanoporous Carbon-Based Supercapacitors Is a Trade- Off between the Concentration and the Separability of the Ions, J. Phys. Chem. Lett, vol.7, pp.4015-4021, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494252

E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi et al., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors, Nature Materials, vol.16, issue.4, pp.2017-446
DOI : 10.1021/jp211474e

R. A. Marcus, On the Theory of Oxidation???Reduction Reactions Involving Electron Transfer. I, The Journal of Chemical Physics, vol.24, issue.5, pp.966-978, 1956.
DOI : 10.1039/tf9403500633

D. W. Small, D. V. Matyushov, and G. A. Voth, The Theory of Electron Transfer Reactions:?? What May Be Missing?, Journal of the American Chemical Society, vol.125, issue.24, pp.7470-7478, 2003.
DOI : 10.1021/ja029595j

J. Blumberger, Redox Reaction Exhibits Strong Nonlinear Solvent Response Due to Change in Coordination Number, Journal of the American Chemical Society, vol.130, issue.47, pp.16065-16068, 2008.
DOI : 10.1021/ja805471a

D. V. Matyushov and G. A. Voth, Modeling the free energy surfaces of electron transfer in condensed phases, The Journal of Chemical Physics, vol.88, issue.13, pp.5413-5424, 2000.
DOI : 10.1063/1.1289886

R. Vuilleumier, K. A. Tay, G. Jeanmairet, D. Borgis, and A. Boutin, Extension of Marcus Picture for Electron Transfer Reactions with Large Solvation Changes, Journal of the American Chemical Society, vol.134, issue.4, pp.2012-2067
DOI : 10.1021/ja2069104

E. Laborda, M. C. Henstridge, C. Batchelor-mcauley, and R. G. Compton, Asymmetric Marcus???Hush theory for voltammetry, Chemical Society Reviews, vol.317, issue.680, pp.4894-4905, 2013.
DOI : 10.1016/j.electacta.2012.12.129

E. E. Tanner, E. O. Barnes, C. B. Tickell, P. Goodrich, C. Hardacre et al., Application of Asymmetric Marcus???Hush Theory to Voltammetry in Room-Temperature Ionic Liquids, The Journal of Physical Chemistry C, vol.119, issue.13, pp.7360-7370, 2015.
DOI : 10.1021/acs.jpcc.5b01174

D. K. Phelps, A. A. Kornyshev, and M. J. Weaver, Nonlocal electrostatic effects on electron-transfer activation energies: some consequences for and comparisons with electrochemical and homogeneous-phase kinetics, The Journal of Physical Chemistry, vol.94, issue.4, pp.1454-1463, 1990.
DOI : 10.1021/j100367a048

M. Salanne, Highly Confined Ions Store Charge More Efficiently in Supercapacitors
URL : https://hal.archives-ouvertes.fr/hal-00909161

C. Prehal, C. Koczwara, N. Jäckel, A. Schreiber, M. Burian et al., Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering, Nature Energy, vol.374, issue.3, p.16215
DOI : 10.1088/0143-0807/21/5/306

P. Bai and M. Z. Bazant, Charge transfer kinetics at the solid???solid interface in porous electrodes, Nature Communications, vol.5, pp.2014-3585
DOI : 10.1016/j.electacta.2013.08.014

B. Akinwolemiwa, C. Peng, and G. Chen, Redox Electrolytes in Supercapacitors, Journal of the Electrochemical Society, vol.162, issue.5, pp.5054-5059, 2015.
DOI : 10.1149/2.0111505jes

L. Su, X. Zhang, C. Mi, B. Gao, and Y. Liu, Improvement of the capacitive performances for Co???Al layered double hydroxide by adding hexacyanoferrate into the electrolyte, Physical Chemistry Chemical Physics, vol.110, issue.13, pp.2195-2202, 2009.
DOI : 10.1039/b814844a

I. M. Marrucho and L. P. Rebelo, Solubility of Inorganic Salts in Pure Ionic Liquids, J. Chem. Thermodyn, vol.55, pp.29-36, 2012.

C. Merlet, M. Salanne, and B. Rotenberg, New Coarse-grained Models of Imidazolium Ionic (33) Roy, D.; Maroncelli, M. An Improved Four-Site Ionic Liquid Model, J. Phys. Chem. B, vol.114, pp.12629-12631, 2010.

J. I. Siepmann and M. Sprik, Influence of surface topology and electrostatic potential on water/electrode systems, The Journal of Chemical Physics, vol.36, issue.211, pp.511-524, 1995.
DOI : 10.1103/PhysRevLett.66.2352

J. C. Palmer, A. Llobet, S. H. Yeon, J. E. Fischer, Y. Shi et al., Modeling the structural evolution of carbide-derived carbons using quenched molecular dynamics, Carbon, vol.48, issue.4, pp.1116-1123, 2010.
DOI : 10.1016/j.carbon.2009.11.033

A. Warshel, Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions, The Journal of Physical Chemistry, vol.86, issue.12, pp.2218-2224, 1982.
DOI : 10.1021/j100209a016

J. K. Hwang and A. Warshel, Microscopic examination of free-energy relationships for electron transfer in polar solvents, Journal of the American Chemical Society, vol.109, issue.3, pp.715-720, 1987.
DOI : 10.1021/ja00237a013

R. A. Marcus, On the Theory of Electron???Transfer Reactions. VI. Unified Treatment for Homogeneous and Electrode Reactions, The Journal of Chemical Physics, vol.33, issue.2, pp.679-701, 1965.
DOI : 10.1063/1.1733886

Y. Georgievskii, C. Hsu, and R. A. Marcus, Linear response in theory of electron transfer reactions as an alternative to the molecular harmonic oscillator model, The Journal of Chemical Physics, vol.15, issue.11, pp.5307-5317, 1999.
DOI : 10.1021/j100366a005

G. King and A. Warshel, Investigation of the free energy functions for electron transfer reactions, The Journal of Chemical Physics, vol.93, issue.12, pp.8682-8692, 1990.
DOI : 10.1021/bi00384a003

J. Blumberger, Recent Advances in the Theory and Molecular Simulation of Biological Electron Transfer Reactions, Chemical Reviews, vol.115, issue.20, pp.11191-11238, 2015.
DOI : 10.1021/acs.chemrev.5b00298

M. A. Pounds, M. Salanne, and P. A. Madden, redox reaction at the interface between a molten salt and a metallic electrode, Molecular Physics, vol.113, issue.17-18, pp.2451-2462, 2015.
DOI : 10.1063/1.447150

R. A. Marcus, Reorganization free energy for electron transfers at liquid-liquid and dielectric semiconductor-liquid interfaces, The Journal of Physical Chemistry, vol.94, issue.3, pp.1050-1055, 1990.
DOI : 10.1021/j100366a005

R. C. Remsing, I. G. Mckendry, D. R. Strongin, M. L. Klein, and M. J. Zdilla, Frustrated Solvation Structures Can Enhance Electron Transfer Rates, The Journal of Physical Chemistry Letters, vol.6, issue.23, pp.4804-4808
DOI : 10.1021/acs.jpclett.5b02277

T. J. Abraham, D. R. Macfarlane, and J. M. Pringle, Seebeck coefficients in ionic liquids ???prospects for thermo-electrochemical cells, Chemical Communications, vol.52, issue.22, pp.6260-6262, 2011.
DOI : 10.1039/c1cc11501d

C. Merlet, C. Péan, B. Rotenberg, P. A. Madden, P. Simon et al., Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?, The Journal of Physical Chemistry Letters, vol.4, issue.2, pp.264-268, 2013.
DOI : 10.1021/jz3019226

URL : https://hal.archives-ouvertes.fr/hal-00854038

L. Dang, Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study, Journal of the American Chemical Society, vol.117, issue.26, pp.6954-6960, 1995.
DOI : 10.1021/ja00131a018

K. Ando, Solvent nuclear quantum effects in electron transfer reactions. III. Metal ions in water. Solute size and ligand effects, The Journal of Chemical Physics, vol.114, issue.21, pp.9470-9477, 2001.
DOI : 10.1098/rspa.1956.0216

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical interface between an ionic liquid and a model metallic electrode, The Journal of Chemical Physics, vol.73, issue.8, p.84704, 2007.
DOI : 10.1063/1.447150

Y. Katayama and T. Miura, Effects of the Interaction Between Ionic Liquids and Redox Couples on Their Reaction Entropies, J. Electrochem. Soc. 2013, vol.6, pp.309-314