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Abstract—Polynomial chaos expansions are used to analyze
the propagation of uncertainties on array parameters in Angle-
of-Arrival estimation performed by the MUSIC algorithm.
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I. INTRODUCTION

Among all high resolution methods of Angle-of-Arrival
(AoA) estimation, the MUSIC algorithm is certainly one of the
most popular [1]. In order to give precise results, the MUSIC
algorithm needs thorough knowledge of the array parameters,
i.e. the gain and phase of each sensor (antenna and front-end).
As this method is implemented on physical arrays of antennas,
the array parameters are influenced by different factors, such as
temperature and aging, and may fluctuate in time. Therefore,
the array parameters are subject to uncertainties. We propose
to estimate the influence that the uncertainties on the array
parameters have on the output of MUSIC.

To study propagation of uncertainty, polynomial chaos
expansions have already been used in electromagnetics, e.g.
in ray-tracing [2], or in dosimetry [3]. From the probability
density function (PDF) of the input random variables of
a process, the polynomial chaos expansions allow one to
determine the statistical moments of the output of the process
[4].

In this paper, we aim to relate the variance of the AoA
estimated with MUSIC to the PDF of the phase and gain of
the sensors in an antenna array.

II. METHOD

A. The MUSIC algorithm

MUSIC is a high resolution method for AoA estimation
based on the eigenvector decomposition of the sample data
covariance matrix [1]. Consider M sensors measuring each N
samples. Then, we can write the sample data as the M × N
matrix Y, of which a column is called a snapshot. Suppose
there are d incident signals, which we will consider to be
sinusoids. Let S be the d×N matrix of the associated incident
signals. Now define the perturbation matrix G = diag(gie

jφi),
where gi and φi are the gain and the phase of the sensor
i, respectively. Introducing the steering matrix A, we can
write the sample data matrix as Y = GAS + N, where

N is white noise. The covariance matrix is then obtained :
R = YYH/N . This algorithm reduces inherently the noise
by averaging the covariance matrix over the samples. Now the
idea is to decompose the covariance matrix into eigenvectors.
It can be shown [1] that :

R = [Us Un]

[
Λs + σ2Id 0

0 σ2IM−d

] [
UH
s

UH
n

]
i.e.

R = UΛUH (1)

In this equation, the Λs are the eigenvalues of the cor-
relation matrix, and σ2 is the noise variance. There are d
eigenvalues of the correlation matrix as each one is associated
with one signal. The signal eigenvectors Us span the so-called
signal subspace, while the noise eigenvectors Un span the
noise subspace. The signal vectors being obviously orthogonal
to the noise subspace, the projection on the noise subspace
of a steering vector corresponding to an AoA must be null.
Therefore, the inverse of the cost-function JMUSIC(θ) shows
narrow peaks for directions corresponding to actual AoA,
where

JMUSIC(θ) =
‖ ÛH

n a(θ) ‖2

‖ a(θ) ‖2
=

a(θ)HÛnÛH
n a(θ)

a(θ)Ha(θ)
(2)

in which a(θ) is the steering vector corresponding to the
direction θ.

B. Polynomial chaos expansions
Let f be the estimated AoA at the output of the MUSIC

algorithm. It is a function of the random variables Xi = gi or
φi. f(X) can be expressed as [4]:

f(X) =

∞∑
j=0

fjΨj({Xi}2Mi=1) (3)

where the polynomials {Ψj({Xi}2Mi=1)}∞j=1 form a polynomial
chaos basis of the adequate Hilbert space containing f . These
multivariate polynomials are products of univariate polynomi-
als, Ψα(X) ≡

∏2M
i=1 Ψ

(i)
αi (Xi). For each input random variable

Xi, univariate polynomials are constructed so that they are
orthogonal with respect to the scalar product defined by the
PDF of Xi, ϕXi

:
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TABLE I
NUMBER OF SNAPSHOT NEEDED TO AVERAGE OUT NOISE IN THE OUTPUT

VARIANCE ESTIMATION

SNR [dB] 20 10 3
snapshots 850 1000 6000

The coefficients fi can be obtained by different methods.
We use in this work the projection method, using a Gauss-
Legendre quadrature to evaluate the integrals, as described by
Sudret [4]. In practice, the series appearing in (3) is truncated
at a certain order P − 1, which is generally low. The interest
of this method is that knowing the PDF of the input variables
allows one to deduce statistical information on the output
values with a limited number of runs of the MUSIC algorithm.
Indeed, the mean and variance of the output are given by:

f = E[f(X)] = f0 (5)

DPC = Var

P−1∑
j=1

fjΨj(X)

 =

P−1∑
j=1

f2j E
[
Ψ2
j (X)

]
(6)

III. RESULTS

A. Implementation

We consider a linear uniform array (ULA) of M = 4
sensors, on which a single wave is incident from a given angle
(AoA). The sensors are supposed to be subject to random
phase and/or gain variations. These inputs are chosen to be
uniform random variables with unit mean for the gain gi and
zero mean for the phase φi. Therefore, we expand the output
in (3) on a Legendre polynomials series [4]. For a given order
of truncation of the series P − 1, we calculate the coefficients
{fi}P−1i=0 with a Gauss-Legendre quadrature of order P . We
must then evaluate the output of the MUSIC algorithm for
P 2M particular values of the input vector.

B. Influence of the noise

The variance of the AoA estimated by MUSIC is caused
by two fundamentally different reasons : noise and array
parameters uncertainties. To enable the analysis of parame-
ter uncertainty propagation, it is necessary to eliminate the
contribution of the noise to the output variance. By averaging
over a certain number of snapshots, MUSIC is able to cancel
the noise contribution to the variance. In Fig. 1, the output
variance of MUSIC is drawn as a function of the number
of snapshots, for different SNR values. In this calculation we
used a 5th-order Legendre polynomial expansion of the output
AoA, a phase interval halfwidth of 25◦, and a gain interval
halfwidth of 0.5. The number of snapshots needed to average
out the noise, inferred from this figure are given in Table I.

C. Phase Uncertainty

To study the dependence of the output variance on the phase
uncertainty, we have run the program for only a random phase
on one sensor. We set the value of the SNR at 20 dB, and

Fig. 1. Variance of the estimated AoA as a function of the number of
snapshots used in MUSIC, for different values of SNR

therefore set the number of snapshots at 850, so that the
noise has no contribution to the variance of the estimated
AoA. Fig. 2 shows the standard deviation of the output as
a function of the input phase interval halfwidth, for different
values of the AoA. In this calculation we used a 5th-order
Legendre polynomial expansion of the estimated AoA. The
first observation is that the standard deviation of the estimated
AoA depends linearly of the standard deviation of the input
phase. The second important observation is that the output
variance grows importantly as the AoA grows.

Fig. 2. Standard deviation of the estimated AoA as a function of the input
phase interval halfwidth

D. Gain Uncertainty

Secondly we extended the calculation to the case of si-
multaneous gain and phase uncertainties on a single sensor,



in order to evaluate the influence of the gain uncertainty in
the output variance. Fig. 3 shows the normalized dependence
of the output standard deviation on the input gain interval
halfwidth. The normalization consists in dividing the output
standard deviation by the standard deviation obtained without
gain uncertainty. The calculation was performed with an AoA
of 70◦ and a 5th-order Legendre polynomial expansion of
the output AoA. We observe that the influence of the gain
uncertainty on the output variance is small, but not negligible.

Fig. 3. Normalized standard deviation of the estimated AoA as a function of
the input gain interval halfwidth

IV. CONCLUSION

The number of snapshots needed to average out the noise
for estimation of MUSIC output variance has been evaluated.
The dependence of the standard deviation of the estimated
AoA on the width of the PDF of the phase uncertainty on one
sensor was found to be linear, and considerably dependent on
the AoA. The contribution of the gain uncertainty to the output
variance was found to be small in comparison with the phase
uncertainty contribution, but not negligible, and appears for
all values of phase uncertainty.
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