

Syntheses and kinetic studies of cyclisation-based self-immolative spacers

Steve Huvelle, Ahmed Alouane, Thomas Le Saux, Ludovic Jullien, Frédéric Schmidt

▶ To cite this version:

Steve Huvelle, Ahmed Alouane, Thomas Le Saux, Ludovic Jullien, Frédéric Schmidt. Syntheses and kinetic studies of cyclisation-based self-immolative spacers. Organic & Biomolecular Chemistry, 2017, 15 (16), pp.3435 - 3443. 10.1039/C7OB00121E. hal-01513562

HAL Id: hal-01513562 https://hal.sorbonne-universite.fr/hal-01513562

Submitted on 25 Apr 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Organic & Biomolecular Chemistry

PAPER

Cite this: *Org. Biomol. Chem.*, 2017, **15**, 3435

Syntheses and kinetic studies of cyclisation-based self-immolative spacers†

Steve Huvelle,^a Ahmed Alouane,^{a,b,c,d} Thomas Le Saux,^{b,c,d} Ludovic Jullien*^{b,c,d} and Frédéric Schmidt **D**^a

Kinetic analysis of the disassembly of self-immolative spacers based on cyclisation processes was performed. Five compounds were synthesized belonging to two different series, and their kinetic constants were determined. Electron-donating substituents gave a slight acceleration but the main effect was steric, and the Thorpe–Ingold effect was indeed particularly effective. Comparison with the self-immolative spacers based on elimination processes showed that cyclisations gave comparable or lower rate, but the corresponding spacers are more difficult to modulate.

Received 17th January 2017, Accepted 21st March 2017 DOI: 10.1039/c7ob00121e

Introduction

Self-immolative spacers were introduced in 1981 by Katzellenbogen et al.1 as an original way to correlate the cleavage of two chemical bonds. In a medicinal chemistry context, this strategy was proposed to overcome limitations of prodrugs, classically made of two moieties: an activator, reacting with an enzyme as a substrate, and a bioactive compound, as a drug or a reporter. The introduction of the spacer core involves the addition of a third moiety designed to release the effector after activation. The second bond is cleaved spontaneously after cleavage of the trigger (Scheme 1). A variety of self-immolative spacers have been introduced over the years in the literature²⁻⁴ and for instance used in cancer chemotherapy (Adcetris®).⁵⁻⁸ In this strategy, the spontaneous release introduces a second step with its own kinetic parameters. For most applications (medicinal chemistry, analytical chemistry, materials or chemical biology), the self-immolative step needs to be fast enough in order to avoid the release too far from the activation site. Our aim has been to obtain comparative data on the kinetics of the self-immolative step so that anyone can choose a spacer suited to their applications. Kinetics of some self-immolative spacers have been studied during the past,

Scheme 1 Cyclisation-based spacers investigated, with (a) trimethyl lock and (b) 2-HPC. PG = 4,5-dimethoxy-2-nitrobenzyl; DDAO = 1,3-dichloro-9,9-dimethyl-9H-acridin-2(7)-one.

especially for elimination-based releases.^{9–12} This is why we focused our present studies on the other class of spacers exploiting cyclisation in a self-immolative step. In this series of spacers, the activation step generates a nucleophilic heteroatom (like nitrogen or oxygen; less often sulfur¹³) which attacks an electrophilic centre (classically a carbonyl) on another position of the skeleton of the molecule¹⁴ (Scheme 1).

To measure accurately the kinetics of the self-immolation step, a general procedure was set up based on fast and controlled photoactivation; the fluorescence measurement of a reporter then gave access to the kinetic constants. ^{9–12} We have already published comparative data on kinetic constants of various elimination-based spacers (1,4 and 1,6) supported by aromatic ^{10,11} or heteroaromatic rings. ¹² In order to complete our comprehension of rate description of self-immolative spacers, we measured the kinetics of cyclisation-based spacers. Two main questions were addressed, the effect of the nature of

a)

TML

DDAO

DDA

^aInstitut Curie, PSL Research University, CNRS UMR3666, INSERM U1143, 26 rue d'Ulm, F-75005 Paris, France. E-mail: Frederic.Schmidt@curie.fr ^bÉcole Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France. E-mail: Ludovic.Jullien@ens.fr

^cEcole Normale Supérieure, Département de Chimie, UMR CNRS ENS-UPMC 8640 PASTEUR24 rue Lhomond, 75231 Paris, France

^dSorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France

 $[\]dagger \, \text{Electronic}$ supplementary information (ESI) available. See DOI: 10.1039/c7ob00121e

the spacer and the comparison between the elimination and cyclisation processes.

Results and discussion

Molecular design

The structure of the targeted compounds was tripartite: a photocleavable moiety, the self-immolative spacer, and a reporter (fluorophore).

A classical 4,5-dimethoxy-2-nitrobenzyl (also called 6-nitroveratryl) group was used for the photocleavage step. This protecting group (denoted PG in Scheme 1) has been reported to be selectively cleaved by near-UV irradiation (365 nm), with excellent yield, and allows a millisecond timescale resolution.¹⁰

Self-immolative spacers commonly reported in the literature are mainly based on phenyl cores, as aniline and phenol derivatives. The nitrogen or oxygen atom, typically involved in a bond with various protecting groups, triggers the self-immolation process. Here we used a phenol core, acting as a nucleophile during the elimination step. Two representative series seemed particularly interesting for cyclisation studies (Scheme 1):

Trimethyl-lock derivatives $^{13-18}$ *via* 6-*exo*-trig-cyclisation. These are the most widely used cyclisation-based spacers.

2-Hydroxyphenyl carbamate (2-HPC) derivatives ¹⁹ *via* 5-*exo*trig cyclisation. These derivatives are less popular but are good models to study the influence of substituents on the self-immolation rate (4 substituents were selected: methoxy, nitro, H, bromide).

In order to analyse the stoichiometry and kinetics of cyclisation reactions, we used 1,3-dichloro-9,9-dimethyl-9*H*-acridin-2 (7)-one (DDAO in Scheme 1) as a fluorescent reporter. This moiety does not emit fluorescence in caged precursors, but emits strongly in the red-wavelength region in the free phenol state.

Trimethyl-lock synthesis

The synthesis of the trimethyl-lock derivative (see Scheme 2) began by an esterification and an aromatic electrophilic substitution of 3,5-dimethylphenol with 3,3-dimethylacrylic acid under heating and acidic conditions to form the corresponding dihydrocoumarin. The lactone was then reduced by lithium aluminium hydride, leading to the free alcohol. These two steps are common in trimethyl lock derivative syntheses. The following steps have been adapted to produce our own compound. The phenol was engaged in an etherification reaction with 6-nitroveratryl bromide, and then the primary alcohol was successively oxidized to aldehyde and carboxylic acid by, respectively, pyridinium dichromate and a Pinnick oxidation. The acid was finally converted to acyl chloride by phosgene and esterified by DDAO to give the desired ester with an overall yield of 72%.

OH

a)

$$17$$
 18

OH

 NO_2

Scheme 2 Synthesis of the trimethyl-lock derivative. Reagents and conditions: (a) 3.3-dimethylacrylic acid, methane sulfonic acid, toluene, 85 °C (99%); (b) LiAlH₄, THF, 0 °C to rt (93%); (c) 4,5-dimethoxy-2-nitrobenzyl bromide, Cs₂CO₃, THF, rt (93%); (d) pyridinium dichromate (PDC), CH₂Cl₂, rt (95%); (e) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, acetone/ tBuOH/water, rt (89%); (f) 1. phosgene, THF, rt; 2. NEt₃, 4-dimethyl-aminopyridine (DMAP), DDAO, THF, rt (quant.).

Phenol-carbamate syntheses

The general synthesis of the 2-HPC (see Scheme 3) derivatives started by the aniline protection of the corresponding commercial 2-aminophenol with a Boc group. The selective protection of the aniline function *versus* phenol came from a metha-

OH NH₂

$$R = NO_2 \Rightarrow 1$$
 $R = NO_2 \Rightarrow 5$
 $R = NO_2 \Rightarrow 9$
 $R = NO_3 \Rightarrow 3$
 $R = OCH_3 \Rightarrow 3$
 $R = OCH_3 \Rightarrow 7$
 $R = Br \Rightarrow 4$
 $R = Br \Rightarrow 8$
 $R = NO_2 \Rightarrow 12$
 $R = R \Rightarrow 12$
 $R = R \Rightarrow 14$
 $R = OCH_3 \Rightarrow 15$
 $R = R \Rightarrow 16$
 $R = R \Rightarrow 16$

Scheme 3 General synthesis of 2-HPC derivatives, with R as a para substituent (H, Br, NO₂, OCH₃). Reagents and conditions: (a) Boc_2O , K_2CO_3 , THF, H_2O , rt (96% to quant.); (b) 4,5-dimethoxy-2-nitrobenzyl bromide, Cs_2CO_3 , THF, rt (71% to quant.); (c) trifluoroacetic acid (TFA), CH_2Cl_2 , rt (quant.); (d) CH_3I , K_2CO_3 , DMF, rt (42 to 50%); (e) 1. phosgene, THF, rt; 2. NEt₃, DMAP, DDAO, THF, rt (quant.).

nolysis step that led to carbonate cleavage keeping the carbamate intact. Etherification of the phenol position with 6-nitroveratryl bromide was carried out under basic conditions, and then the Boc protecting group was removed under acidic conditions using a $1:1~{\rm TFA:CH_2Cl_2}$ mixture. This liberated the free aniline which was then monomethylated by iodomethane. Other methods of selective monomethylation (such as reductive amination or use of a soft methylating agent like dimethyl carbonate) showed incompatibilities with our compounds. Finally, the secondary aniline was treated with phosgene, and the resulting carbamoyl chloride reacted with the phenol function of the DDAO to form the desired carbamate (overall yield, from the commercial anilines: 32 to 47%, depending on the substituents). These carbamates consisted of two rotamers (N–C bond).

Cyclisation rates

For the kinetic measurements, our working hypothesis was a two-step process as depicted in Scheme 4. The first step is a photocleavage of the caged precursor, associated with k_1 , the rate constant of uncaging, and the intramolecular cyclisation, where k_2 is the rate constant for the self-immolation step.

We followed the same procedure as previously described.¹¹ The principle is to irradiate the compound at 365 nm and to follow the liberation of the released DDAO by fluorimetry in a quartz cuvette under temperature (293 K) and pH control. The experimental data were then fitted with the kinetic model to retrieve the values of k_1 and k_2 . The results are reported in Table 1.

Discussion

Results showed that cyclisation generally occurs in the minute range, for both trimethyl lock and 2-HPC derivatives; disassembly times were close to each other, showing only a factor of six between the largest and the smallest. For the nitro

$$\begin{array}{c} \text{MeO} \\ \text{MeO} \\ \text{MeO} \\ \text{CHO} \\ \text{NO}_2 \\ \text{DDAO} \\ \text{K}_1 \text{(hv)} \\ \text{DDAO} \\ \text{CHO} \\ \text{MeO} \\ \text{DDAO} \\ \text{CHO} \\ \text{DDAO} \\ \text{OH} \\ \text$$

Scheme 4 Kinetic models for disassembly from photoactivation to self-immolation of trimethyl-lock (top) and 2-HPC (bottom) derivatives.

Table 1 Kinetic constants of trimethyl lock and 2-HPC derivatives. See the ESI for equations and methods; where $\tau=1/k_2$, k_2 rate constant of the self-immolation step. p K_a determination was carried out by following absorbance of protected aniline **1**, **2**, **3**, **4** as a function of pH, applying the same method as in Alouane *et al.*^{10,11}

Compound	pK_a of the phenol	$k_2 (\mathrm{min}^{-1})$	τ_2 (min)
2-HPC ^{NO2} (pH 5) 2-HPC ^{NO2} (pH 8) 2-HPC ^{Br} (pH 8) 2-HPC ^H (pH 8) 2-HPC ^{OCH3} (pH 8) TML (pH 8)	7.6 ± 0.1 7.6 ± 0.1 10.0 ± 0.1 10.7 ± 0.1 10.8 ± 0.1 10.2 ± 0.1	$ \begin{array}{c} (5.2 \pm 0.5)10^{-2} \\ (6.6 \pm 0.5)10^{-2} \\ (1.1 \pm 0.3)10^{-1} \\ (1.9 \pm 0.2)10^{-1} \\ (2.9 \pm 0.3)10^{-1} \\ (3.3 \pm 0.3)10^{-1} \end{array} $	19 15 9 5 3.5 3

derivative of 2-HPC, which is the only derivative with a physiological pK_a (7.6), we did not observe any significant dependence on pH: kinetics at pH 5 and pH 8 are close, showing only a 20% difference.

The trimethyl lock was important because of the large number of publications using it. The popularity of the trimethyl-lock is due to the Thorpe–Ingold effect, which is supposed to allow rapid intramolecular cyclisation. This steric effect is induced by the unfavourable interaction between the methyl at the *meta* position on the phenol core and the two geminal methyls on the alkyl chain (β position from the ester). Because of this steric hindrance, a conformation was favoured, making the carbonyl of the ester and the phenol closer. This vicinity was already known to drastically increase the cyclisation rate²⁰ but the kinetics of the process was still unknown. We measured only the rate constant of the **TML**, in line with the huge interest to this linkage compared to other carbonyl species (amide for instance).²⁰ The measured lactonisation time was around 3 min for this ester derivative.

The 2-HPC series was chosen to study the cyclisation rates of carbamates, which are relatively resistant to enzymes such as esterases or peptidases. The spacers have been modulated by variation of the substituents on the phenol core. The results enabled us to determine the effects of the substituent and of the protonation state on the kinetics of cyclisation. By lowering the pK_a via a withdrawing group, the proportion of phenolate is increased; the phenolate anion is more nucleophilic than the phenol and so able to accelerate the cyclisation process. We focused our attention on the nitro derivative, which exhibits a pK_a close to the physiological pH; in order to be in vivo/ in vitro deprotonated. We observed that the kinetics of the selfimmolation did not change significantly by deprotonating the nitrophenol, which led us to conclude that the gain of nucleophilicity was partially compensated by the conjugation of the phenolate with the nitro group. More generally, the more electron-donors the cycle has at the para position, the faster the cyclisation occurs in line with an enhanced nucleophilicity of the phenol: compared to the H derivative (para-hydrogen), we observed a relative acceleration with electron-donor groups and a moderate slow-down with electron-withdrawing groups. According to the literature, in both aliphatic²¹ and aromatic²² derivatives, nucleophilicity enhancement is a critical factor for

Scheme 5 Numeration for C¹³ and H¹ signals.

the cyclisation rate. Indeed, in every series (including ours, phenol-based ones), electron-donating groups made the nucleophile (oxygen or nitrogen in previously cited works) more reactive. Adding this to other parameters, like decreasing pK_a of the leaving group, changing the heteroatom, promoting cyclisation at high pH, choosing a better electrophilic carbonyl, or increasing temperature, various cyclisation-based spacer can be generated with half-times close to the minute range, or even less.

Eventually, this work and our previous work^{11,12} show that self-immolation in elimination-based spacers is much more rapid and substituent sensitive than in cyclisation-based spacers.

Conclusions

We investigated the self-immolation kinetics of common cyclisation-based self-immolative spacers. They exhibited release-times within the range of 1–10 minute at room temperature. Steric effects were more stringent than electronic effects to modulate the self-immolation rate. The comparison between cyclisation and elimination-driven self-immolation rates (as reported by Alouane *et al.*) 11,12 further suggested that the latter mechanism has more potential for modulating kinetics.

Experimental

The commercially available chemicals were used without further purification. Anhydrous solvents were freshly distilled before use. Low actinic glassware and an aluminium film were used for all experiments involving compounds bearing the nitroveratryl moiety. Column chromatography (CC): silica gel 60 (0.040–0.063 mm) Merck. Analytical and thin layer chromatography (TLC): Merck silica gel 60 F-254 precoated plates; detection by UV (254 and 365 nm). 1 H NMR spectra were recorded at 300 MHz. 13 C NMR spectra were recorded at 75 MHz with complete proton decoupling; chemical shifts (δ) in ppm related to a protonated solvent as the internal reference (1 H: CHCl $_3$ in CDCl $_3$, 7.26 ppm; 13 C: 13 CDCl $_3$ in CDCl $_3$, 77.0 ppm; coupling constants J in Hz; current notations are used for multiplicity (s: singlet; bs: broad singlet; d: doublet; dd: double doublet; t: triplet; q: quadruplet; m: multiplet)) (Scheme 5).

General procedure

Aniline protection (1, 2, 3, 4). To a solution of 2-aminophenol derivative (1 eq.) in THF/water (1:1 proportion) was

added K_2CO_3 (5 eq.) and di-tert-butyl dicarbonate (2.6 eq.). After stirring for 4 h at room temperature, the mixture was neutralized (acetic acid 100%, until pH 7), the organic layer was diluted with EtOAc and washed with water and brine, then dried on $MgSO_4$, filtered and concentrated under reduced pressure. The residue was resolubilized in MeOH and we added K_2CO_3 (5 eq.) and stirred at room temperature until no more evolution is observed (as seen on TLC, between 1 h 30 min and 4 h). The same work-up as previously applied to obtain the crude product.

Nitroveratryl coupling (5, 6, 7, 8). 4,5-Dimethoxy-2-nitrobenzyl bromide (1 eq.) was introduced into a solution containing the carbamate (1 eq.), and Cs_2CO_3 (1.5 eq.) in THF. The mixture was stirred overnight at room temperature, and then neutralized to pH 7 by 1 M HCl, washed with water and then with brine, dried on MgSO₄, filtered and evaporated. After purification on silica gel column chromatography, the corresponding ether was obtained.

Aniline deprotection (9, 10, 11, 12). The protected aniline (1 eq.) was solubilized in dichloromethane/trifluoroacetic acid (1:1 volume ratio) and stirred at room temperature for 30 min. After evaporation, the residue was taken up in EtOAc and washed with aqueous K_2CO_3 solution, water, and brine, then dried on MgSO₄, filtered and the solvent was removed *in vacuo*. The unprotected secondary anilines were isolated without further purification.

Aniline methylation (13, 14, 15, 16). The secondary anilines (1 eq.), K₂CO₃ (1.5 eq.), and iodomethane (1 eq.) in DMF were stirred at room temperature under argon until reaction showed no more evolution on TLC. The solvent was removed and the residue was solubilized in EtOAc. The organic layer was washed with water several times, and then with brine; and finally dried on MgSO₄, filtered and concentrated to dryness. The secondary anilines were obtained after purification by column chromatography on silica gel.

Coupling with DDAO (2-HPC). To a solution of N-methylaniline (1 eq.) in anhydrous THF, was carefully injected an excess of phosgene 30% in toluene (500 µL) under argon. The mixture was stirred at room temperature for 20 min. The remaining phosgene was eliminated by an argon flux (warning, highly toxic), and then the solution was added to a solution of 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2 4-dimethylaminopyridine (9H)-one (0.055)mmol), (0.055 mmol) and an excess of triethylamine (1 mL), in THF. The resulting solution was stirred under argon at room temperature overnight. The solvent was evaporated, and then the residue was taken up in dichloromethane; the organic phase was washed with a solution of K₂CO₃, water and brine; dried on MgSO₄, filtered and concentrated in vacuo. The final carbamates were purified by HPLC using 80 to 90% gradient of CH₃CN/water/0.1% TFA, Waters XBridge® Prep C18 5 μm OBD^{TM} 30 × 150 mm Column.

tert-Butyl(2-hydroxy-5-nitrophenyl)carbamate (1). The carbamate 1 was obtained without purification as a dark yellow powder (330 mg, 99%); rf 0.57 (40% EtOAc/cyclohexane); mp 111 °C; IR (cm⁻¹) 3264, 1765, 1530, 1151; $\delta_{\rm H}$ 1.54 (s, 9H, tBu),

3.81 (bs, 1H, OH), 7.9 (dd, 1H, J = 2.67/8.91 Hz, H₆), 8.06 (d, 1H, J = 2.64, H₃), 8.11 (dd, 1H, 2.70/8.94 Hz, H₅), 8.23 (bs, 1H, NH); $\delta_{\rm C}$ 28.2 (*t*Bu), 85.2 (Cq Boc), 117.2 (C₃), 121.1 (C₆), 126.2 (C₅), 126.8 (C₂), 151.8 (C₄), 153.4 (C=O), 158.6 (C₁); m/z 155, 199, 377 [M + Na]⁺. HRMS, calculated: m/z 277.0793, found: m/z 277.0792 ([M + Na]⁺), 278.0825 ([MN¹⁵ + Na]⁺).

tert-Butyl(2-((4,5-dimethoxy-2-nitrobenzyl)oxy)-5-nitrophenyl) carbamate (5). The crude product was purified by column chromatography on silica gel (20% EtOAc/cyclohexane) to give the ether 5 as a dark red solid (548 mg, 94%) rf 0.23 (20% EtOAc/cyclohexane); mp 122 °C; IR (cm⁻¹) 2979, 1785, 1519; $\delta_{\rm H}$ 1.36 (9H, s, tBu), 3.97 (3H, s, OCH₃ (1)), 4.03 (3H, s, OCH₃ (2)), 5.65 (1H, s, H₇), 7.15 (1H, d, 9.12 Hz, H₆), 7.36 (1H, s, H₁₃), 7.81 (1H, s, H₁₀), 8.13 (1H, d, 2.55 Hz, H₃), 8.26 (1H, dd, 2.58/9.06 Hz, H₅); $\delta_{\rm C}$ 27.8 (CH₃ Boc), 56.4−57.2 (OCH₃ (1) & (2)), 67.8 (C₇), 83.4 (Cq Boc), 108 (C₃), 108.5 (C₁₃), 111.9 (C₅), 125.4 (C₆), 125.5 (C₂), 127.4 (C₈), 129.2 (C₁₀), 138.3 (C₉), 141.5 (C₁₁), 148.1 (C₄), 150.8 (C=O Boc), 154.7 (C₁₂), 158 (C₁); m/z 196, 472 [M + Na]⁺. HRMS, calculated: m/z 472.1334, found: m/z 472.1326 ([M + Na]⁺).

2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-5-nitroaniline (9). The aniline 9 was directly obtained pure as a deeply red solid (427 mg, quantitative yield) rf 0.18 (30% EtOAc/cyclohexane); mp 187 °C; IR (cm⁻¹) 3368, 2922, 2851, 1783, 1514; $\delta_{\rm H}$ 3.92 (3H, s, OCH₃ (1)), 3.97 (3H, s, OCH₃ (2)), 5.62 (1H, s, H₇), 7.15 (1H, d, 9.12 Hz, H₆), 7.36 (1H, s, H₁₃), 7.81 (1H, s, H₁₀), 8.13 (1H, d, 2.55 Hz, H₃), 8.26 (1H, dd, 2.58/9.06 Hz, H₅); $\delta_{\rm C}$ 56.6 (OCH₃ (1) & (2)), 68.1 (C₇), 108.2 (C₃), 109.5 (C₅ & C₁₃), 111.1 (C₆), 114.8 (C₈), 127.4 (C₁₀), 136.9 (C₂), 139.5 (C₄), 142.5 (C₉), 148.3 (C₁₁), 150.1 (C₁), 154 (C₁₂); m/z 196, 350, 545 [M + H]⁺. HRMS, calculated: m/z 350.0910, found: m/z 350.0982 ([M + H]⁺).

2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-N-methyl-5-nitroaniline (13). The aniline 13 was obtained after purification by column chromatography on silica gel (15% EtOAc/cyclohexane) as a yellow solid (170 mg, 40%); rf 0.23 (20% EtOAc/cyclohexane); mp 197 °C; IR (cm⁻¹) 3424, 2921, 2851, 1271, 1219; $\delta_{\rm H}$ 2.96 (s, 3H, NCH₃), 3.90 (s, 3H, OCH₃ (1)), 3.98 (s, 3H, OCH₃ (2)), 5.62 (s, 2H, H₇), 6.78 (d, 1H, J = 9 Hz, H₆), 7.03 (s, 1H, H₁₃), 7.43 (d, 1H, J = 3 Hz, H₃), 7.58 (dd, 1H, J = 3/9 Hz, H₅), 7.77 (s, 1H, H₁₀); $\delta_{\rm C}$ 30.2 (NCH₃), 56.5 (OCH₃ (1) & (2)), 68.2 (C₇), 103.9 (C₃), 108.3 (C₅), 109.7 (C₁₃), 109.9 (C₆/C₈), 113 (C₁₀), 127.2 (C₂), 139.7 (C₉), 143.1 (C₁₁), 148.4 (C₁₂), 148.9 (C₁), 153.9 (C₄); m/z 196, 364 [M + H]⁺. HRMS, calculated: m/z 364.1140 (fM + H]⁺).

6,8-Dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl(2-((4,5-dimethoxy-2-nitrobenzyl)oxy)-5-nitrophenyl)(methyl)carbamate (2-HPC^{NO2}). The crude product was purified by column chromatography on silica gel (100% dichloromethane) to give the final carbamate 2-HPC^{NO2} (38.4 mg, quantitative yield) as a yellow solid; rf 0.14 (20% EtOAc/cyclohexane); mp 216 °C; IR (cm⁻¹) 2922, 2851, 1787, 1656, 1254, 1220; δ_H 1.67 (s, 6H, CH₃ DDAO), 3.42 (s, 3H, NCH₃), 3.90 (s, 3H, OCH₃ (1)), 4 (s, 3H, OCH₃ (2)), 5.71 (s, 2H, H₇), 6.88 (d, 1H, J = 8.1 Hz, H₆), 6.9 (s, 1H, H₁₃), 7.31 (s, 1H, H₂₂), 7.35 (d, 1H, J = 4.32 Hz, H₅), 7.5 (s, 1H, H₂₅), 7.84 (d, 1H, J = 4.32 Hz, H₃), 8.34 (s, 2H, H₁₅/H₂₆),

8.37 (s, 1H, H₁₀); $\delta_{\rm C}$ 26.5 (CH₃ DDAO), 30.9 (NCH₃), 56.5/56.9 (OCH₃ 1 and 2), 68.3 (C₃), 108.2 (C₅), 108.3 (C₃), 108.4 (C₁₃), 112.8 (C₁₅), 119.7 (C₆), 121.2 (C₂₅), 124.8 (C₂₆), 125.7 (C₂), 131.8 (C₈), 133 (C₁₀), 135.6 (C₁₉/C₂₁), 138.4 (C₉), 136.8 (C₄/C₂₄), 138.4 (C₁₆), 139.4 (C₁₁/C₁₂), 148.5 (C₁₈), 149.8 (C₁₄), 153.5 (C₂₂), 153.6 (C₂₃), 158.5 (C₁), 173.1 (C₂₀), 207 (C=O carbamate); m/z 196, 289, 371, 447, 697 [M + H]⁺. HRMS, calculated: m/z 697.1096, found: m/z 697.1105 ([M + H]⁺), 699.1088 ([MCl³⁷ + H]⁺).

tert-Butyl(2-hydroxyphenyl)carbamate (2). The carbamate 2 was obtained as a dark yellow powder (919 mg, 96%); rf 0.7 (40% EtOAc/cyclohexane); mp 142 °C; IR (cm⁻¹) 3284, 1690, 1147; $\delta_{\rm H}$ 1.53 (s, 9H, tBu), 6.77 (bs, 1H, OH), 6.85 (d, 1H, J = 14.7 Hz, H₆), 6.94 (d, 1H, 14.6 Hz, H₄), 6.98 (d, 1H, 9.2 Hz, H₅), 7.15 (d, 1H, 7.5 Hz, H₃); $\delta_{\rm C}$ 28.3 (CH₃ Boc), 82.1 (Cq Boc), 118.9 (C₆), 120.8 (C₄), 121.4 (C₂), 125.7 (C_{3/5}), 147.5 (C₁), 155.1 (C=O Boc); m/z 176, 232 [M + Na]⁺. HRMS, calculated: m/z 232.0917, found: m/z 232.0943 ([M + Na]⁺).

tert-Butyl(2-((4,5-dimethoxy-2-nitrobenzyl)oxy)phenyl)carbamate (6). The crude product was purified by column chromatography on silica gel (20% EtOAc/cyclohexane) to give the ether 6 as a light yellow solid (376.1 mg, quantitative yield); rf 0.3 (20% EtOAc/cyclohexane); mp 137 °C; IR (cm⁻¹) 3452, 2943, 2897, 1730, 1221, 1150; $\delta_{\rm H}$ 1.52 (s, 9H, tBu), 3.92 (s, 3H, OCH₃ (1)), 3.96 (s, 3H, OCH₃ (2)), 5.54 (s, 2H, H₇), 6.84 (dd, 1H, J = 1.26/14.7 Hz, H₆), 6.9 (dd, 1H, J = 1.3/14.1 Hz, H₄), 6.95 (dd, 1H, J = 1.3/14 Hz, H₅), 7.12 (bs, 1H, NH), 7.18 (s, 1H, H₁₃), 7.77 (s, 1H, H₁₀), 8.07 (d, 1H, J = 7 Hz, H₃); $\delta_{\rm C}$ 28.5 (CH₃ Boc), 55.9 (OCH₃ (1) & (2)), 67.7 (C₇), 82.3 (Cq Boc), 109.5 (C₁₃), 118.7 (C₈), 119.1 (C₆), 121 (C₄), 121.6 (C₂), 122.2 (C₁₀), 125.9 (C_{3/5}), 136.5 (C₉), 139.1 (C₁₁), 145.7 (C₁₂), 147.7 (C₁), 155.3 (C=O Boc); m/z 196, 305, 349, 405 [M + H]⁺, 427 ([M + Na]⁺). HRMS, calculated: m/z 405.1617, found: m/z 405.1661 ([M + H]⁺).

2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)aniline (10). The aniline 10 was obtained as a yellow solid (137.7 mg, quantitative yield); rf 0.24 (30% EtOAc/cyclohexane); mp 115 °C; IR (cm⁻¹) 3453, 2946, 2907, 1221, 1151; $\delta_{\rm H}$ 3.90 (s, 3H, OCH₃ (1)), 3.93 (s, 3H, OCH₃ (2)), 5.49 (s, 2H, H₇), 6.64 (dd, 1H, J = 1.3/14.7 Hz, H₆), 6.69 (dd, 1H, J = 1.28/13.7 Hz, H₄), 6.76 (dd, 1H, J = 1.3/14 Hz, H₅), 6.8 (dd, 1H, J = 1.7/14.2 Hz, H₃), 7.25 (s, 1H, H₁₃), 7.72 (s, 1H, H₁₀); $\delta_{\rm C}$ 56.1 (OCH₃ (1) and (2)), 68.1 (C₇), 109.7 (C₁₃), 118.9 (C₈), 119.5 (C₆), 121.5 (C₄), 122.1 (C₂), 122.3 (C₁₀), 126.4 (C_{3/5}), 136.9 (C₉), 139.3 (C₁₁), 145.9 (C₁₂), 148.1 (C₁); m/z 196, 305 [M + H]⁺. HRMS, calculated: m/z 305.1093, found: m/z 305.1131 ([M + H]⁺).

2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-N-methylaniline (14). The aniline 14 was obtained after purification by column chromatography on silica gel (15% EtOAc/cyclohexane) as an orange solid (60 mg, 48%); rf 0.36 (20% EtOAc/cyclohexane); mp 130 °C; IR (cm⁻¹) 2976, 2999, 1215; $\delta_{\rm H}$ 2.9 (s, 3H, NCH₃), 3.90 (s, 3H, OCH₃ (1)), 3.95 (s, 3H, OCH₃ (2)), 4.32 (bs, 1H, NH), 5.51 (s, 2H, H₇), 6.58 (d, 1H, J = 1.32 Hz, H₅), 6.61 (d, 1H, J = 1.32 Hz, H₄), 6.65 (d, 1H, J = 7.62 Hz, H₆), 6.93 (d, 1H, J = 7.89 Hz, H₃), 7.21 (s, 1H, H₁₃), 7.44 (s, 1H, H₁₀); $\delta_{\rm C}$ 30.5 (NCH₃), 56.4 (OCH₃ (1) & (2)), 68.1 (C₇), 109.7 (C₁₃), 118.9 (C₈), 119.5 (C₆), 121.5 (C₄), 122.1 (C₂), 122.3 (C₁₁), 126.4 (C_{3/5}), 136.9 (C₉), 139.3 (C₁₁), 145.9 (C₁₂), 148.1 (C₁); m/z 196, 319 [M + H]⁺.

HRMS, calculated: m/z 319.1249, found: m/z 319.1288 ($[M + H]^+$).

6,8-Dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl(2-((4,5dimethoxy-2-nitrobenzyl)oxy)phenyl)(methyl)carbamate (2-HPC^H).The crude product was purified by column chromatography on silica gel (100% dichloromethane) to give the carbamate 2-HPC^H (110.4 mg, quantitative yield) as a yellow solid; rf 0.27 (20% EtOAc/cyclohexane); mp 160 °C; IR (cm⁻¹) 3382, 2915, 2850, 2813, 1710, 1502; $\delta_{\rm H}$ 1.58 (s, 6H, CH₃ DDAO), 3.32 (s, 3H, NCH₃), 3.82 (s, 3H, OCH₃ (1)), 3.95 (s, 3H, OCH₃ (2)), 5.52 (s, 2H, H_7), 6.58 (d, 1H, J = 1.32 Hz, H_5), 6.61 (d, 1H, J = 1.32 Hz, H_7), 6.62 (d, 1H, J = 1.32 Hz, H_7), 6.62 (d, 1H, J = 1.32 Hz, H_7), 6.62 (d, 1H, J = 1.32 Hz, H_7), 6.62 (d, 1H, J = 1.32 Hz, H_7), 6.63 (d, 1H, J = 1.32 Hz, H_7), 6.64 (d, 1H, J = 1.32 Hz, H_7), 6.64 (d, 1H, J = 1.32 Hz, H_7), 6.65 (d, 1.32 Hz, H_4), 6.75 (d, 1H, J = 7.62 Hz, H_6), 6.87 (s, 1H, H_{22}), 6.93 (d, 1H, J = 7.89 Hz, H₃), 7.11 (s, 1H, H₂₆), 7.21 (s, 1H, H₁₃), 7.22 (s, 1H, H_{25}), 7.38 (s, 1H, H_{15}), 7.44 (s, 1H, H_{10}); δ_C 27.8 (CH₃ DDAO), 30.5 (NCH₃), 32.8 (C₁₇), 56.4 (OCH₃ (1) & (2)), 68.1 (C₇), 109.7 (C₁₃), 118.8 (C₁₅), 118.9 (C₈), 119.5 (C₆), 120.1 (C_{26}) , 120.4 (C_{25}) , 121.5 (C_4) , 122.1 (C_2) , 122.3 (C_{10}) , 126.4 $(C_{3/5})$, 129.4 (C_{21}) , 129.9 (C_{19}) , 136.9 (C_{9}) , 139.3 (C_{11}) , 140.8 (C_{24}) , 144.6 (C_{16}) , 145.9 (C_{12}) , 147.2 (C_{18}) , 148.1 (C_1) , 151.2 (C_{22}) , 158.8 (C_{14}) , 164.6 (C_{23}) , 170.2 (C_{20}) ; m/z 196, 345, 652 $[M + H]^+$. HRMS, calculated: m/z 652.1146, found: m/z $652.1252 ([M + H]^{+}), 654.1235 ([MCl^{37} + H]^{+}).$

tert-Butyl(2-hydroxy-5-methoxyphenyl)carbamate (3). The carbamate 3 was obtained as a dark red oil (555.1 mg, quantitative); rf 0.77 (40% EtOAc/cyclohexane); IR (cm⁻¹) 3225, 2857, 1726, 1150; $\delta_{\rm H}$ 3.66 (s, 3H, methoxy), 6.14 (dd, 1H, J = 2.94/8.94 Hz, H₅), 6.36 (d, 1H, J = 2.91 Hz, H₃), 6.58 (d, 1H, J = 8.58 Hz, H₆); $\delta_{\rm C}$ 55.6 (OCH₃ phenol), 106.3 (C₃), 110 (C₆), 118.2 (C₅), 126.3 (C₂), 140.3 (C₁), 153.5 (C₄); m/z 140 [M + H]⁺, 206, 262 [M + Na]⁺. HRMS, calculated: m/z 262.1091, found: m/z 262.1050 ([M + Na]⁺).

tert-Butyl(2-((4,5-dimethoxy-2-nitrobenzyl)oxy)-5-methoxyphenyl) carbamate (7). The crude product was purified by column chromatography on silica gel (50% dichloromethane/cyclohexane) to give the ether 7 as a red solid (485.5 mg, 71%); rf 0.33 (20% EtOAc/cyclohexane); mp 143 °C; IR (cm⁻¹) 3451, 2975, 2904, 2863, 1712, 1271; $\delta_{\rm H}$ 1.49 (s, 9H, tBu), 3.68 (s, 3H, methoxy), 6.47 (dd, 1H, J = 2.88/8.70 Hz, H₅), 6.78 (d, 1H, J = 8,5 Hz, H₆), 7.12 (d, 1H, J = 2.6 Hz, H₃); $\delta_{\rm C}$ 28.3 (CH₃ Boc), 55.6 (methoxy), 81.8 (Cq Boc), 106.5 (C₃), 110.2 (C₆), 118.4 (C₅), 126.5 (C₂), 140.5 (C₁), 152.5 (C=O Boc), 153.7 (C₄); m/z 140, 196, 335, 379 [M + H]⁺, 457 [M + Na]⁺. HRMS, calculated: m/z 435.1789, found: m/z 435.1763 ([M + H]⁺).

2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-5-methoxyaniline (11). The aniline 11 was obtained as a red solid (m=639 mg, quantitative yield); rf 0.35 (30% EtOAc/cyclohexane); mp 117 °C; IR (cm⁻¹) 3193, 2918, 2863, 1208; $\delta_{\rm H}$ 3.67 (s, 1H, methoxy), 3.82 (s, 1H, OCH₃ (1)), 3.91 (s, 1H, OCH₃ (2)), 5.4 (s, 2H, H₇), 6.78 (dd, 1H, J=2.3/8.9 Hz, H₅), 6.85 (d, 1H, 8.9 Hz, H₆), 6.99 (d, 1H, 2.3 Hz, H₃), 7.12 (s, 1H, H₁₃), 7.65 (s, 1H, H₁₀), 11.08 (bs, 2H, NH₂); $\delta_{\rm C}$ 55.5 (methoxy), 56.5 (OCH₃ (1) and (2)), 68.7 (C₇), 102.3 (C₃), 102.5 (C₅), 108 (C₆), 109.5 (C₈), 114.3 (C₁₀/C₁₃), 129.9 (C₂), 139.2 (C₄), 140.2 (C₁), 148.8 (C₉), 153.9 (C₁₂), 155.2 (C₁₁); m/z 154, 182, 196, 335, 357 [M + H]⁺. HRMS, calculated: m/z 335.1165, found: m/z 335.1239 ([M + H]⁺).

2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-5-methoxy-N-methylaniline (15). The aniline 15 was obtained after purification by column chromatography on silica gel (15% EtOAc/cyclohexane) as a yellow solid (148.9 mg, 45%); rf 0.51 (20% EtOAc/cyclohexane); mp 153 °C; IR (cm⁻¹) 3406, 2929, 1516; $\delta_{\rm H}$ 3.87 (s, 3H, NCH₃), 3.76 (s, 3H, methoxy), 3.92 (s, 3H, OCH₃ (1)), 3.96 (s, 3H, OCH₃ (2)), 5.46 (s, 2H, H₇), 6.1 (dd, 1H, J = 3.00/9.00 Hz, H₅), 6.24 (d, 1H, J = 2.8 Hz, H₃), 6.67 (d, 1H, J = 8.9 Hz, H₆), 7.24 (s, 1H, H₁₃), 7.75 (s, 1H, H₁₀); $\delta_{\rm C}$ 30.3 (NCH₃), 56.1 (methoxy), 56.4 (OCH₃ (1) & (2)), 70.1 (C₇), 107 (C₃), 110.7 (C₆), 113.4 (C₁₃), 118.9 (C₅), 127 (C₂), 127.8 (C₈), 129.9 (C₁₀), 140.4 (C₉), 140.9 (C₁), 142.4 (C₁₁), 154.2 (C₄), 156.6 (C₁₂); m/z 152, 349 [M + H]⁺. HRMS, calculated: m/z 349.1355, found: m/z 349.1393 ([M + H]⁺).

6,8-Dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl(2-((4,5dimethoxy-2-nitrobenzyl)oxy)-5-methoxyphenyl)(methyl)carbamate (2-HPCOCH3). The crude product was purified by column chromatography on silica gel (100% dichloromethane) to give the final carbamate 2-HPCOCH3 (44.4 mg, quantitative yield) as a brown solid; rf 0.27 (20% EtOAc/cyclohexane); mp 103 °C; IR (cm⁻¹) 2924, 2801, 1726, 1657, 1235; $\delta_{\rm H}$ 1.58 (s, 6H, CH₃ DDAO), 3.31 (s, 3H, NCH₃), 3.77/3.81 (s, 6H, OCH₃ (1) & (2)), 3.91 (s, 3H, methoxy), 5.46 (s, 2H, H_7), 6.87 (m, 3H, $H_3/H_5/H_6$), 6.97 (d, 1H, J = 3 Hz, H_{15}), 7.03 (s, 1H, H_{25}), 7.38 (s, 1H, H_{13}), 7.44 (d, 1H, J = 9 Hz, H_{26}), 7.51 (s, 1H, H_{22}), 7.74 (s, 1H, H_{10}); $\delta_{\rm C}$ 29.7 (CH₃ DDAO), 39.1 (NCH₃), 56.9/56.5/55.8 (OCH₃ (1)& (2), methoxy), 67.7 (C₇), 106.6 (C₃/C₅), 108 (C₁₃), 108.6 (C₆), 113.4 (C_{15}) , 113.9 (C_{25}) , 114.9 (C_{26}) , 120 (C_2) , 121.5 (C_8) , 121.5 (C_9) , 129 (C_{21}) , 132.1 (C_{19}) , 132.9 (C_{10}) , 135.4 (C_{16}) , 137.2 (C_9) , 138.2 (C_{16}), 138.6 (C_{11}), 139.2 (C_{12}), 139.4 (C_{1}), 140.3 (C_{18}), 147.4 (C_{14}), 148 (C_{22}), 149.6 (C_{23}), 154.1 (C_4), 154.4 (C=O carbamate), 173.1 (C=O DDAO); m/z 149, 448, 682 [M + H]⁺. HRMS, calculated: m/z 682.1251, found: m/z 682.1356 $([M + H]^{+})$, 684.1341 $([MCl^{37} + H]^{+})$.

tert-Butyl(5-bromo-2-hydroxyphenyl)carbamate (4). The carbamate 4 was obtained as a red solid (750 mg, quantitative yield); rf 0.74 (40% EtOAc/cyclohexane); mp 135 °C; IR (cm⁻¹) 3262, 2978, 1691, 1150; $\delta_{\rm H}$ 1.52 (s, 9H, tBu), 6.65 (s, 1H, H₃), 6.82 (d, 1H, J = 8.58 Hz, H₆), 7.11 (dd, 1H, J = 3.87/8.49 Hz, H₅), 7.33 (s, 1H, OH), 7.87 (bs, 1H, NH); $\delta_{\rm C}$ 28.2 (CH₃ Boc), 82.6 (Cq Boc), 112.4 (C₄), 120 (C₆), 123.8 (C₃), 127.1 (C₂), 128.1 (C₅), 146.4 (C₁), 154.6 (C=O Boc); m/z 187, 231 [M + H]⁺, 310 [M + Na]⁺. HRMS, calculated: m/z 310.0037, found: m/z 310.0048 ([M + Na]⁺), 312.0029 ([MBr⁸¹ + Na]⁺).

tert-Butyl(5-bromo-2-((4,5-dimethoxy-2-nitrobenzyl)oxy)phenyl) carbamate (8). The crude product was purified by column chromatography on silica gel (20% EtOAc/cyclohexane) to give the ether as a brown solid (1.23 g, 94%); rf 0.34 (20% EtOAc/cyclohexane); mp 148 °C; IR (cm⁻¹) 3452, 2976, 2927, 1726; $\delta_{\rm H}$ 1.52 (s, 9H, tBu), 3.92 (s, 3H, OCH₃ (1)), 3.97 (s, 3H, OCH₃ (2)), 5.53 (s, 2H, H₇), 6.69 (d, 1H, J = 8.70 Hz, H₆), 7.03 (dd, 1H, J = 2.31/8.61 Hz, H₅), 7.11 (s, 2H, H₃/H₁₃), 7.77 (s, 1H, H₁₀), 8.3 (bs, 1H, NH); $\delta_{\rm C}$ 28.3 (tBu), 56.4 (OCH₃ (1) & (2)), 68.3 (C₇), 81.1 (Cq Boc), 108.2 (C₁₃), 109 (C₄), 113.3 (C₆), 114.7 (C₃), 121.4 (C₂), 125.1 (C₈), 129.6 (C₁₀), 139.1 (C₉), 145.1 (C₁₁), 148.2 (C₁₁), 152.3 (C=O Boc), 154 (C₁₂); m/z 196, 385, 427, 483 [M + H]⁺.

HRMS, calculated: m/z 483.0668, found: m/z 483.0766 ($[M + H]^+$), 485.0738 ($[MBr^{81} + H]^+$).

5-Bromo-2-((4,5-dimethoxy-2-nitrobenzyl)oxy)aniline (12). The aniline 18 was obtained as a dark red solid (955.1 mg, quantitative yield); rf 0.23 (30% EtOAc/cyclohexane); mp 142 °C; IR (cm⁻¹) 3366, 2917, 2884, 1271, 1192; $\delta_{\rm H}$ 3.64 (bs, 2H, NH₂); 3.92 (s, 3H, OCH₃ (1)); 3.95 (s, 3H, OCH₃ (2)); 5,49 (s, 2H, H₇); 6,62 (d, 1H, J = 8.58 Hz, H₆); 6.75 (1H, dd, 2.19/8.52 Hz, H₅), 6.86 (1H, d, 2.22 Hz, H₃), 7.17 (1H, s, H₁₃), 7.74 (1H, s, H₁₀); $\delta_{\rm C}$ 56.4 (OCH₃ (1) & (2)), 68.0 (C₇), 108.1 (C₁₃), 109.4 (C₄), 114.1 (C₃), 114.4 (C₆), 118.0 (C₅), 121.0 (C₈), 128.9 (C₁₀), 138.0 (C₂), 139.3 (C₉), 144.7 (C₁₁), 148.0 (C₁), 153.9 (C₁₂); m/z 196, 383 [M + H]⁺. HRMS, calculated: m/z 383.0144, found: m/z 383.0234 ([M + H]⁺), 385.0217 ([MBr⁸¹ + H]⁺).

5-Bromo-2-((4,5-dimethoxy-2-nitrobenzyl)oxy)-N-methylaniline (16). The aniline 16 was obtained after purification by column chromatography on silica gel (15% EtOAc/cyclohexane) as a yellow solid (496 mg, 50%); rf 0.26 (20% EtOAc/cyclohexane); mp 170 °C; IR (cm⁻¹) 2922, 28.47, 1209, 1155; $\delta_{\rm H}$ 2.88 (3H, s, NCH₃), 3.91 (3H, s, OCH₃ (1)), 3.96 (3H, s, OCH₃ (2)), 5.50 (2H, s, H₇), 6.60 (1H, d, J = 8.46 Hz, H₆), 6.76 (1H, d, J = 8.31 Hz, H₅), 6.82 (1H, s, H₃), 7.15 (1H, s, H₁₃), 7.75 (1H, s, H₁₀); $\delta_{\rm C}$ 30.4 (NCH₃), 56.5 (OCH₃ (1) & (2)), 68.3 (C₇), 108.0 (C₁₃), 109.5 (C₃), 113.0 (C₄), 115.4 (C₆), 119.1 (C₅), 129.0 (C₈), 139.4 (C₁₀), 140.6 (C₉), 144.5 (C₂), 148.3 (C₁₁/C₁), 154.1 (C₁₂); m/z 196, 397 [M + H]⁺. HRMS, calculated: m/z 397.0300, found: m/z 397.0392 ([M + H]⁺), 399.0373 ([MBr⁸¹ + H]⁺).

6,8-Dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl(5-bromo-2-((4,5-dimethoxy-2-nitrobenzyl)oxy)phenyl)(methyl)carbamate $(2-HPC^{Br})$. The crude product was purified by column chromatography on silica gel (100% dichloromethane) to give the carbamate 2-HPCBr (24.1 mg, quantitative yield) as a dark green solid; rf 0.31 (20% EtOAc/cyclohexane); mp 146 °C; IR (cm⁻¹) 2923, 1728, 1658, 1222; $\delta_{\rm H}$ 1.67 (s, 6H, CH₃ DDAO), 3.38 (s, 3H, NCH₃), 3.88 (s, 3H, OCH₃ (1)), 3.99 (s, 3H, OCH₃ (2)), 5.57 $(s, 2H, H_7), 6.93 (d, 1H, J = 9 Hz, H_5), 7.03 (s, 1H, H_{13}), 7.09$ (d, 1H, J = 6 Hz, H₃), 7.39 (s, 1H, H₆), 7.52 (m, 3H, H₂₅/H₂₆/ H_{15}), 7.60 (s, 1H, H_{10}), 7.82 (s, 1H, H_{22}); δ_C 25.6/26.4 (CH₃ DDAO), 29.7 (NCH₃), 56.5 (OCH₃ (1)), 56.9 (OCH₃ (2)), 67.6 (C_{17}) , 68 (C_7) , 108.2 (C_{13}) , 108.4 (C_4) , 113.5 (C_6) , 114.7 (C_{15}) , 119.8 (C₂₆), 121.4 (C₂₅), 128 (C₃), 131.6 (C₈), 132.3 (C₅), 132.7 (C_2) , 135.6 (C_{21}) , 137.3 (C_{19}) , 138.2 (C_{24}) , 138.7 (C_{16}) , 139.3 (C_{11}) , 140.2 (C_{12}/C_{23}) , 148.2 (C_{18}) , 149.6 (C_{14}/C_{22}) , 152.6 (C_1) , 153.9 (C₉), 154.4 (C=O carbamate), 173.1 (C₂₀); m/z 397, 730 [M + H]⁺. HRMS, calculated: m/z 730.0260, found: m/z730.0358 ($[M + H]^+$), 732.0333 ($[MBr^{81} + H]^+$), 734.0319 $([MCl^{37}Br^{81} + H]^+).$

4,4,5,7-Tetramethyl-2-chromanone (17). 3,5-Dimethylphenol (500 mg, 4.09 mmol) and 3,3-dimethylacrylic acid (409.5 mg, 4.09 mmol) were dissolved in toluene (15 mL). Then methyl sulfonic acid was added (2.92 mL, 20.45 mmol). The mixture was stirred for 4 h under argon at 85 °C. After solvent evaporation, the reaction mixture was diluted with EtOAc and washed with $\rm K_2CO_3$ (1 M) solution, water and brine; and finally dried over anhydrous magnesium sulphate. The solvent was removed under vacuum affording a yellow oil (827 mg, 99%); rf

0.72 (30% EtOAc/cyclohexane); IR (cm⁻¹) 2966, 1766; $\delta_{\rm H}$ 1.42 (6H, s, H₁₀/H₁₁), 2.25 (3H, s, H₇), 2.45 (3H, s, H₈), 2.56 (2H, s, H₁₂), 6.72 (2H, d, J = 4.86 Hz, H₄/H₆); $\delta_{\rm C}$ 20.9 (C₇), 23.9 (C₈), 28.2 (C₁₀/C₁₁), 35.5 (C₉), 46.0 (C₁₂), 117.0 (C₆), 126.9 (C₄), 130.1 (C₃), 136.6 (C₂), 138.2 (C₅), 152.0 (C₁), 169.3 (C₁₃); m/z 175, 205 [M + H]⁺. HRMS, calculated: m/z 205.1184, found: m/z 205.1222 ([M + H]⁺).

2-(4-Hydroxy-2-methylbutan-2-yl)-3,5-dimethylphenol (18). To a solution of 4,4,5,7-tetramethyl-2-chromanone (500 mg, 2.45 mmol) in anhydrous THF (10 mL) in an ice bath was added lithium aluminium hydride (766.6 mg, 12.12 mmol) portion wise. The heterogeneous mixture was allowed to warm at room temperature and stirred 1 h 30 min under argon. The excess of LiAlH₄ was neutralized with NH₄Cl at 0 °C, and then the suspension was filtered on Celite 535; the resulting filtrate was diluted with EtOAc and treated with 1 M HCl, water and brine; and finally dried on MgSO4, filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica gel, giving the alcohol 18 as an off-white powder (479 mg, 94%); rf 0.35 (30% EtOAc/cyclohexane); mp 78 °C; IR (cm⁻¹) 3508; $\delta_{\rm H}$ (CD₃OD) 1.55 (6H, s, H₁₀/H₁₁), 2.17 $(3H, s, H_7), 2.27 (2H, t, J = 6.24 Hz, H_{12}), 2.48 (3H, s, H_8), 3.62$ $(2H, dd, J = 7.24/14.61 Hz, H_{13}), 6.34 (1H, s, H_4), 6.45 (1H, bs,$ OH), 6.49 (1H, s, H₆); $\delta_{\rm C}$ (CD₃OD) 20.6 (C₇), 26.0 (C₈), 32.1 (C_{10}/C_{11}) , 45.2 (C_{12}) , 61.9 (C_{13}) , 113.6 (C_6) , 127.2 (C_4) , 136.7 (C_2), 138.4 (C_3), 139.9 (C_5), 156.1 (C_1); m/z 123, 189, 209 $[M + H]^+$, 231 $[M + Na]^+$. HRMS, calculated: m/z 209.1497, found: m/z 209.1531 ([M + H]⁺).

3-(2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-4,6-dimethylphenyl)-3methylbutan-1-ol (19). K₂CO₃ (559.8 mg, 4.05 mmol, 1.5 eq.) was added to a solution of 2-(4-hydroxy-2-methylbutan-2-yl)-3,5-dimethylphenol (563 mg, 2.7 mmol, 1 eq.) in DMF (12 mL). After 2 min, 4,5-dimethoxy-2-nitrobenzyl bromide (740 mg, 2.7 mmol, 1 eq.) was added. The mixture was stirred under argon overnight, and then treated with an aqueous solution of K₂CO₃, water and brine; dried on MgSO₄, filtered and evaporated. The crude product was purified by column chromatography on silica gel (40% EtOAc/cyclohexane) to give the ether as an orange solid (879 mg, 81%); rf 0.17 (30% EtOAc/cyclohexane); mp 86 °C; IR (cm⁻¹) 3326, 2969, 1274; $\delta_{\rm H}$ 1.58 (6H, s, H_{10}/H_{11}), 2.21 (3H, s, H_7), 2.24 (2H, t, J = 7.24 Hz, H_{12}), 2.51 $(3H, s, H_8)$, 3.57 $(2H, t, J = 7.23 Hz, H_{13})$, 3.94 $(3H, s, OCH_3)$ (1)), 3.97 (3H, s, OCH₃ (2)), 5.50 (2H, s, H₁₄), 6.58 (2H, s, H₄/ H_6), 7.37 (1H, s, H_{20}), 7.78 (1H, s, H_{17}); δ_C 21.0 (C_7), 26.2 (C_8), 32.7 (C₁₀/C₁₁), 40.5 (C₉), 46.0 (C₁₂), 56.5 (OCH₃ (1) & (2)), 61.5 (C_{13}) , 69.4 (C_{14}) , 108.5 (C_{20}) , 110.6 (C_6) , 114.0 (C_4) , 129.0 (C_{15}) , 130.6 (C₂), 131.4 (C₁₇), 137.1 (C₃), 138.3 (C₅), 139.3 (C₁₆), 148.5 (C_{18}) , 154.3 (C_1) , 158.8 (C_{19}) ; m/z 196, 318, 404, 421 $[M + H]^+$. HRMS, calculated: m/z 404.2028, found: m/z 404.2069 $([M + H]^{+}).$

3-(2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-4,6-dimethylphenyl)-3-methylbutanal (20). To a solution of 3-(2-((4,5-dimethoxy-2-nitrobenzyl)oxy)-4,6-dimethylphenyl)-3-methylbutan-1-ol (714.9 mg, 1.77 mmol, 1 eq.) in 10 mL of dichloromethane was added pyridinium dichromate (2.66 g, 7.08 mmol, 4 eq.). The mixture was stirred under argon for 24 h, then treated with NH₄Cl,

water and brine; dried over MgSO₄, filtered and concentrated *in vacuo*. The crude product was purified by column chromatography (20% EtOAc/cyclohexane) to give the aldehyde as an orange solid (675 mg, 95%); rf 0.51 (30% EtOAc/cyclohexane); mp 106 °C; IR (cm⁻¹) 2919, 1721, 1275; $\delta_{\rm H}$ 1.62 (6H, s, H₁₀/ H₁₁), 2.16 (3H, s, H₇), 2.51 (3H, s, H₈), 2.97 (2H, s, H₁₂), 3.90 (3H, s, OCH₃ (1)), 3.94 (3H, s, OCH₃ (2)), 5.47 (2H, s, H₁₄), 6.52 (1H, s, H₄), 6.58 (1H, s, H₆), 7.20 (1H, s, H₂₀), 7.74 (1H, s, H₁₇), 9.54 (1H, s, H₁₃); $\delta_{\rm C}$ 21.0 (C₇), 26.2 (C₈), 32.3 (C₁₀/C₁₁), 39.2 (C₉), 57.1 (OCH₃ (1) & (2)), 69.2 (C₁₄), 108.5 (C₂₀), 110.2 (C₆), 113.9 (C₄), 128.9 (C₁₅), 129.9 (C₂), 130.2 (C₁₇), 137.4 (C₃), 138.0 (C₅), 139.3 (C₁₂), 148.4 (C₁₈), 154.4 (C₁), 157.8 (C₁₉), 204.1 (C₁₃); m/z 196, 338, 384, 402, 419 [M + H]⁺. HRMS, calculated: m/z 402.1872, found: m/z 402.1911 ([M + H]⁺).

3-(2-((4,5-Dimethoxy-2-nitrobenzyl)oxy)-4,6-dimethylphenyl)-3methylbutanoic acid (21). 3-(2-((4,5-Dimethoxy-2-nitrobenzyl) oxy)-4,6-dimethylphenyl)-3-methylbutanal (116 mg, mmol) was dissolved in a 10 mL of acetone/tert-butanol/water (17:12:3) mixture, then 2-methyl-2-butene (208 1.96 mmol, 6.75 eq.), sodium chlorite (137.7 mg, 1.52 mmol, 5.25 eq.), and sodium dihydrogenophosphate (53 mg, 0.44 mmol, 1.5 eq.) were added. The mixture was stirred overnight, and then neutralized with NH₄Cl. The organic phase was diluted with EtOAc, treated with water and dried on MgSO₄. After filtration, evaporation and purification on silica gel (40% EtOAc/cyclohexane), the acid was obtained as a light yellow powder (107.6 mg, 89%); rf 0.40 (40% EtOAc/cyclohexane); mp 120 °C; IR (cm⁻¹) 2927, 1711, 1275; $\delta_{\rm H}$ 1.79 (6H, s, $H_{10}H_{11}$), 2.26 (3H, s, H_8), 2.37 (3H, s, H_7), 3.64 (2H, s, H_{12}), 3.76 (3H, s, OCH₃ (1)), 3.90 (3H, s, OCH₃ (2)), 5.61 (2H, s, H₁₄), 6.65 (1H, s, H₄), 6.68 (1H, s, H₆), 7.40 (1H, s, H₂₀), 7.68 (1H, s, H_{17} ; δ_{C} 19.2 (C_{7}), 21.4 (C_{8}), 26.0 (C_{9}), 32.3 (C_{10}/C_{11}), 40.1 (C_{12}), 57.1 (OCH₃ (1) & (2)), 69.3 (C₁₄), 108.4 (C₂₀), 110.0 (C₆), 114.0 (C_4) , 128.8 (C_{15}) , 130.4 (C_2) , 130.7 (C_{17}) , 136.6 (C_3) , 138.2 (C_5) , 139.2 (C_{16}), 148.3 (C_{18}), 154.3 (C_{1}), 158.1 (C_{19}), 177.7 (C_{13}); m/z196, 318, 418 $[M + H]^+$, 435 $[M + NH_4]^+$. HRMS, calculated: m/z418.1821, found: m/z 418.1860 ([M + H]⁺).

6,8-Dichloro-9,9-dimethyl-7-oxo-7,9-dihydroacridin-2-yl-3-(2-((4,5-dimethoxy-2-nitrobenzyl)oxy)-4,6-dimethylphenyl)-3-methylbutanoate (TML). To a solution of 3-(2-((4,5-dimethoxy-2-nitrobenzyl)oxy)-4,6-dimethylphenyl)-3-methylbutanoic (15 mg, 0.036 mmol, 1 eq.) in anhydrous THF (5 mL), was injected an excess of 30% phosgene in toluene (300 µL) under an inert atmosphere. The mixture was stirred at room temperature for 45 min. The remaining phosgene was eliminated by an argon flux; this solution was then added to a solution of 1,3-dichloro-7-hydroxy-9,9-dimethylacridin-2(9H)-one (11.1 mg, 0.036 mmol), 4-dimethylaminopyridine (4.4 mg, 0.036 mmol) and an excess of triethylamine (1 mL) in THF (5 mL). The resulting solution was stirred under argon at room temperature overnight. The solvent was evaporated, then the residue was taken up in dichloromethane; the organic phase was washed with water and brine; dried on MgSO₄, filtered and concentrated in vacuo. The ester was purified by HPLC using 80 to 90% gradient of CH₃CN/water/0.1% TFA, Waters XBridge® Prep C18 5 μm OBDTM 30 × 150 mm Column, to give the pure product as a deep dark green solid (25 mg, quantitative yield); rf 0.40 (40% EtOAc/cyclohexane); mp 220 °C; IR (cm $^{-1}$) 2918, 1754, 1621; $\delta_{\rm H}$ 1.71 (s, 6H, CH $_{\rm 3}$ DDAO), 2.21 (s, 2H, H $_{\rm 7}$), 2.57 (s, 2H, H $_{\rm 8}$), 3.09 (s, 2H, H $_{\rm 19}$), 4.01 (s, 6H, OCH $_{\rm 3}$ (1) & (2)), 5.56 (s, 2H, H $_{\rm 9}$), 6.55–7.82 (m, 7H, ArH); $\delta_{\rm C}$ 11 (C $_{\rm 7}$), 14.1 (C $_{\rm 8}$), 20.7 (C $_{\rm 16}$), 23 (C $_{\rm 17}$), 23.7/25.8 (CH $_{\rm 3}$ DDAO), 38.9 (C $_{\rm 18}$), 56.4 (OCH $_{\rm 3}$ 1 and 2), 68.2 (C $_{\rm 9}$), 70.1 (C $_{\rm 19}$), 108.1 (C $_{\rm 2}$), 109.7 (C $_{\rm 3}$ /C $_{\rm 5}$), 128.5 (C $_{\rm 4}$), 128.8 (C $_{\rm 15}$ /C $_{\rm 23}$), 129.8 (C $_{\rm 10}$), 130.9 (C $_{\rm 14}$ /C $_{\rm 13}$), 132.4 (C $_{\rm 6}$), 147.9 (C $_{\rm 1}$ /C $_{\rm 11}$), 153.7 (C $_{\rm 25}$ /C $_{\rm 27}$), 167.8 (C $_{\rm 26}$), 187.8(C=O ester); m/z 350, 447, 647, 707 [M + H] $^+$ HRMS, calculated: m/z 707.1819, found: m/z 707.1922 ([M + H] $^+$), 709.1911 ([MCl $^{\rm 37}$ + H] $^+$).

Analytical solutions

All kinetic experiments have been performed in $CH_3CN/0.1$ M Britton–Robinson buffer²³ 1:1 (v:v). All solutions were prepared using water purified through a Direct-Q 5 (Millipore, Billerica, MA).

UV-Visible absorption. UV/Vis absorption spectra were recorded in 1 cm \times 1 cm quartz cuvettes (Hellma) on a diode array UV/Vis spectrophotometer (Cary 300, Agilent, Thermo Scientific) at 298 K.

Steady-state fluorescence emission

Corrected fluorescence spectra upon one-photon excitation were recorded with a Photon Technology International QuantaMaster QM-1 spectrofluorimeter (PTI, Monmouth Junction, NJ) equipped with a Peltier cell holder (TLC50, Quantum Northwest, Shoreline, WA). Solutions for fluorescence measurements were adjusted to $10~\mu M$.

Irradiation experiments

One-photon irradiation experiments were carried out on the spectrofluorimeter. Irradiation was performed using a filtered 75 W xenon lamp at several slit widths on 400 μL samples in 0.2 \times 1 cm² quartz fluorescence cuvettes (Hellma) under constant stirring.

Acknowledgements

The ComUE Paris Sciences et Lettres (PSL) is acknowledged for financial support to SH. Christine Gaillet and Stéphanie Deville-Foillard are acknowledged for NMR measurements and HPLC, respectively.

Notes and references

- 1 P. L. Carl, P. K. Chakravaty and J. A. Katzellenbogen, *J. Med. Chem.*, 1981, 24(5), 479–480.
- 2 A. Zheng, D. Shan and B. Wang, J. Org. Chem., 1999, 64, 156–161.
- 3 M. Shirangi, M. Najafi, D. T. S. Rijkers, R. J. Kok, W. E. Hennink and C. F. van Nostrum, *Bioconjugate Chem.*, 2016, 27, 576–585.

- 4 J. Sloniec-Myszk, U. Resch-Genger and A. Hennig, *J. Phys. Chem. B*, 2016, **120**, 877–885.
- 5 A. B. Mauger, P. J. Burke, H. H. Somani, F. Friedlos and R. J. Knox, *J. Med. Chem.*, 1994, 37, 3452–3458.
- 6 R. Madec-Lougerstay, J.-C. Florent and C. Monneret, *J. Chem. Soc., Perkin Trans.* 1, 1999, 1369–1375.
- 7 A. El Alaoui, N. Saha, F. Schmidt, C. Monneret and I.-C. Florent, *Bioorg. Med. Chem.*, 2006, 14, 5012–5019.
- 8 Y.-L. Leu, C.-S. Chen, Y.-J. Wu and J.-W. Chern, J. Med. Chem., 2008, 51, 1740–1746.
- A. Alouane, R. Labruère, T. Le Saux, F. Schmidt and L. Jullien, *Angew. Chem., Int. Ed.*, 2015, 54, 7492–7509.
- 10 R. Labruère, A. Alouane, T. Le Saux, I. Aujard, P. Pelupessy, A. Gautier, S. Dubruille, F. Schmidt and L. Jullien, *Angew. Chem.*, *Int. Ed.*, 2012, 124, 9478–9481.
- 11 A. Alouane, R. Labruère, T. Le Saux, I. Aujard, S. Dubruille, F. Schmidt and L. Jullien, *Chem. Eur. J.*, 2013, **19**, 11717–11724.
- 12 A. Alouane, R. Labruère, K. J. Silvestre, T. Le Saux, F. Schmidt and L. Jullien, *Chem. Asian J.*, 2014, **9**, 1334–1340.

- 13 S. Chen, X. Zhao, J. Chen, J. Chen, L. Kuznetsova, S. S. Wong and I. Ojima, *Bioconjugate Chem.*, 2010, 21, 979–987.
- 14 D. Shan, M. G. Nicolaou, R. T. Borchardt and B. Wang, I. Pharm. Sci., 1997, 86(7), 765–767.
- 15 S. Milstien and L. A. Cohen, *J. Am. Chem. Soc.*, 1972, **94**, 9158–9165.
- 16 R. B. Greenwald, Y. H. Choe, C. D. Conover, K. Shum, D. Wu and M. Royzen, J. Med. Chem., 2000, 43, 475–487.
- 17 S. S. Chandran, K. A. Dickson and R. T. Raines, *J. Am. Chem. Soc.*, 2005, **127**, 1652–1653.
- 18 M. N. Levine, L. D. Lavis and R. T. Raines, *Molecules*, 2008, 13, 204–211.
- 19 F. Schmidt, J.-C. Florent, C. Monneret, R. Straub, J. Czech, M. Gerken and K. Bosslet, *Bioorg. Med. Chem. Lett.*, 1997, 7, 1071–1076.
- 20 M. N. Levine and R. T. Raines, Chem. Sci., 2012, 3, 2412.
- 21 M. A. DeWit and E. R. Gillies, Org. Biomol. Chem., 2011, 9, 1846–1854.
- 22 G. J. Atwell, B. M. Sykes, C. J. O'Connor and W. A. Denny, J. Med. Chem., 1994, 37, 371–380.
- 23 C. Frugoni, Gazz. Chim. Ital., 1957, 87, 403-407.