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In this paper, we consider a delay differential inclusion ẋ ∈ F (t, x t ), where x t denotes the history function of x along an interval of time. We extend the celebrated Filippov's theorem to this case. Then, we further generalize this theorem to the case when the state variable x is constrained to the closure of an open subset K ⊂ R n . Under a new "inward pointing condition", we give a relaxation result stating that the set of trajectories lying in the interior of the state constraint is dense in the set of constrained trajectories of the convexified inclusion ẋ ∈ co F (t, x t ).

instant the velocity of the state depends upon the history of its evolution up to this instant [START_REF] Hale | Introduction to functional differential equations[END_REF].

Such control systems can be described as follows:

         ẋ(t) = f (t, x t , u(t)),
a.e. t ∈ [t 0 , T ], u(t) ∈ U ⊂ R q , a.e. t ∈ [t 0 , T ],

x t 0 = ϕ, (1) 
where x(t) ∈ R n , represents the state at time t, x t : [-τ, 0] → R n is the standard notation for the history function defined by x t (θ) = x(t + θ), for τ > 0 and

-τ ≤ θ ≤ 0, u(•) is a Lebesgue measurable function, f is a mapping from [0, T ] × C([-τ, 0], R n ) × U into R n , 0 ≤ t 0 ≤ T ,
and ϕ is the initial condition taken in C([-τ, 0], R n ). In the above, C([-τ, 0], R n ) denotes the Banach space of continuous functions from [-τ, 0] into R n , with the usual norm.

When the trajectories of (1) are subject to the state constraint

x(t) ∈ K ∀ t ∈ [t 0 , T ], (2) 
where K is a closed subset of R n , the viability theory [START_REF] Aubin | Viability theory[END_REF] provides adequate mathematical tools to study the existence of feasible (or viable) solutions of such systems. Thanks to this theory, a necessary and sufficient condition (linking the dynamical properties of system [START_REF] Aubin | Viability theory[END_REF] to the geometry of the constraint set K) for the existence of feasible solutions is known. Under some regularity assumptions on f , this condition was first given in [START_REF] Haddad | Monotone viable trajectories for functional differential inclusions[END_REF]:

∀ t ∈ [0, T ], ∀ ψ ∈ C([-τ, 0], R n ) such that ψ(0) ∈ K, f (t, ψ, U ) ∩ T K (ψ(0)) = ∅, (3) 
where T K (ψ(0)) is the contingent cone to K at ψ(0). Nevertheless, in the framework of this theory, convexity conditions are imposed on the set-valued map F (t, ψ) := f (t, ψ, U ), i.e. for every t ∈ [0, T ] and every ψ ∈ C([-τ, 0], R n ), F (t, ψ) is a convex subset of R n . This convexity hypothesis may fail in some mathematical models and may be even difficult to verify.

In the case of delay-free control systems, a vast literature [START_REF] Bettiol | On trajectories satisfying a state constraint: W 1,1 estimates and counter-examples[END_REF], [START_REF] Bettiol | L ∞ estimates on trajectories confined to a closed subset[END_REF], [START_REF] Bettiol | Improved sensitivity relations in state constrained optimal control[END_REF], [START_REF] Forcellini | On nonconvex differential inclusions whose state is constrained in the closure of an open set. applications to dynamic programming[END_REF], [START_REF] Frankowska | A relaxation result for state constrained inclusions in infinite dimension[END_REF], [START_REF] Frankowska | Filippov's and Filippov-Wazewski's theorems on closed domains[END_REF], [START_REF] Frankowska | Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems[END_REF] allows to relax this convexity hypothesis, by assuming, as a counterpart, stronger tangential conditions and stronger regularity of F . These conditions rely on the possibility of directing the velocity into the interior of the constraint K whenever approaching the boundary of K.

Known as inward pointing conditions, they allow to approximate relaxed feasible trajectories by feasible trajectories [START_REF] Frankowska | A relaxation result for state constrained inclusions in infinite dimension[END_REF], [START_REF] Frankowska | On relations of the adjoint state to the value function for optimal control problems with state constraints[END_REF] and provide estimates on the distance of a given trajectory of unconstrained control system from the set of feasible trajectories, see for instance [START_REF] Bettiol | L ∞ estimates on trajectories confined to a closed subset[END_REF], [START_REF] Frankowska | Filippov's and Filippov-Wazewski's theorems on closed domains[END_REF], [START_REF] Frankowska | On relations of the adjoint state to the value function for optimal control problems with state constraints[END_REF].

DRAFT

In the literature, these estimates have been referred to as neighboring feasible trajectory (NFT)

estimates. In the case when F is Lebesgue measurable with respect to the time and Lipschitz with respect to the state, NFT estimates result from the following inward pointing condition [START_REF] Frankowska | Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints[END_REF], [START_REF] Frankowska | On relations of the adjoint state to the value function for optimal control problems with state constraints[END_REF]:

                   ∀ t ∈ [0, T ], ∀ x ∈ ∂K, ∀ v ∈ F (t, x)
such that max

n∈N 1 K (x) n, v ≥ 0, ∃ w ∈ Liminf (s,y)→(t,x) co F (s, y) satisfying max n∈N 1 K (x) n, w -v < 0, (4) 
where co F (s, y) is the convex hull of F (s, y), Liminf denotes the Kuratowski lower set limit (see [START_REF] Aubin | Set-Valued Analysis[END_REF]),

N 1 K (x) := N K (x)∩S n-1 , S n-1
is the unit sphere and N K (x) denotes the Clarke normal cone to K at x (see [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF]). The above condition takes sometimes a simpler form depending on the regularity assumptions on F and the smoothness of the boundary ∂K (see, e.g., [START_REF] Bettiol | On trajectories satisfying a state constraint: W 1,1 estimates and counter-examples[END_REF], [START_REF] Bettiol | L ∞ estimates on trajectories confined to a closed subset[END_REF], [START_REF] Bettiol | Improved sensitivity relations in state constrained optimal control[END_REF], [START_REF] Frankowska | On relations of the adjoint state to the value function for optimal control problems with state constraints[END_REF], [START_REF] Frankowska | Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems[END_REF]).

When the viability condition fails to be fulfilled on the boundary of K, the largest subset of initial conditions starting from which at least one viable solution exists (called viability kernel) is considered. In the case of delay-free control systems, viability algorithms providing constructive methods for the computation of the viability kernel, have been developed (see, e.g., [START_REF] Frankowska | Viability kernels of differential inclusions with constraints: algorithm and applications[END_REF], [START_REF] Saint-Pierre | Approximation of the viability kernel[END_REF]).

Thanks to these algorithms, efficient numerical methods have been established (see, e.g., [START_REF] Rouquier | A kd-tree algorithm to discover the boundary of a black box hypervolume[END_REF]) and used in order to exhibit approximating viability kernels for numerous examples coming from different fields (see, e.g., [START_REF] Aubin | An introduction to viability theory and management of renewable resources[END_REF], [START_REF] Bernard | Building strategies to ensure language coexistence in presence of bilingualism[END_REF], [START_REF] Sicard | A viability approach to control food processes: Application to a camembert cheese ripening process[END_REF], [START_REF] Lara | Multi-criteria dynamic decision under uncertainty: A stochastic viability analysis and an application to sustainable fishery management[END_REF], [START_REF] Haidar | Mathematical modeling of an urban pigeon population subject to local management strategies[END_REF], [START_REF] Regan | Robust decision-making under severe uncertainty for conservation management[END_REF]). Two steps are needed to extended these numerical methods to delay differential inclusions: adapt the viability algorithms to this case and obtain relaxation theorems under state constraints. This latter point is the purpose of this paper.

To our knowledge, NFT estimates for delay differential inclusions are not yet obtained in the literature. Here, we propose to extend such results to this case. Inspired by the viability condition given by (3), we propose to adapt the inward pointing condition (4) to delay differential inclusions.

Let λ > 0. Define the set

K λ := {ψ ∈ C([-τ, 0], R n ) : ψ is λ-Lipschitz and ψ(0) ∈ ∂K} , (5) 
DRAFT and consider the following relaxed inward pointing condition:

(IP λ rel )                    ∀ t ∈ [0, T ], ∀ ψ ∈ K λ , ∀ v ∈ F (t, ψ) such that max n∈N 1 K (ψ(0)) n, v ≥ 0, ∃ w ∈ Liminf (s,φ)→(t,ψ) co F (s, φ) satisfying max n∈N 1 K (ψ(0)) n, w -v < 0.
Assuming (IP λ rel ), we give a relaxation result stating that the set of feasible trajectories is dense in the set of relaxed feasible ones. This is proved by using several preliminary results. The first one is an extension of the Filippov theorem [START_REF] Filippov | Classical solutions of differential equations with multivalued right hand side[END_REF] to delay differential inclusions, which is an essential step to construct feasible trajectories. Then, we provide NFT estimates on the distance of a given trajectory from the set of feasible trajectories.

The paper is organized as follows. Section II presents the list of notations, definitions and assumptions in use. In Section III we state our main results. The proofs and useful technical tools are postponed to Section IV.

II. PRELIMINARIES

In this section we list the notations and the main assumptions in use.

A. Notations and definitions

Consider the Euclidean space (R n , • ), where n is a positive integer. We denote by •, • the inner product, by B(x, r) the closed ball of center x ∈ R n and radius r > 0 and by B the closed unit ball in R n centered at 0. Let co A stands for the convex hull of a subset A ⊂ R n .

For every pair (a, b) ∈ R 2 , set a ∨ b = max{a, b} and a ∧ b = min{a, b}. We denote by µ the Lebesgue measure on the real line, and by L 1 (I, R n ) the space of Lebesgue integrable functions from I to R n . DRAFT Let K be a nonempty closed subset of R n , Int K be its interior and ∂K its boundary, dK is the oriented distance from x ∈ R n to K defined by

Given I ⊂ R, (C(I, R n ), • C )
dK (x) =    d K (x) if x / ∈ K -d R n \K (x) otherwise,
where d K (x) = inf y∈K x -y .

We will use the following notion of solution:

Definition 1: Let 0 ≤ t 0 ≤ T , τ > 0 and ϕ ∈ C([-τ, 0], R n ). A function x ∈ C([t 0 -τ, T ], R n ) is called an F -trajectory, if x(•) is absolutely continuous on [t 0 , T ] and ẋ(t) ∈ F (t, x t ) a.e. t ∈ [t 0 , T ], (6) 
x t 0 = ϕ. (7) 
An F -trajectory which verifies the state constraint ( 2) is called feasible F -trajectory. A trajectory associated to the relaxed differential inclusion

   ẋ(t) ∈ co F (t, x t ), a.e. t ∈ [t 0 , T ], x t 0 = ϕ (8) 
is called relaxed F -trajectory, and relaxed feasible F -trajectory if in addition (2) holds true.

B. Assumptions

Let 0 ≤ t 0 ≤ T , τ > 0 and F : [t 0 , T ] × C([-τ, 0], R n ) R n be a set-valued map with nonempty closed images. In our main theorems, we will assume the following regularity conditions on F :

(H1) for every ψ ∈ C([-τ, 0], R n ) the set-valued map F (•, ψ) is measurable; (H2) the set-valued map F (t, •) is locally Lipschitz in the following sense: ∀ R > 0, ∃ ζ R (•) ∈ L 1 ([t 0 , T ], R + ) such that, for a.e. t ∈ [t 0 , T ] and any ϕ, ψ ∈ RB C F (t, ϕ) ⊂ F (t, ψ) + ζ R (t) ϕ -ψ C B;
(H3) the set-valued map F has a sublinear growth, i.e. there exists σ > 0 such that, for a.e.

t ∈ [t 0 , T ] and any

ψ ∈ C([-τ, 0], R n ) F (t, ψ) ⊂ σ (1 + ψ C ) B;
DRAFT (H4) for a given λ > 0, the set-valued map F is upper semicontinuous on [t 0 , T ] × K λ , i.e. for all t ∈ [t 0 , T ] and all ϕ ∈ K λ , we have F (t, ϕ) = ∅ and for every ε > 0 there exists δ > 0 such that

F (s, ψ) ⊂ F (t, ϕ) + εB ∀ (s, ψ) ∈ B((t, ϕ), δ).

III. MAIN RESULTS

A. Filippov's Theorem

The following theorem extends the celebrated Filippov's theorem [START_REF] Filippov | Classical solutions of differential equations with multivalued right hand side[END_REF] to differential inclusions of type [START_REF] Bernard | Building strategies to ensure language coexistence in presence of bilingualism[END_REF].

Theorem 1: Let β > 0 and δ 0 ≥ 0 and assume (H1), (H2).

Let y ∈ C([t 0 -τ, T ], R n ) be such that y(•) is absolutely continuous on [t 0 , T ]. Set R = max t∈[t 0 -τ,T ] y(t) , γ 1 (t) = d F (t,yt) ( ẏ(t)), γ 2 (t) = exp t t 0 ζ R+β (s)ds , γ 3 (t) = γ 2 (t) δ 0 + t t 0 γ 1 (s)ds . ( 9 
)
If γ 3 (T ) < β, then for all ϕ ∈ C([-τ, 0], R n ) with ϕ -y t 0 C ≤ δ 0 , there exists x ∈ C([t 0 - τ, T ], R n ) such that x(•) is an F -trajectory and for all t ∈ [t 0 , T ] x t -y t C ≤ γ 3 (t)
and for almost every t ∈ [t 0 , T ],

ẋ(t) -ẏ(t) ≤ ζ R+β (t)γ 3 (t) + γ 1 (t).
The following theorem establishes the possibility of approximating any relaxed F -trajectory by an F -trajectory starting from the same initial condition.

Theorem 2: Let y(•) be a relaxed F -trajectory. Assume (H1), (H2) and (H3). Then for every δ > 0 there exists an F -trajectory x(•) satisfying x t 0 = y t 0 and sup t∈[t 0 ,T ] x(t) -y(t) ≤ δ.

B. Neighboring feasible trajectories theorems

Let λ > 0. Consider the following inward pointing condition:

(IP C λ )                    ∀ t ∈ [0, T ], ∀ ψ ∈ K λ , ∀ v ∈ F (t, ψ) such that max n∈N 1 K (ψ(0)) n, v ≥ 0, ∃ w ∈ Liminf (s,φ)→(t,ψ) F (s, φ) satisfying max n∈N 1 K (ψ(0)) n, w -v < 0,
DRAFT where K λ is defined by [START_REF] Bekiaris-Liberis | Nonlinear Control Under Nonconstant Delays[END_REF]. Before stating our first NFT theorem, a crucial result is given by the following lemma which shows that (IP C λ ) implies an uniform inward pointing condition on a neighborhood of K λ .

Lemma 1: Let λ > 0 and assume (H1)-(H4) and (IP C λ ). Then ∀ R > 0, ∃ ρ > 0 and η > 0

such that for every t ∈ [0, T ], ψ ∈ (K λ + ηB C ) ∩ RB C and for every v ∈ F (t, ψ) with max n∈N 1 K (x),x∈∂K∩B(ψ(0),η) n, v ≥ 0 we can find w ∈ F (t, ψ) satisfying    n, w ≤ -ρ and n, w -v ≤ -ρ ∀ n ∈ N 1 K (x), ∀ x ∈ ∂K ∩ B(ψ(0), η). (10) 
The following theorem shows the existence of a feasible F -trajectory and provides an estimate of the distance (in the norm of uniform convergence) of this trajectory from a specified F -trajectory.

Theorem 3: Assume (H1)-(H3). Let τ > 0, r 0 > 0 and λ 0 > 0 and suppose that, for

λ = max{λ 0 , (1 + (1 + λ 0 τ + r 0 )e σT )σ}, (11) 
assumptions (H4) and (IP C λ ) hold true. Then there exists a constant C > 0 such that for any t 0 ∈ [0, T ] and every F -trajectory x(•) on [t 0 -τ, T ] with λ 0 -Lipschitz xt 0 and x(t 0 ) ∈ K ∩ r 0 B, and for any ε 0 > 0, we can find a feasible F -trajectory on [t 0 -τ, T ] satisfying

x t 0 = xt 0 , x((t 0 , T ]) ⊂ Int K and x t -xt C ≤ C max t∈[t 0 ,T ] d K (x(t)) + ε 0 . (12) 
Theorem 3 together with Theorem 2 imply that under the inward pointing condition (IP C λ ), the set of F -trajectories lying in the interior of the constraint set K, for t ∈ (t 0 , T ] and starting at xt 0 , is dense in the set of feasible relaxed F -trajectories. This results from the following corollary:

Corollary 1: Under all the assumptions of Theorem 3, for any feasible relaxed F -trajectory

x(•) with λ 0 -Lipschitz xt 0 and x(t 0 ) ∈ K∩r 0 B, and any δ > 0, there exists a feasible F -trajectory

x(•) such that x t 0 = xt 0 , x((t 0 , T ]) ∈ Int K and x t -xt C < δ for all t ∈ [t 0 , T ].
Now, assume the relaxed inward pointing condition given by (IP λ rel ). As before, we have the following lemma which is similar to Lemma 1 but in the framework of the relaxed set-valued map.

DRAFT Lemma 2: Let λ > 0 and assume (H1)-(H4) and (IP λ rel ). Then ∀ R > 0, ∃ ρ > 0 and η > 0 such that for every t ∈ [0, T ], ψ ∈ (K λ + ηB C ) ∩ RB C and for every v ∈ co F (t, ψ) with

max n∈N 1 K (x),x∈∂K∩B(ψ(0),η) n, v ≥ 0, we can find w ∈ co F (t, ψ) satisfying    n, w ≤ -ρ and n, w -v ≤ -ρ ∀ n ∈ N 1 K (x), ∀ x ∈ ∂K ∩ B(ψ(0), η).
The following theorem is related to Theorem 3, however neither one is contained in another.

Theorem 4: Assume (H1)-(H3). Let τ > 0, r 0 > 0 and λ 0 > 0 and suppose that, for λ given by [START_REF] Filippov | Classical solutions of differential equations with multivalued right hand side[END_REF], assumptions (H4) and (IP λ rel ) hold true. Then there exists a constant C > 0 such that for any t 0 ∈ [0, T ] and every relaxed F -trajectory x(•) on [t 0 -τ, T ] with λ 0 -Lipschitz xt 0 and x(t 0 ) ∈ K ∩ r 0 B, and for any ε 0 > 0, we can find a relaxed feasible F -trajectory on [t 0 -τ, T ]

satisfying x t 0 = xt 0 , x((t 0 , T ]) ⊂ Int K and x t -xt C ≤ C max t∈[t 0 ,T ] d K (x(t)) + ε 0 . (13) 
The proof of Theorem 4 is a straightforward consequence of Lemma 2, together with Theorem 3 applied with co F instead of F . Theorem 4 and the constructive argument of [8, Proof of Lemma 5.2] imply the following Corollary:

Corollary 2: Under all the assumptions of Theorem 4, for any relaxed feasible F -trajectory

x(•) with λ 0 -Lipschitz xt 0 and x(t 0 ) ∈ K∩r 0 B, and any δ > 0, there exists a feasible F -trajectory

x(•) such that x t 0 = xt 0 , x((t 0 , T ]) ∈ Int K and x t -xt C < δ for all t ∈ [t 0 , T ].
C. Neighboring feasible trajectories theorem: constant delay case

Consider the constant-delay differential inclusion    ẋ(t) ∈ F(t, x(t -τ )), a.e. t ∈ [t 0 , T ], x t 0 = ϕ, (14) 
where

F : [0, T ] × R n R n is a set-valued map having closed nonempty images and ϕ ∈ C([-τ, 0], R n ). Let λ > 0.
Consider the following inward pointing condition:

(IP λ eq )                    ∀ t ∈ [0, T ], ∀ x ∈ ∂K, ∀ y ∈ x + τ λB, ∀ v ∈ F(t, y) such that max n∈N 1 K (x) n, v ≥ 0, ∃ w ∈ Liminf (s,z)→(t,y) co F(s, z) satisfying max n∈N 1 K (x)
n, w -v < 0.

DRAFT Assume the following regularity conditions on F:

(A1) for every x ∈ R n the set-valued map F(•, x) is measurable; (A2) the set-valued map F(t, •) is locally Lipschitz, i.e. ∀ R > 0, ∃ ζ R (•) ∈ L 1 ([t 0 , T ], R + ) such
that, for a.e. t ∈ [t 0 , T ] and any x, y ∈ RB

F(t, x) ⊂ F(t, y) + ζ R (t) x -y B;
(A3) there exists σ > 0 such that, for a.e. t ∈ [t 0 , T ] and any x ∈ R n F(t, x) ⊂ σ(1 + |x|)B;

(A4) for a given λ > 0, the set-valued map F is upper semicontinuous on [t 0 , T ] × (∂K + τ λB).

Theorem 5: Assume (A1)-(A3). Let τ > 0, r 0 > 0 and λ 0 > 0 and suppose that, for λ given by [START_REF] Filippov | Classical solutions of differential equations with multivalued right hand side[END_REF], assumptions (A4) and (IP λ eq ) hold true. Then there exists a constant C > 0 such that for any t 0 ∈ [0, T ] and every F-trajectory x(•) on [t 0 -τ, T ] with λ 0 -Lipschitz xt 0 and x(t 0 ) ∈ K ∩ r 0 B, and for any ε 0 > 0, we can find a feasible F-trajectory on [t 0 -τ, T ]

satisfying x t 0 = xt 0 , x((t 0 , T ]) ⊂ Int K and x t -xt C ≤ C max t∈[t 0 ,T ] d K (x(t)) + ε 0 . (15) 
IV. PROOFS

A. Proof of Theorem 1

We need the following lemma from [START_REF] Frankowska | A priori estimates for operational differential inclusions[END_REF]:

Lemma 3: Let X be a separable Banach space, G be a set-valued map from [t 0 , T ] × X into closed nonempty subsets of X and z : [t 0 , T ] → X be a continuous function such that

1) ∀ x ∈ X the set-valued map G(•, x) is measurable. 2) ∃ β > 0, ζ(•) ∈ L 1 ([t 0 , T ], R + ) such that for almost all t ∈ [t 0 , T ] the map G(t, •) is ζ(t)-Lipschitzian on z(t) + βB X , where B X is the closed unit ball in X centered at 0. Let x ∈ C([t 0 , T ], X) be such that x -z C ≤ β. Then the set-valued map t G(t, x(t)) is measurable.
In addition to Lemma 3, the proof of Theorem 1 requires the following two lemmas. The first one states that, for every x ∈ C([t 0 -τ, T ], R n ) taken in a neighborhood of the reference trajectory y, the map t F (t, x t ) is measurable.

Lemma 4: Let β > 0. Assume (H1), (H2) and let y be as in Theorem 

(with X = C([-τ, 0], R n ), G = F and z(•) = y(• + θ), θ ∈ [-τ, 0]
), we obtain that the set-valued function [t 0 , T ] t F (t, x t ) is measurable, which concludes the proof.

The following lemma proves that, starting from a reference trajectory y, we can construct a sequence

(x n ) n≥0 in C([t 0 -τ, T ], R n
) approximating a solution of ( 6)- [START_REF] Bettiol | On trajectories satisfying a state constraint: W 1,1 estimates and counter-examples[END_REF].

Lemma 5: Let β > 0 and δ 0 ≥ 0. Assume (H1), (H2) and let y, γ 1 , γ 2 , γ 3 be as in Theorem 1.

If γ 3 (T ) < β, then for any ϕ ∈ C([-τ, 0], R n ) with ϕ -y t 0 C ≤ δ 0 there exist sequences

x n ∈ C([t 0 -τ, T ], R n ) and f n ∈ L 1 ([t 0 , T ], R n ), f or n ≥ 0, such that x 0,t = y t , f 0 = ẏ, t ∈ [t 0 , T ], (16) 
f 1 (t) -f 0 (t) = γ 1 (t), a.e. t ∈ [t 0 , T ]; (17) 
and for n ≥ 1      x n (t) = ϕ(0) + t t 0 f n (s)ds, t ∈ [t 0 , T ],
x n,t 0 = ϕ,

f n (t) ∈ F (t, x n-1,t ), t ∈ [t 0 , T ], (18) 
with

f n+1 (t) -f n (t) ≤ ζ R+β (t) x n,t -x n-1,t C , (20) 
for almost every t ∈ [t 0 , T ].

Proof. By Lemma 4, the set-valued map t F (t, y t ) is measurable. Since the function t → γ 1 (t) is measurable (see, [13, Lemma 1.5]), the set-valued map U 1 defined by

U 1 (t) := {v ∈ F (t, y t ) : v -f 0 (t) = γ 1 (t)}
is measurable (see, e.g., [START_REF] Aubin | Set-Valued Analysis[END_REF]). Hence, by the measurable selection theorem the set-valued map

U 1 admits a measurable selection f 1 : [t 0 , T ] → R n . From the definition of U 1 , we have f 1 (t) ∈ F (t, y t ) for t ∈ [t 0 , T ] and f 1 (t) -f 0 (t) = γ 1 (t) a.e. t ∈ [t 0 , T ]. ( 21 
) DRAFT Let ϕ ∈ C([-τ, 0], R n ) be such that ϕ -y t 0 C ≤ δ 0 and define x 1 ∈ C([t 0 -τ, T ], R n ) by      x 1 (t) = ϕ(0) + t t 0 f 1 (s)ds, t ∈ [t 0 , T ], x 1 (t 0 + θ) = ϕ(θ), θ ∈ [-τ, 0].
Observe that

x 1,t -y t ≤ δ 0 + t t 0 γ 1 (s)ds, t ∈ [t 0 , T ]. (22) 
Indeed, for θ ∈ [-τ, 0] and t ∈ [t 0 , T ] such that t + θ ≥ t 0 , we have

x 1 (t + θ) -y(t + θ) ≤ ϕ(0) -y(t 0 ) + t+θ t 0 f 1 (s) -ẏ(s)ds ≤ ϕ -y t 0 C + t+θ t 0 γ 1 (s)ds ≤ δ 0 + t t 0 γ 1 (s)ds.
In the case when t + θ < t 0 , we have

x 1 (t + θ) -y(t + θ) = ϕ -y t 0 C ≤ δ 0 .
With x 1 , we associate the set-valued map

[t 0 , T ] t U 2 (t) defined by U 2 (t) := {v ∈ F (t, x 1,t ) : v -ẋ1 (t) = d F (t,x 1,t ) ( ẋ1 (t))}. By (22), x 1,t -y t C ≤ β and, since F (t, •) is ζ R+β -Lipschitz
on y t + βB C , we deduce (using the same arguments as before) the existence of a measurable

selection f 2 : [t 0 , T ] → R n of U 2 such that f 2 (t) -f 1 (t) ≤ ζ R+β (t) x 1,t -x 0,t C , for almost every t ∈ [t 0 , T ].
Then, we conclude that ( 18)-( 20) hold true for n = 1.

Assume that we already have constructed [START_REF] Frankowska | Filippov's and Filippov-Wazewski's theorems on closed domains[END_REF], [START_REF] Frankowska | Existence of neighboring feasible trajectories: Applications to dynamic programming for state-constrained optimal control problems[END_REF] and [START_REF] Haddad | Monotone viable trajectories for functional differential inclusions[END_REF]. Before extending to n = N + 1, we prove that the constructed sequence x n verifies the following:

x n ∈ C([t 0 -τ, T ], R n ) and f n ∈ L 1 ([t 0 , T ], R n ), for n = 1, • • • , N , verifying
Claim 1: x n,t -y t C ≤ β, ∀ t ∈ [t 0 , T ], ∀ n = 1, • • • , N.
In fact, for n = 1, the claim follows directly from [START_REF] Hale | Introduction to functional differential equations[END_REF]. For n ≥ 2, (20) implies the following inequalities:

x n,t -x n-1,t C ≤ t t 0 f n (s 1 ) -f n-1 (s 1 ) ds 1 ≤ t t 0 ζ R+β (s 1 ) x n-1,s 1 -x n-2,s 1 C ds 1 ,
which can be repeated recursively (see the proof of [13, Theorem 1.2] for more details) to obtain the following property:

x n,t -x n-1,t C ≤ (δ 0 + t t 0 γ 1 (s)ds) [ln(γ 2 (t))] n n! , (23) 
for every n ∈ {2, • • • , N }. From ( 22) and the last inequality, we get (see the proof of [13, Theorem 1.2] for more details)

x N,t -y t C ≤ N i=1 x i,t -x i-1,t C ≤ γ 3 (t) ≤ β. (24) 
DRAFT Again, define the set-valued map

[t 0 , T ] t U N +1 (t) by U N +1 (t) := {v ∈ F (t, x N,t ) : v -ẋN (t) = d F (t,
x N,t ) ( ẋN (t))}. Knowing that x N,t -y t C ≤ β and using the same reasoning as before, we deduce the existence of

f N +1 : [t 0 , T ] → R n , a measurable selection of U N +1 , such that f N +1 (t) -f N (t) ≤ ζ R+β (t) x N,t -x N -1,t C , for almost every t ∈ [t 0 , T ]. The function
x N +1 , associated to f N +1 , is defined by [START_REF] Frankowska | Filippov's and Filippov-Wazewski's theorems on closed domains[END_REF], for n = N + 1.

Proof of Theorem 1. By [START_REF] Kuang | Delay differential equations with application in population dynamics[END_REF], for each t ∈ [t 0 , T ], the sequence {x n,t } is Cauchy in the Banach space C([-τ, 0], R n ). Thus, for each t ∈ [t 0 , T ] we may define x t ∈ C([-τ, 0], R n ) as the limit of x n,t . In addition, by [START_REF] Haddad | Monotone viable trajectories for functional differential inclusions[END_REF], for almost every t

∈ [t 0 , T ] the sequence {f n (t)} is Cauchy in R n .
Furthermore, from ( 20) and ( 21), it follows that for n ≥ 1

f n (t) -ẏ(t) ≤ n-1 i=0 f i+1 (t) -f i (t) ≤ γ 1 (t) + ζ R+β (t) n-1 i=1 x i,t -x i-1,t C ≤ γ 1 (t) + ζ R+β (t)γ 3 (t) a.e. t ∈ [t 0 , T ], (25) 
from which we conclude that the sequence {f n } is integrably bounded. Thus we may define

f ∈ L 1 ([t 0 , T ], R n ) by f (t) = lim n→+∞ f n (t)
. By arguments similar to [13, Theorem 1.2], we

obtain that x(•) is an F -Trajectory satisfying ẋ(t) = f (t) a.e. in [t 0 , T ].
Passing to the limits in ( 24) and ( 25) yields the desired estimations on x and ẋ.

B. Proof of Theorem 2

Fix δ > 0 and let R := max t∈[t 0 -τ,T ] y(t) . It is not restrictive to assume that t 0 = 0 and

T 0 ζ R+δ (t)dt > 0. Choose any positive α such that α < min δ 2 , δ 2γ 2 (T ) T 0 ζ R+δ (t)dt , ( 26 
)
where γ 2 (•) is as in Theorem 1, with β = δ. Let n ≥ 1 be so large such that σ(1 + R)/n < α/2, where σ is given by (H3). Let I j be the interval Aumann's Theorem [START_REF] Aumann | Integrals of set-valued functions[END_REF], there exists a measurable selection f j (t) ∈ F (t, y t ) such that

[(j -1) T n , j T n ], for j = 1, • • • , n
I j f j (t)dt = I j ẏ(t)dt, j = 1, • • • , n.
DRAFT Let f be the function which is equal to f j on I j , and define the continuous function z :

[-τ, T ] → R n by      z(t) = y(0) + t 0 f (s)ds, t ∈ [0, T ], z 0 = y 0 .
Observe that

z t -y t C < α, ∀ t ∈ [0, T ].
Indeed, for every t ∈ [0, T ] and every θ ∈ [-τ, 0] such that t+θ ≥ 0, there exists j ∈ {1, • • • , n} for which t + θ ∈ I j and

z(t + θ) -y(t + θ) = t+θ 0 (f (s) -ẏ(s)) ds ≤ I j f (s) -ẏ(s) ds < α. If t + θ < 0, then z(t + θ) -y(t + θ) = 0. Since for almost every t ∈ [0, T ], F (t, •) is ζ R+δ (t)-Lipschitz on y t + δB C , we obtain d F (t,zt) ( ż(t)) ≤ sup{d F (t,zt) (ξ) : ξ ∈ F (t, y t )} + d F (t,yt) ( ż(t)) ≤ ζ R+δ (t) z t -y t C ≤ αζ R+δ (t).
Inequality [START_REF] Saint-Pierre | Approximation of the viability kernel[END_REF] together with [START_REF] Rouquier | A kd-tree algorithm to discover the boundary of a black box hypervolume[END_REF] imply that γ 2 (T )

T 0 αζ R+δ (t)dt < δ/2. by Theorem 1 applied with β = δ and δ 0 = 0, there exists a trajectory x of ( 6) satisfying x 0 = z 0 = y 0 and

x t -z t C ≤ γ 2 (T ) T 0 αζ R+δ (s)ds < δ 2 .
Finally, we obtain

x t -y t C ≤ x t -z t C + z t -y t C < δ 2 + δ 2 = δ,
which concludes the proof.

C. Proof of Lemma 1.

We proceed in three steps.

Step 1. Let R > 0, t ∈ [0, T ] and ψ ∈ K λ ∩ RB C be fixed. Knowing that F is locally bounded and using exactly the same argument as [16, Lemma 3.5], we prove the existence of ρ t, ψ > 0 such that for all v ∈ F ( t, ψ) with max

n∈N 1 K ( ψ(0)) n, v ≥ 0, there exists w ∈ Liminf (s,φ)→( t, ψ) F (s, φ) satisfying max n, w , n, w -v | n ∈ N 1 K ( ψ(0)) ≤ -2ρ t, ψ. (27) 

DRAFT

Step 2. We show the existence of η t, ψ > 0 such that for every t ∈ B( t, η t, ψ), for every

ψ ∈ K λ ∩ B C ( ψ, η t, ψ) + η t, ψB C and for every v ∈ F (t, ψ) with max n∈N 1 K (x),x∈∂K∩B(ψ(0),η t, ψ ) n, v ≥ 0, there exists w ∈ F (t, ψ) satisfying    n, w ≤ -ρ t, ψ and n, w -v ≤ -ρ t, ψ ∀ n ∈ N 1 K (x), ∀ x ∈ ∂K ∩ B(ψ(0), η t, ψ). (28) 
Suppose by contradiction that there exist

t i → t, ψ i → ψ in C([-τ, 0], R n ), v i ∈ F (t i , ψ i ), x i → ∂K ψ(0) and n i ∈ N 1 K (x i ) such that n i , v i ≥ 0 and for every w i ∈ F (t, ψ i ) we can find x i → ∂K ψ(0), n i ∈ N 1 K (x i ) satisfying n i , w i ∨ n i , w i -v i > -ρ t, ψ. (29) 
Since F is upper semicontinuous at every point of [0, T ] × K λ , taking subsequences and keeping the same notations we may assume that v i converge to some v ∈ F ( t, ψ), n i → n and n i → n .

Since the map x N

1 K (x) is upper semicontinuous, we have n, n ∈ N 1 K ( ψ(0)) and n, v ≥ 0. Then max n∈N 1 K ( ψ(0))
n, v ≥ 0. Consider w as in [START_REF] Saint-Pierre | Approximation of the viability kernel[END_REF] corresponding to this v and let w i ∈ F (t, ψ i ) be such that w i → w. From (29) we deduce that n , w ∨ n , w -v ≥ -ρ t, ψ, contradicting the choice of w.

Step 3. Consider a covering of [0, T ] × (K λ ∩ 2RB C ) by the open balls B(( t, ψ), η t, ψ) satisfying the following requirement:

[0, T ] × (K λ ∩ 2RB C ) ⊂ ( t, ψ)∈[0,T ]×K λ ∩2RB C B(( t, ψ), η t, ψ)
such that for every t ∈ B( t, η t, ψ), for every ψ ∈ K λ ∩ B C ( ψ, η t, ψ) + η t, ψB C and for every

v ∈ F (t, ψ) with max n∈N 1 K (x),x∈∂K∩B(ψ(0),η t, ψ ) n, v ≥ 0,
there exists w ∈ F (t, ψ) satisfying [START_REF] Sicard | A viability approach to control food processes: Application to a camembert cheese ripening process[END_REF].

We claim that the set K λ ∩2RB C is compact. Indeed, Thanks to Ascoli's Theorem, we know that a subset of C([-τ, 0], R n ) is compact if and only if it is closed, bounded, and equicontinuous. The set K λ is closed (the uniform limit of λ-Lipschitz functions is λ-Lipschitz) and equicontinuous (by assumption). The boundedness follows from the fact that for all θ ∈ [-τ, 0]

ψ(θ) ≤ ψ(θ) -ψ(0) + ψ(0) ≤ λτ + R. DRAFT Now, consider a finite subcovering [0, T ] × (K λ ∩ 2RB C ) ⊂ i=1••• ,N B((t i , ψ i ), η t i ,ψ i ).
Then, for ρ = min{ρ

t i ,ψ i , i = 1 • • • , N }, for some 0 < η < min{R, η t i ,ψ i , i = 1 • • • , N } and for all (t, ψ) ∈ [0, T ] × (K λ + ηB C ) ∩ RB C , there exists 1 ≤ i ≤ N such that (t, ψ) ∈ B(t i , η t i ,ψ i ) × (K λ ∩ B C (ψ i , η t i ,ψ i ) + η t i ,ψ i B C
). This complete the proof.

D. Proof of Theorem 3.

The proof is inspired by the construction proposed in [START_REF] Frankowska | Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints[END_REF].

Lemma 6: Assume (H1)-(H3). Let τ > 0, r > 0 and λ 0 > 0 and suppose that, for λ given by [START_REF] Filippov | Classical solutions of differential equations with multivalued right hand side[END_REF], assumptions (H4) and (IP C λ ) hold true. Then there exist positive constants δ and c such that for every t ∈ [0, T ] and every F -trajectory x(•) on [ t -τ, T ] with λ 0 -Lipschitz xt and x( t) ∈ K ∩ rB, and for any ε > 0, we can find an F -trajectory on [ t -τ, T ] satisfying We proceed in four steps.

         xt = xt, x(t) ∈ Int K, ∀ t ∈ ( t, ( t + δ) ∧ T ] x t -xt C ≤ c max t∈[ t,T ] d K (x(t)) + ε.
Step 1. We have xt C ≤ R for every t ∈ [ t, T ]. Indeed, for t ∈ [ t, T ] and θ ∈ [-τ, 0], we have

x(t + θ) =      x( t) + t+θ t ẋ(s)ds, if t + θ ≥ t xt(t + θ -t), if t + θ < t.
Then, Step 3. If -η 4 ≤ dK (x( t)) ≤ 0, we define the measurable set

x
S := {s ∈ [ t, δ] : ∃ x ∈ ∂K ∩ B(x(s), η), n ∈ N 1 K (x), n, ẋ(s) ≥ 0}.
Fix any ε > 0 and ε > 0 such that

0 < ε < ε 2 R 1 + exp T 0 ζ R+β (s)ds T 0 ζ R(s)ds
, and let κ ∈ [ t, δ] be defined as follows:

• If µ(S) ≤ Γ max s∈[ t,T ] d K (x(s)) + ε then set κ = δ. • If µ(S) > Γ max s∈[ t,T ]
d K (x(s)) + ε then take κ be the smallest number in [ t, δ] such that

µ(S ∩ [ t, κ]) = Γ max s∈[ t,T ] d K (x(s)) + ε .
For each s ∈ S, we have xs

∈ (K λ + ηB C ) ∩ RB C . Indeed, let z ∈ ∂K be such that z -x(s) = d K (x(s)). Let us define the function ψ ∈ C([-τ, 0], R n ) by ψ(θ) = x(s + θ) -x(s) + z, θ ∈ [-τ, 0].
The function ψ belongs to K λ . In addition, we have

xs (θ) -ψ(θ) = x(s) -z = d K (x(s)) ≤ d K (x( t)) + |d K (x(s)) -d K (x( t))| < η. DRAFT Then xs ∈ (K λ + ηB C ) ∩ RB C .
Thanks, to Lemma 1, for each s ∈ S, we can find w ∈ F (s, xs ) satisfying [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF]. By the measurable selection theorem [START_REF] Aubin | Set-Valued Analysis[END_REF], there exists a measurable function w : S → R n such that w(s) ∈ F (s, xs ), and for a.e. s ∈ S    n, w(s) ≤ -ρ, and n, w(s) -ẋ(s) ≤ -ρ

∀ x ∈ ∂K ∩ B(x(s), η), ∀ n ∈ N 1 K (x). (31) 
Define the absolutely continuous function y : [ t -τ, T ] → R n by yt = xt and

ẏ(t) :=    w(t) if t ∈ S ∩ [ t, κ] ẋ(t) if t ∈ ([ t, T ] \ S) ∩ [ t, κ]. (32) 
For t ∈ [ t, T ] and θ ∈ [-τ, 0], we have

y t (θ) -xt (θ) ≤ max{ t,t+θ} t ẏ(s) -ẋ(s) ds ≤ t t ẏ(s) -ẋ(s) ds = S∩[ t,t∧κ] w(s) -ẋ(s) ds ≤ 2 Rµ(S ∩ [ t, t ∧ κ])
implying that,

y t -xt C ≤ 2 Rµ(S ∩ [ t, t ∧ κ]). (33) 
Moreover, for a.e. t ∈ [ t, T ],

d F (t,yt) ( ẏ(t)) ≤ sup{d F (t,xt) (ξ) : ξ ∈ F (t, y t )} + d F (t,xt) ( ẏ(t)) ≤ ζ R(t) y t -xt ≤ 2 Rµ(S ∩ [ t, t ∧ κ])ζ R(t).
Hence, thanks to Theorem 1 applied with δ 0 = 0, there exists an F -trajectory x(•) on [ t -τ, T ] such that xt = yt and for every t ∈ [ t, T ]

x t -y t C ≤ 2 R exp T 0 ζ R+β (s)ds ω ζ R (|t -t|)µ(S ∩ [ t, t ∧ κ]).
By the definition of κ, the inequality (33) and the triangle inequality, we have

x t -xt C ≤ ε ε µ(S ∩ [ t, κ]) ≤ c max t∈[ t,T ] d K (x(t)) + ε,
for a constant c independent from t and x(•).

Step 4. We show next that {x(t) : t ∈ ( t, δ]} ⊂ Int K. We distinguish two different cases: 

As in the proof of [START_REF] Frankowska | Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints[END_REF]Theorem 5], it follows that ξ(t) is a convex combination of m vectors ξ α ∈ N 1 K (y α ), with y α ∈ π ∂K (z(t)), such that for all s ∈ [ t, κ] and α ∈ {1, • • • , m} we have y α -x(s) ≤ η, where 1 ≤ m ≤ n + 1. Then, from (34) together with (31), we obtain that

dK (x(t)) ≤ m α=1 λ α S∩[ t,t] ξ α , w(s) ds + m α=1 λ α [ t,t]\S ξ α , ẋ(s) ds + ν(δ)µ(S ∩ [ t, t ∧ κ]) ≤ (ν(δ) -ρ) µ(S ∩ [ t, t]) < 0.
Case 2. t ∈ (κ, δ]: By the mean-value theorem, for some z(t) ∈ [x(t), y(t)] and ξ(t

) ∈ ∂ dK (z(t)), dK (y(t)) = dK (x(t)) + ξ(t), y(t) -x(t) . Then, dK (x(t)) ≤ dK (y(t)) + ν(δ)µ(S ∩ [ t, t ∧ κ]) = dK (x(t)) + ξ(t), y(t) -x(t) + ν(δ)µ(S ∩ [ t, t ∧ κ]) = dK (x(t)) + t t ξ(t), ẏ(s) -ẋ(s) ds + ν(δ)µ(S ∩ [ t, t ∧ κ]) = dK (x(t)) + S∩[ t,t] ξ(t), w(s) -ẋ(s) ds + ν(δ)µ(S ∩ [ t, t ∧ κ]) (35) 
As in the first case, ξ(t) is a convex combination of m vectors ξ α ∈ N 1 K (y α ), with y α ∈ π ∂K (z(t)), such that for all s ∈ [ t, κ] and α ∈ {1, • • • , m} we have y α -x(s) ≤ η, where 1 ≤ m ≤ n + 1.

Then, from (35), we obtain that dK (x(t)) ≤ dK (x(t)) + ν(δ)µ(S ∩ [ t, t ∧ κ]) + x i (t) = x i-1 (t), ∀ t ∈ [t 0 -τ, t i-1 ]

x(t) ∈ Int K, ∀ t ∈ (t 0 , t i ]

x i,t -x i-1,t C ≤ c max t∈[t 0 ,T ] d K (x i-1 (t)) + ε i-1 .
Lemma 6 is applied recursively on the interval [(t i-1 -τ ) ∧ T, T ] with reference trajectory F. Proof of Lemma 2.

Lemma 7: Let λ > 0 and assume (H1)-(H4) and (IP λ rel ). Then for every R > 0, ψ ∈ K λ ∩RB C and every t ∈ [0, T ] there exists ρ t, ψ > 0 such that ∀ v ∈ co F ( t, ψ) with max n, w -v < 0.

From the inclusion

Liminf (s,z)→(t,ψ(-τ )) co F(s, z) ⊂ Liminf (s,φ)→(t,ψ) co F (s, φ),

we deduce that (IP λ rel ) holds true. Hence, Theorem 4 concludes the proof.

  denotes the Banach space of continuous functions from I into R n , where • C is the norm of uniform convergence. Given τ > 0, B C (ϕ, r) denotes the closed ball of center ϕ ∈ C([-τ, 0], R n ) and radius r > 0 and B C is the closed unit ball in C([-τ, 0], R n ) centered at 0. Given t ∈ R, we denote by B((t, ϕ), r) the closed ball B(t, r) × B C (ϕ, r).

Proof.

  Let R := (1 + λ 0 τ + r)e σT , R := (1 + R)σ and R := 2 RT + R, where σ is as in (H3). Fix t ∈ [0, T ] and an F -trajectory x(•) on [ t -τ, T ] such that xt is λ 0 -Lipschitz and x( t) ∈ K ∩ rB. Let δ > 0 and 0 < β < ρ be such that δ < η 4σ(1+R) (where ρ and η are given by Lemma 1) and ν(δ) := 2 R exp T t ζ R+β (s)ds ω ζ R (δ) < β, where ζ R(•) and ζ R+β (•) are as in (H2), and ω ζ R (•) is the modulus of continuity of the map t → t t ζ R(s)ds. Consider Γ > 0 such that Γ(ρ -ν(δ)) > 1 and call δ := ( t + δ) ∧ T .

  ξ α , w(s) -ẋ(s) ds ≤ dK (x(t)) -ρµ(S ∩ [ t, κ]) + ν(δ)µ(S ∩ [ t, t ∧ κ]) ≤ dK (x(t)) -(ρ -ν(δ)) Γ max s∈[ t,T ] d K (x(s)) + ε < 0.This completes the proof. DRAFT Proof of Theorem 3. Let r := (1 + λ 0 τ + r 0 )e σT and δ = δ(r), c = c(r) > 0 be as in Lemma 6.Fix t 0 ∈ [0, T ] and an F -trajectory x(•) such that xt 0 is λ 0 -Lipschitz and x(t 0 ) ∈ K ∩ r 0 B.Let N be the smallest integer satisfying (t 0 + N δ) ∧ T = T . Set t i = (t 0 + iδ) ∧ T for all i = 1, • • • N . Fix any ε 0 > 0. Lemma 6 assures that, for any sequence of positive numbersε 1 , • • • , ε N -1 , there exists a sequence of F -trajectories {x 0 (•) = x(•), x i (•) : i = 1, • • • , N } such that for all i = 1, • • • , N

x i- 1

 1 (•) restricted to this interval, for i = 1, • • • , N . Note that, at each stage of this recursive construction, the same constant δ and c are used; this is justified by the fact thatx i-1,t i-1 ∈ rB C , for all i = 1, • • • , N . Call x(•) = x N (•), then x t 0 = xt 0 and x(t) ∈ Int K for every t ∈ (t 0 , T ].Using the same arguments as in[START_REF] Frankowska | Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints[END_REF] Theorem 5], we prove the existence of some C > 0, independent from t 0 , x(•) and ε 0 such thatx t -xt C ≤ C max t∈[t 0 ,T ] d K (x(t)) + ε 0 .This completes the proof.E. Proof of Corollary 1.Fix a relaxed feasible F -trajectory x(•) such that xt 0 is λ 0 -Lipschitz and x(t 0 ) ∈ K ∩ r 0 B, and δ > 0. Let C be as in Theorem 3. By Theorem 2, there exists an F -trajectory x(•) on[t 0 -τ, T ] satisfying xt 0 = xt 0 and xt -xt C ≤ δ/3C for all t ∈ [t 0 , T ]. By Theorem 3, for every ε 0 > 0, there exists a feasible F -trajectory x(•) such that x t 0 = xt 0 , x((t 0 , T ]) ∈ Int K andx t -x t C < C max t∈[t 0 ,T ] d K (x(t)) + ε 0 . Remark that d K (x(t)) ≤ d K (x(t))+ xt -x t C < δ/3C.Set ε 0 = δ/3C. Then, x t -xt C ≤ δ for all t ∈ [t 0 , T ].

n∈N 1 K 1 K

 11 ( ψ(0)) n, v ≥ 0 DRAFT Then, from (IP λ eq ), for every v ∈ F (t, ψ) ≡ F(t, ψ(-τ )) such that max n∈N 1 K (ψ(0))n, v ≥ 0 there exists w ∈ Liminf (s,z)→(t,ψ(-τ )) co F(s, z) satisfying max n∈N (ψ(0))

  Since x and y are continuous on [t 0 -τ, T ], we can easily prove (see [22, Lemma 2.1] for more details) that x t and y t are also continuous functions of t on [t 0 , T ]. By (H2), F (t, •) is ζ(t)-Lipschitzian on y t + βB C with the Lipschitz constant ζ(•) = ζ R+β (•). Then, by Lemma 3

1. Let x ∈ C([t 0 -τ, T ], R n ) be such that x(t) -y(t) ≤ β, for every t ∈ [t 0 -τ, T ]. Then the set-valued map t F (t, x t )

is measurable.

DRAFT

Proof.

  (t + θ) ≤ xt C +

	Hence			
		max{ t,t+θ}		
		xt C ≤ xt C +	σ(1 + xs C )ds.	
		t		
	Thanks to Gronwall's Lemma, we can easily verify that for any t ∈ [ t, T ]	
		xt C ≤ (1 + xt C )e σ(t-t) ,		(30)
	from which conclude that xt C ≤ R for every t ∈ [ t, T ].	
	Step 2. If dK (x( t)) < -for all t ∈ [ t, δ], we have η 4	, then x(•) = x(•) satisfies our lemma. Indeed, if dK (x( t)) < -	η 4	, then
	dK (x(t)) ≤ dK (x( t)) + | dK (x(t)) -dK (x( t))| < -≤ -η 4 + t t ẋ(s) ds < -η 4 + (1 + R)σδ < 0, η + x(t) -x( t) 4	
	and x(•) = x(•) is as required.		
		max{ t,t+θ}	
			σ(1 + xs C )ds.	
		t		
					DRAFT
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DRAFT

we can find w ∈ Liminf (s,φ)→( t, ψ) co F (s, φ) satisfying max n, w , n, w -v | n ∈ N 1 K ( ψ(0)) ≤ -2ρ t, ψ.

(36)

Proof. The proof follows the same lines as [START_REF] Frankowska | On relations of the adjoint state to the value function for optimal control problems with state constraints[END_REF]Proof of Lemma 3.7].

Proof of Lemma 2. Let R > 0, t ∈ [0, T ] and ψ ∈ K λ ∩ RB C be fixed and let ρ t, ψ be as in Lemma 7. We claim the existence of η t, ψ > 0 such that for every t ∈ B( t, η t, ψ), every

Suppose by contradiction that there exist

and

Since F is upper semicontinuous at every point of [0, T ] × K λ , so is co F . taking subsequences and keeping the same notations we may assume that v i converge to some v ∈ co F ( t, ψ), n i → n and n i → n . Since the map x N 1 K (x) is upper semicontinuous, we have n, n ∈ N 1 K ( ψ(0)) and n, v ≥ 0. Then max

n, v ≥ 0. Consider w as in (36) corresponding to this v and let

contradicting the choice of w. The rest of the proof is similar to Step 3 of Lemma 1.

G. Proof of Theorem 5.

The proof of Theorem 5 is a straightforward consequence of Theorem 4. Indeed, fix t 0 ∈ [0, T ] and let us introduce for every (t, ψ)

It is easy to see that under the assumptions (A1)-(A4), the set-valued map F verifies (H1)-(H4). In addition, we can show that, under (IP λ eq ), condition (IP λ rel ) holds true. In fact, let ψ ∈ K λ . By definition of K λ , we have ψ(0) ∈ ∂K and ψ(-τ ) ∈ ψ(0) + λτ B.

DRAFT