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Abstract

In this paper, we consider a delay differential inclusion ẋ ∈ F (t, xt), where xt denotes the history

function of x along an interval of time. We extend the celebrated Filippov’s theorem to this case. Then,

we further generalize this theorem to the case when the state variable x is constrained to the closure of

an open subset K ⊂ Rn. Under a new “inward pointing condition”, we give a relaxation result stating

that the set of trajectories lying in the interior of the state constraint is dense in the set of constrained

trajectories of the convexified inclusion ẋ ∈ coF (t, xt).

Index Terms

Delay differential inclusions, relaxation, state constraints, inward pointing conditions.

I. INTRODUCTION

Mathematical models arising in population dynamics or engineering sciences often involve

control systems with delays (see, e.g., [5], [23]). Systems with delays, express that at each

This work was partially funded by the DeMagma project of Programme Convergence from Idex Super at Sorbonnes Universités.
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instant the velocity of the state depends upon the history of its evolution up to this instant [22].

Such control systems can be described as follows:
ẋ(t) = f(t, xt, u(t)), a.e. t ∈ [t0, T ],

u(t) ∈ U ⊂ Rq, a.e. t ∈ [t0, T ],

xt0 = ϕ,

(1)

where x(t) ∈ Rn, represents the state at time t, xt : [−τ, 0]→ Rn is the standard notation for

the history function defined by xt(θ) = x(t+ θ), for τ > 0 and −τ ≤ θ ≤ 0, u(·) is a Lebesgue

measurable function, f is a mapping from [0, T ] × C([−τ, 0],Rn) × U into Rn, 0 ≤ t0 ≤ T ,

and ϕ is the initial condition taken in C([−τ, 0],Rn). In the above, C([−τ, 0],Rn) denotes the

Banach space of continuous functions from [−τ, 0] into Rn, with the usual norm.

When the trajectories of (1) are subject to the state constraint

x(t) ∈ K ∀ t ∈ [t0, T ], (2)

where K is a closed subset of Rn, the viability theory [1] provides adequate mathematical tools

to study the existence of feasible (or viable) solutions of such systems. Thanks to this theory, a

necessary and sufficient condition (linking the dynamical properties of system (1) to the geometry

of the constraint set K) for the existence of feasible solutions is known. Under some regularity

assumptions on f , this condition was first given in [20]:

∀ t ∈ [0, T ],∀ψ ∈ C([−τ, 0],Rn) such that ψ(0) ∈ K,

f(t, ψ, U) ∩ TK(ψ(0)) 6= ∅,
(3)

where TK(ψ(0)) is the contingent cone to K at ψ(0). Nevertheless, in the framework of this

theory, convexity conditions are imposed on the set-valued map F (t, ψ) := f(t, ψ, U), i.e. for

every t ∈ [0, T ] and every ψ ∈ C([−τ, 0],Rn), F (t, ψ) is a convex subset of Rn. This convexity

hypothesis may fail in some mathematical models and may be even difficult to verify.

In the case of delay-free control systems, a vast literature [7], [8], [9], [12], [14], [18], [19]

allows to relax this convexity hypothesis, by assuming, as a counterpart, stronger tangential

conditions and stronger regularity of F . These conditions rely on the possibility of directing

the velocity into the interior of the constraint K whenever approaching the boundary of K.

Known as inward pointing conditions, they allow to approximate relaxed feasible trajectories

by feasible trajectories [14], [16] and provide estimates on the distance of a given trajectory of

unconstrained control system from the set of feasible trajectories, see for instance [8], [18], [16].
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In the literature, these estimates have been referred to as neighboring feasible trajectory (NFT)

estimates. In the case when F is Lebesgue measurable with respect to the time and Lipschitz

with respect to the state, NFT estimates result from the following inward pointing condition [15],

[16]: 

∀ t ∈ [0, T ],∀x ∈ ∂K,∀ v ∈ F (t, x)

such that max
n∈N1

K(x)
〈n, v〉 ≥ 0,

∃w ∈ Liminf(s,y)→(t,x)coF (s, y)

satisfying max
n∈N1

K(x)
〈n,w − v〉 < 0,

(4)

where coF (s, y) is the convex hull of F (s, y), Liminf denotes the Kuratowski lower set limit

(see [2]), N1
K(x) := NK(x)∩Sn−1, Sn−1 is the unit sphere and NK(x) denotes the Clarke normal

cone to K at x (see [10]). The above condition takes sometimes a simpler form depending on

the regularity assumptions on F and the smoothness of the boundary ∂K (see, e.g., [7], [8], [9],

[16], [19]).

When the viability condition fails to be fulfilled on the boundary of K, the largest subset of

initial conditions starting from which at least one viable solution exists (called viability kernel) is

considered. In the case of delay-free control systems, viability algorithms providing constructive

methods for the computation of the viability kernel, have been developed (see, e.g., [17], [27]).

Thanks to these algorithms, efficient numerical methods have been established (see, e.g., [26])

and used in order to exhibit approximating viability kernels for numerous examples coming from

different fields (see, e.g., [3], [6], [28], [24], [21], [25]). Two steps are needed to extended these

numerical methods to delay differential inclusions: adapt the viability algorithms to this case

and obtain relaxation theorems under state constraints. This latter point is the purpose of this

paper.

To our knowledge, NFT estimates for delay differential inclusions are not yet obtained in

the literature. Here, we propose to extend such results to this case. Inspired by the viability

condition given by (3), we propose to adapt the inward pointing condition (4) to delay differential

inclusions.

Let λ > 0. Define the set

Kλ := {ψ ∈ C([−τ, 0],Rn) : ψ is λ-Lipschitz and ψ(0) ∈ ∂K} , (5)
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and consider the following relaxed inward pointing condition:

(IP λ
rel)



∀ t ∈ [0, T ],∀ψ ∈ Kλ,∀ v ∈ F (t, ψ)

such that max
n∈N1

K(ψ(0))
〈n, v〉 ≥ 0,

∃w ∈ Liminf(s,φ)→(t,ψ)coF (s, φ)

satisfying max
n∈N1

K(ψ(0))
〈n,w − v〉 < 0.

Assuming (IP λ
rel), we give a relaxation result stating that the set of feasible trajectories is dense

in the set of relaxed feasible ones. This is proved by using several preliminary results. The first

one is an extension of the Filippov theorem [11] to delay differential inclusions, which is an

essential step to construct feasible trajectories. Then, we provide NFT estimates on the distance

of a given trajectory from the set of feasible trajectories.

The paper is organized as follows. Section II presents the list of notations, definitions and

assumptions in use. In Section III we state our main results. The proofs and useful technical

tools are postponed to Section IV.

II. PRELIMINARIES

In this section we list the notations and the main assumptions in use.

A. Notations and definitions

Consider the Euclidean space (Rn, ‖ · ‖), where n is a positive integer. We denote by 〈·, ·〉

the inner product, by B(x, r) the closed ball of center x ∈ Rn and radius r > 0 and by B the

closed unit ball in Rn centered at 0. Let coA stands for the convex hull of a subset A ⊂ Rn.

For every pair (a, b) ∈ R2, set a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Given I ⊂ R, (C(I,Rn), ‖ · ‖C) denotes the Banach space of continuous functions from I into

Rn, where ‖ · ‖C is the norm of uniform convergence. Given τ > 0, BC(ϕ, r) denotes the closed

ball of center ϕ ∈ C([−τ, 0],Rn) and radius r > 0 and BC is the closed unit ball in C([−τ, 0],Rn)

centered at 0. Given t ∈ R, we denote by B((t, ϕ), r) the closed ball B(t, r)×BC(ϕ, r).

We denote by µ the Lebesgue measure on the real line, and by L1(I,Rn) the space of Lebesgue

integrable functions from I to Rn.
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Let K be a nonempty closed subset of Rn, IntK be its interior and ∂K its boundary, d̃K is

the oriented distance from x ∈ Rn to K defined by

d̃K(x) =

 dK(x) if x /∈ K

−dRn\K(x) otherwise,

where dK(x) = infy∈K ‖x− y‖.

We will use the following notion of solution:

Definition 1: Let 0 ≤ t0 ≤ T , τ > 0 and ϕ ∈ C([−τ, 0],Rn). A function x ∈ C([t0− τ, T ],Rn)

is called an F -trajectory, if x(·) is absolutely continuous on [t0, T ] and

ẋ(t) ∈ F (t, xt) a.e. t ∈ [t0, T ], (6)

xt0 = ϕ. (7)

An F -trajectory which verifies the state constraint (2) is called feasible F -trajectory. A trajectory

associated to the relaxed differential inclusion ẋ(t) ∈ coF (t, xt), a.e. t ∈ [t0, T ],

xt0 = ϕ
(8)

is called relaxed F -trajectory, and relaxed feasible F -trajectory if in addition (2) holds true.

B. Assumptions

Let 0 ≤ t0 ≤ T , τ > 0 and F : [t0, T ]× C([−τ, 0],Rn) Rn be a set-valued map with non-

empty closed images. In our main theorems, we will assume the following regularity conditions

on F :

(H1) for every ψ ∈ C([−τ, 0],Rn)

the set-valued map F (·, ψ) is measurable;

(H2) the set-valued map F (t, ·) is locally Lipschitz in the following sense: ∀R > 0, ∃ ζR(·) ∈

L1([t0, T ],R+) such that, for a.e. t ∈ [t0, T ] and any ϕ, ψ ∈ RBC

F (t, ϕ) ⊂ F (t, ψ) + ζR(t)‖ϕ− ψ‖CB;

(H3) the set-valued map F has a sublinear growth, i.e. there exists σ > 0 such that, for a.e.

t ∈ [t0, T ] and any ψ ∈ C([−τ, 0],Rn)

F (t, ψ) ⊂ σ (1 + ‖ψ‖C)B;
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(H4) for a given λ > 0, the set-valued map F is upper semicontinuous on [t0, T ] × Kλ, i.e. for

all t ∈ [t0, T ] and all ϕ ∈ Kλ, we have F (t, ϕ) 6= ∅ and for every ε > 0 there exists δ > 0

such that

F (s, ψ) ⊂ F (t, ϕ) + εB ∀ (s, ψ) ∈ B((t, ϕ), δ).

III. MAIN RESULTS

A. Filippov’s Theorem

The following theorem extends the celebrated Filippov’s theorem [11] to differential inclusions

of type (6).

Theorem 1: Let β > 0 and δ0 ≥ 0 and assume (H1), (H2). Let y ∈ C([t0 − τ, T ],Rn) be such

that y(·) is absolutely continuous on [t0, T ]. Set R = max
t∈[t0−τ,T ]

‖y(t)‖,

γ1(t) = dF (t,yt)(ẏ(t)), γ2(t) = exp
{∫ t

t0

ζR+β(s)ds

}
, γ3(t) = γ2(t)

(
δ0 +

∫ t

t0

γ1(s)ds

)
. (9)

If γ3(T ) < β, then for all ϕ ∈ C([−τ, 0],Rn) with ‖ϕ− yt0‖C ≤ δ0, there exists x ∈ C([t0 −

τ, T ],Rn) such that x(·) is an F -trajectory and for all t ∈ [t0, T ]

‖xt − yt‖C ≤ γ3(t)

and for almost every t ∈ [t0, T ],

‖ẋ(t)− ẏ(t)‖ ≤ ζR+β(t)γ3(t) + γ1(t).

The following theorem establishes the possibility of approximating any relaxed F -trajectory by

an F -trajectory starting from the same initial condition.

Theorem 2: Let y(·) be a relaxed F -trajectory. Assume (H1), (H2) and (H3). Then for every

δ > 0 there exists an F -trajectory x(·) satisfying xt0 = yt0 and supt∈[t0,T ] ‖x(t)− y(t)‖ ≤ δ.

B. Neighboring feasible trajectories theorems

Let λ > 0. Consider the following inward pointing condition:

(IPCλ)



∀ t ∈ [0, T ],∀ψ ∈ Kλ,∀ v ∈ F (t, ψ)

such that max
n∈N1

K(ψ(0))
〈n, v〉 ≥ 0,

∃w ∈ Liminf(s,φ)→(t,ψ) F (s, φ)

satisfying max
n∈N1

K(ψ(0))
〈n,w − v〉 < 0,
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where Kλ is defined by (5). Before stating our first NFT theorem, a crucial result is given by

the following lemma which shows that (IPCλ) implies an uniform inward pointing condition

on a neighborhood of Kλ.

Lemma 1: Let λ > 0 and assume (H1)–(H4) and (IPCλ). Then ∀R > 0, ∃ ρ > 0 and η > 0

such that for every t ∈ [0, T ], ψ ∈ (Kλ + ηBC) ∩RBC and for every v ∈ F (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),η)
〈n, v〉 ≥ 0

we can find w ∈ F (t, ψ) satisfying 〈n,w〉 ≤ −ρ and 〈n,w − v〉 ≤ −ρ

∀n ∈ N1
K(x), ∀x ∈ ∂K ∩B(ψ(0), η).

(10)

The following theorem shows the existence of a feasible F -trajectory and provides an estimate of

the distance (in the norm of uniform convergence) of this trajectory from a specified F -trajectory.

Theorem 3: Assume (H1)–(H3). Let τ > 0, r0 > 0 and λ0 > 0 and suppose that, for

λ = max{λ0, (1 + (1 + λ0τ + r0)eσT )σ}, (11)

assumptions (H4) and (IPCλ) hold true. Then there exists a constant C > 0 such that for

any t0 ∈ [0, T ] and every F -trajectory x̂(·) on [t0 − τ, T ] with λ0-Lipschitz x̂t0 and x̂(t0) ∈

K ∩ r0B, and for any ε0 > 0, we can find a feasible F -trajectory on [t0 − τ, T ] satisfying

xt0 = x̂t0 , x((t0, T ]) ⊂ IntK and

‖xt − x̂t‖C ≤ C

(
max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
. (12)

Theorem 3 together with Theorem 2 imply that under the inward pointing condition (IPCλ),

the set of F -trajectories lying in the interior of the constraint set K, for t ∈ (t0, T ] and starting

at x̂t0 , is dense in the set of feasible relaxed F -trajectories. This results from the following

corollary:

Corollary 1: Under all the assumptions of Theorem 3, for any feasible relaxed F -trajectory

x̄(·) with λ0-Lipschitz x̄t0 and x̄(t0) ∈ K∩r0B, and any δ > 0, there exists a feasible F -trajectory

x(·) such that xt0 = x̄t0 , x((t0, T ]) ∈ IntK and ‖xt − x̄t‖C < δ for all t ∈ [t0, T ].

Now, assume the relaxed inward pointing condition given by (IP λ
rel). As before, we have the

following lemma which is similar to Lemma 1 but in the framework of the relaxed set-valued

map.
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Lemma 2: Let λ > 0 and assume (H1)–(H4) and (IP λ
rel). Then ∀R > 0, ∃ ρ > 0 and η > 0

such that for every t ∈ [0, T ], ψ ∈ (Kλ + ηBC) ∩RBC and for every v ∈ coF (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),η)
〈n, v〉 ≥ 0,

we can find w ∈ coF (t, ψ) satisfying 〈n,w〉 ≤ −ρ and 〈n,w − v〉 ≤ −ρ

∀n ∈ N1
K(x), ∀x ∈ ∂K ∩B(ψ(0), η).

The following theorem is related to Theorem 3, however neither one is contained in another.

Theorem 4: Assume (H1)–(H3). Let τ > 0, r0 > 0 and λ0 > 0 and suppose that, for λ given

by (11), assumptions (H4) and (IP λ
rel) hold true. Then there exists a constant C > 0 such that

for any t0 ∈ [0, T ] and every relaxed F -trajectory x̂(·) on [t0 − τ, T ] with λ0-Lipschitz x̂t0 and

x̂(t0) ∈ K ∩ r0B, and for any ε0 > 0, we can find a relaxed feasible F -trajectory on [t0− τ, T ]

satisfying xt0 = x̂t0 , x((t0, T ]) ⊂ IntK and

‖xt − x̂t‖C ≤ C

(
max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
. (13)

The proof of Theorem 4 is a straightforward consequence of Lemma 2, together with Theorem 3

applied with coF instead of F . Theorem 4 and the constructive argument of [8, Proof of

Lemma 5.2] imply the following Corollary:

Corollary 2: Under all the assumptions of Theorem 4, for any relaxed feasible F -trajectory

x̄(·) with λ0-Lipschitz x̄t0 and x̄(t0) ∈ K∩r0B, and any δ > 0, there exists a feasible F -trajectory

x(·) such that xt0 = x̄t0 , x((t0, T ]) ∈ IntK and ‖xt − x̄t‖C < δ for all t ∈ [t0, T ].

C. Neighboring feasible trajectories theorem: constant delay case

Consider the constant-delay differential inclusion ẋ(t) ∈ F(t, x(t− τ)), a.e. t ∈ [t0, T ],

xt0 = ϕ,
(14)

where F : [0, T ] × Rn  Rn is a set-valued map having closed nonempty images and ϕ ∈

C([−τ, 0],Rn). Let λ > 0. Consider the following inward pointing condition:

(IP λ
eq)



∀ t ∈ [0, T ], ∀x ∈ ∂K,∀ y ∈ x+ τλB,

∀ v ∈ F(t, y) such that max
n∈N1

K(x)
〈n, v〉 ≥ 0,

∃w ∈ Liminf(s,z)→(t,y)coF(s, z)

satisfying max
n∈N1

K(x)
〈n,w − v〉 < 0.
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Assume the following regularity conditions on F :

(A1) for every x ∈ Rn the set-valued map F(·, x) is measurable;

(A2) the set-valued map F(t, ·) is locally Lipschitz, i.e. ∀R > 0, ∃ ζR(·) ∈ L1([t0, T ],R+) such

that, for a.e. t ∈ [t0, T ] and any x, y ∈ RB

F(t, x) ⊂ F(t, y) + ζR(t)‖x− y‖B;

(A3) there exists σ > 0 such that, for a.e. t ∈ [t0, T ] and any x ∈ Rn F(t, x) ⊂ σ(1 + |x|)B;

(A4) for a given λ > 0, the set-valued map F is upper semicontinuous on [t0, T ]× (∂K + τλB).

Theorem 5: Assume (A1)–(A3). Let τ > 0, r0 > 0 and λ0 > 0 and suppose that, for λ given

by (11), assumptions (A4) and (IP λ
eq) hold true. Then there exists a constant C > 0 such

that for any t0 ∈ [0, T ] and every F-trajectory x̂(·) on [t0 − τ, T ] with λ0-Lipschitz x̂t0 and

x̂(t0) ∈ K ∩ r0B, and for any ε0 > 0, we can find a feasible F-trajectory on [t0 − τ, T ]

satisfying xt0 = x̂t0 , x((t0, T ]) ⊂ IntK and

‖xt − x̂t‖C ≤ C

(
max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
. (15)

IV. PROOFS

A. Proof of Theorem 1

We need the following lemma from [13]:

Lemma 3: Let X be a separable Banach space, G be a set-valued map from [t0, T ]×X into

closed nonempty subsets of X and z : [t0, T ]→ X be a continuous function such that

1) ∀x ∈ X the set-valued map G(·, x) is measurable.

2) ∃ β > 0, ζ̄(·) ∈ L1([t0, T ],R+) such that for almost all t ∈ [t0, T ] the map G(t, ·) is

ζ̄(t)-Lipschitzian on z(t) + βBX , where BX is the closed unit ball in X centered at 0.

Let x ∈ C([t0, T ], X) be such that ‖x − z‖C ≤ β. Then the set-valued map t  G(t, x(t)) is

measurable.

In addition to Lemma 3, the proof of Theorem 1 requires the following two lemmas. The first one

states that, for every x ∈ C([t0 − τ, T ],Rn) taken in a neighborhood of the reference trajectory

y, the map t F (t, xt) is measurable.

Lemma 4: Let β > 0. Assume (H1), (H2) and let y be as in Theorem 1. Let x ∈ C([t0−τ, T ],Rn)

be such that ‖x(t)− y(t)‖ ≤ β, for every t ∈ [t0 − τ, T ]. Then the set-valued map t F (t, xt)

is measurable.
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Proof. Since x and y are continuous on [t0 − τ, T ], we can easily prove (see [22, Lemma 2.1]

for more details) that xt and yt are also continuous functions of t on [t0, T ]. By (H2), F (t, ·) is

ζ̄(t)-Lipschitzian on yt + βBC with the Lipschitz constant ζ̄(·) = ζR+β(·). Then, by Lemma 3

(with X = C([−τ, 0],Rn), G = F and z(·) = y(·+θ), θ ∈ [−τ, 0]), we obtain that the set-valued

function [t0, T ] 3 t F (t, xt) is measurable, which concludes the proof. �

The following lemma proves that, starting from a reference trajectory y, we can construct a

sequence (xn)n≥0 in C([t0 − τ, T ],Rn) approximating a solution of (6)–(7).

Lemma 5: Let β > 0 and δ0 ≥ 0. Assume (H1), (H2) and let y, γ1, γ2, γ3 be as in Theorem 1.

If γ3(T ) < β, then for any ϕ ∈ C([−τ, 0],Rn) with ‖ϕ− yt0‖C ≤ δ0 there exist sequences

xn ∈ C([t0 − τ, T ],Rn) and fn ∈ L1([t0, T ],Rn), for n ≥ 0, such that

x0,t = yt, f0 = ẏ, t ∈ [t0, T ], (16)

‖f1(t)− f0(t)‖ = γ1(t), a.e. t ∈ [t0, T ]; (17)

and for n ≥ 1  xn(t) = ϕ(0) +

∫ t

t0

fn(s)ds, t ∈ [t0, T ],

xn,t0 = ϕ,

(18)

fn(t) ∈ F (t, xn−1,t), t ∈ [t0, T ], (19)

with

‖fn+1(t)− fn(t)‖ ≤ ζR+β(t)‖xn,t − xn−1,t‖C , (20)

for almost every t ∈ [t0, T ].

Proof. By Lemma 4, the set-valued map t F (t, yt) is measurable. Since the function t→ γ1(t)

is measurable (see, [13, Lemma 1.5]), the set-valued map U1 defined by

U1(t) := {v ∈ F (t, yt) : ‖v − f0(t)‖ = γ1(t)}

is measurable (see, e.g., [2]). Hence, by the measurable selection theorem the set-valued map

U1 admits a measurable selection f1 : [t0, T ] 7→ Rn. From the definition of U1, we have f1(t) ∈

F (t, yt) for t ∈ [t0, T ] and

‖f1(t)− f0(t)‖ = γ1(t) a.e. t ∈ [t0, T ]. (21)
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Let ϕ ∈ C([−τ, 0],Rn) be such that ‖ϕ− yt0‖C ≤ δ0 and define x1 ∈ C([t0 − τ, T ],Rn) by x1(t) = ϕ(0) +

∫ t

t0

f1(s)ds, t ∈ [t0, T ],

x1(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0].

Observe that

‖x1,t − yt‖ ≤ δ0 +

∫ t

t0

γ1(s)ds, t ∈ [t0, T ]. (22)

Indeed, for θ ∈ [−τ, 0] and t ∈ [t0, T ] such that t+ θ ≥ t0, we have

‖x1(t+ θ)− y(t+ θ)‖ ≤ ‖ϕ(0)− y(t0)‖+ ‖
∫ t+θ

t0

f1(s)− ẏ(s)ds‖

≤ ‖ϕ− yt0‖C +

∫ t+θ

t0

γ1(s)ds ≤ δ0 +

∫ t

t0

γ1(s)ds.

In the case when t+ θ < t0, we have ‖x1(t+ θ)− y(t+ θ)‖ = ‖ϕ− yt0‖C ≤ δ0.

With x1, we associate the set-valued map [t0, T ] 3 t U2(t) defined by U2(t) := {v ∈ F (t, x1,t) :

‖v − ẋ1(t)‖ = dF (t,x1,t)(ẋ1(t))}. By (22), ‖x1,t − yt‖C ≤ β and, since F (t, ·) is ζR+β-Lipschitz

on yt + βBC , we deduce (using the same arguments as before) the existence of a measurable

selection f2 : [t0, T ] 7→ Rn of U2 such that ‖f2(t)− f1(t)‖ ≤ ζR+β(t)‖x1,t − x0,t‖C , for almost

every t ∈ [t0, T ]. Then, we conclude that (18)–(20) hold true for n = 1.

Assume that we already have constructed xn ∈ C([t0 − τ, T ],Rn) and fn ∈ L1([t0, T ],Rn), for

n = 1, · · · , N , verifying (18), (19) and (20). Before extending to n = N + 1, we prove that the

constructed sequence xn verifies the following:

Claim 1: ‖xn,t − yt‖C ≤ β, ∀ t ∈ [t0, T ],∀n = 1, · · · , N.

In fact, for n = 1, the claim follows directly from (22). For n ≥ 2, (20) implies the following

inequalities:

‖xn,t − xn−1,t‖C ≤
∫ t

t0

‖fn(s1)− fn−1(s1)‖ds1 ≤
∫ t

t0

ζR+β(s1)‖xn−1,s1 − xn−2,s1‖Cds1,

which can be repeated recursively (see the proof of [13, Theorem 1.2] for more details) to obtain

the following property:

‖xn,t − xn−1,t‖C ≤ (δ0 +

∫ t

t0

γ1(s)ds)
[ln(γ2(t))]n

n!
, (23)

for every n ∈ {2, · · · , N}. From (22) and the last inequality, we get (see the proof of [13,

Theorem 1.2] for more details)

‖xN,t − yt‖C ≤
N∑
i=1

‖xi,t − xi−1,t‖C ≤ γ3(t) ≤ β. (24)
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Again, define the set-valued map [t0, T ] 3 t  UN+1(t) by UN+1(t) := {v ∈ F (t, xN,t) :

‖v− ẋN(t)‖ = dF (t,xN,t)(ẋN(t))}. Knowing that ‖xN,t− yt‖C ≤ β and using the same reasoning

as before, we deduce the existence of fN+1 : [t0, T ] 7→ Rn, a measurable selection of UN+1, such

that ‖fN+1(t) − fN(t)‖ ≤ ζR+β(t)‖xN,t − xN−1,t‖C , for almost every t ∈ [t0, T ]. The function

xN+1, associated to fN+1, is defined by (18), for n = N + 1. �

Proof of Theorem 1. By (23), for each t ∈ [t0, T ], the sequence {xn,t} is Cauchy in the Banach

space C([−τ, 0],Rn). Thus, for each t ∈ [t0, T ] we may define xt ∈ C([−τ, 0],Rn) as the limit

of xn,t. In addition, by (20), for almost every t ∈ [t0, T ] the sequence {fn(t)} is Cauchy in Rn.

Furthermore, from (20) and (21), it follows that for n ≥ 1

‖fn(t)− ẏ(t)‖ ≤
n−1∑
i=0

‖fi+1(t)− fi(t)‖ ≤ γ1(t) + ζR+β(t)
n−1∑
i=1

‖xi,t − xi−1,t‖C

≤ γ1(t) + ζR+β(t)γ3(t) a.e. t ∈ [t0, T ],

(25)

from which we conclude that the sequence {fn} is integrably bounded. Thus we may define

f ∈ L1([t0, T ],Rn) by f(t) = limn→+∞ fn(t). By arguments similar to [13, Theorem 1.2], we

obtain that x(·) is an F -Trajectory satisfying ẋ(t) = f(t) a.e. in [t0, T ]. Passing to the limits

in (24) and (25) yields the desired estimations on x and ẋ. �

B. Proof of Theorem 2

Fix δ > 0 and let R := maxt∈[t0−τ,T ] ‖y(t)‖. It is not restrictive to assume that t0 = 0 and∫ T
0
ζR+δ(t)dt > 0. Choose any positive α such that

α < min

{
δ

2
,

δ

2γ2(T )
∫ T

0
ζR+δ(t)dt

}
, (26)

where γ2(·) is as in Theorem 1, with β = δ. Let n ≥ 1 be so large such that σ(1 + R)/n <

α/2, where σ is given by (H3). Let Ij be the interval [(j − 1)T
n
, j T

n
], for j = 1, · · · , n. By

Lemma 4, the set-valued map t  F (t, yt) is measurable. In addition, by (H3), t  F (t, yt)

is integrably bounded because for almost every t ∈ [0, T ], F (t, yt) ⊂ σ(1 +R)B. Then, by

Aumann’s Theorem [4], there exists a measurable selection fj(t) ∈ F (t, yt) such that∫
Ij

fj(t)dt =

∫
Ij

ẏ(t)dt, j = 1, · · · , n.

DRAFT



13

Let f be the function which is equal to fj on Ij , and define the continuous function z : [−τ, T ]→ Rn

by  z(t) = y(0) +

∫ t

0

f(s)ds, t ∈ [0, T ],

z0 = y0.

Observe that

‖zt − yt‖C < α, ∀ t ∈ [0, T ].

Indeed, for every t ∈ [0, T ] and every θ ∈ [−τ, 0] such that t+θ ≥ 0, there exists j ∈ {1, · · · , n}

for which t+ θ ∈ Ij and

‖z(t+ θ)− y(t+ θ)‖ = ‖
∫ t+θ

0

(f(s)− ẏ(s)) ds‖ ≤
∫
Ij

‖f(s)− ẏ(s)‖ds < α.

If t+ θ < 0, then ‖z(t+ θ)− y(t+ θ)‖ = 0.

Since for almost every t ∈ [0, T ], F (t, ·) is ζR+δ(t)-Lipschitz on yt + δBC , we obtain

dF (t,zt)(ż(t)) ≤ sup{dF (t,zt)(ξ) : ξ ∈ F (t, yt)}+ dF (t,yt)(ż(t)) ≤ ζR+δ(t)‖zt − yt‖C ≤ αζR+δ(t).

Inequality (27) together with (26) imply that γ2(T )
∫ T

0
αζR+δ(t)dt < δ/2. Then, by Theorem 1

applied with β = δ and δ0 = 0, there exists a trajectory x of (6) satisfying x0 = z0 = y0 and

‖xt − zt‖C ≤ γ2(T )

∫ T

0

αζR+δ(s)ds <
δ

2
.

Finally, we obtain

‖xt − yt‖C ≤ ‖xt − zt‖C + ‖zt − yt‖C <
δ

2
+
δ

2
= δ,

which concludes the proof. �

C. Proof of Lemma 1.

We proceed in three steps.

Step 1. Let R > 0, t̄ ∈ [0, T ] and ψ̄ ∈ Kλ ∩ RBC be fixed. Knowing that F is locally bounded

and using exactly the same argument as [16, Lemma 3.5], we prove the existence of ρt̄,ψ̄ > 0

such that for all v ∈ F (t̄, ψ̄) with max
n∈N1

K(ψ̄(0))
〈n, v〉 ≥ 0, there exists w ∈ Liminf(s,φ)→(t̄,ψ̄) F (s, φ)

satisfying

max
{
〈n,w〉, 〈n,w − v〉 | n ∈ N1

K(ψ̄(0))
}
≤ −2ρt̄,ψ̄. (27)
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Step 2. We show the existence of ηt̄,ψ̄ > 0 such that for every t ∈ B(t̄, ηt̄,ψ̄), for every

ψ ∈ Kλ ∩BC(ψ̄, ηt̄,ψ̄) + ηt̄,ψ̄BC and for every v ∈ F (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),ηt̄,ψ̄)
〈n, v〉 ≥ 0,

there exists w ∈ F (t, ψ) satisfying 〈n,w〉 ≤ −ρt̄,ψ̄ and 〈n,w − v〉 ≤ −ρt̄,ψ̄

∀n ∈ N1
K(x),∀x ∈ ∂K ∩B(ψ(0), ηt̄,ψ̄).

(28)

Suppose by contradiction that there exist ti → t̄, ψi → ψ̄ in C([−τ, 0],Rn), vi ∈ F (ti, ψi), xi →∂K

ψ̄(0) and ni ∈ N1
K(xi) such that 〈ni, vi〉 ≥ 0 and for every wi ∈ F (t, ψi) we can find x′i →∂K

ψ̄(0), n′i ∈ N1
K(x′i) satisfying

〈n′i, wi〉 ∨ 〈n′i, wi − vi〉 > −ρt̄,ψ̄. (29)

Since F is upper semicontinuous at every point of [0, T ]×Kλ, taking subsequences and keeping

the same notations we may assume that vi converge to some v ∈ F (t̄, ψ̄), ni → n and n′i → n′.

Since the map x N1
K(x) is upper semicontinuous, we have n, n′ ∈ N1

K(ψ̄(0)) and 〈n, v〉 ≥ 0.

Then max
n∈N1

K(ψ̄(0))
〈n, v〉 ≥ 0. Consider w as in (27) corresponding to this v and let wi ∈ F (t, ψi)

be such that wi → w. From (29) we deduce that 〈n′, w〉 ∨ 〈n′, w − v〉 ≥ −ρt̄,ψ̄, contradicting the

choice of w.

Step 3. Consider a covering of [0, T ]× (Kλ ∩ 2RBC) by the open balls B̊((t̄, ψ̄), ηt̄,ψ̄) satisfying

the following requirement:

[0, T ]× (Kλ ∩ 2RBC) ⊂
⋃

(t̄,ψ̄)∈[0,T ]×Kλ∩2RBC

B̊((t̄, ψ̄), ηt̄,ψ̄)

such that for every t ∈ B(t̄, ηt̄,ψ̄), for every ψ ∈ Kλ ∩BC(ψ̄, ηt̄,ψ̄) + ηt̄,ψ̄BC and for every

v ∈ F (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),ηt̄,ψ̄)
〈n, v〉 ≥ 0,

there exists w ∈ F (t, ψ) satisfying (28).

We claim that the set Kλ∩2RBC is compact. Indeed, Thanks to Ascoli’s Theorem, we know that

a subset of C([−τ, 0],Rn) is compact if and only if it is closed, bounded, and equicontinuous. The

set Kλ is closed (the uniform limit of λ-Lipschitz functions is λ-Lipschitz) and equicontinuous

(by assumption). The boundedness follows from the fact that for all θ ∈ [−τ, 0]

‖ψ(θ)‖ ≤ ‖ψ(θ)− ψ(0)‖+ ‖ψ(0)‖ ≤ λτ +R.
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Now, consider a finite subcovering

[0, T ]× (Kλ ∩ 2RBC) ⊂
⋃

i=1··· ,N

B̊((ti, ψi), ηti,ψi).

Then, for ρ = min{ρti,ψi , i = 1 · · · , N}, for some 0 < η < min{R, ηti,ψi , i = 1 · · · , N} and

for all (t, ψ) ∈ [0, T ] × (Kλ + ηBC) ∩ RBC , there exists 1 ≤ i ≤ N such that (t, ψ) ∈

B(ti, ηti,ψi)× (Kλ ∩BC(ψi, ηti,ψi) + ηti,ψiBC). This complete the proof. �

D. Proof of Theorem 3.

The proof is inspired by the construction proposed in [15].

Lemma 6: Assume (H1)–(H3). Let τ > 0, r > 0 and λ0 > 0 and suppose that, for λ given

by (11), assumptions (H4) and (IPCλ) hold true. Then there exist positive constants δ and c

such that for every t̄ ∈ [0, T ] and every F -trajectory x̂(·) on [t̄− τ, T ] with λ0-Lipschitz x̂t̄ and

x̂(t̄) ∈ K ∩ rB, and for any ε > 0, we can find an F -trajectory on [t̄− τ, T ] satisfying
xt̄ = x̂t̄,

x(t) ∈ IntK, ∀ t ∈ (t̄, (t̄+ δ) ∧ T ]

‖xt − x̂t‖C ≤ c max
t∈[t̄,T ]

dK(x̂(t)) + ε.

Proof. Let R := (1+λ0τ + r)eσT , R̃ := (1+R)σ and R̄ := 2R̃T +R, where σ is as in (H3). Fix

t̄ ∈ [0, T ] and an F -trajectory x̂(·) on [t̄− τ, T ] such that x̂t̄ is λ0-Lipschitz and x̂(t̄) ∈ K ∩ rB.

Let δ > 0 and 0 < β < ρ be such that δ < η
4σ(1+R)

(where ρ and η are given by Lemma 1) and

ν(δ) := 2R̃ exp

(∫ T

t̄

ζR̄+β(s)ds

)
ωζR̄(δ) < β,

where ζR̄(·) and ζR̄+β(·) are as in (H2), and ωζR̄(·) is the modulus of continuity of the map

t 7→
∫ t
t̄
ζR̄(s)ds. Consider Γ > 0 such that Γ(ρ− ν(δ)) > 1 and call δ̄ := (t̄+ δ) ∧ T .

We proceed in four steps.

Step 1. We have ‖x̂t‖C ≤ R for every t ∈ [t̄, T ]. Indeed, for t ∈ [t̄, T ] and θ ∈ [−τ, 0], we have

x̂(t+ θ) =

 x̂(t̄) +

∫ t+θ

t̄

˙̂x(s)ds, if t+ θ ≥ t̄

x̂t̄(t+ θ − t̄), if t+ θ < t̄.

Then,

‖x̂(t+ θ)‖ ≤ ‖x̂t̄‖C +

∫ max{t̄,t+θ}

t̄

σ(1 + ‖x̂s‖C)ds.
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Hence

‖x̂t‖C ≤ ‖x̂t̄‖C +

∫ max{t̄,t+θ}

t̄

σ(1 + ‖x̂s‖C)ds.

Thanks to Gronwall’s Lemma, we can easily verify that for any t ∈ [t̄, T ]

‖x̂t‖C ≤ (1 + ‖x̂t̄‖C)eσ(t−t̄), (30)

from which conclude that ‖x̂t‖C ≤ R for every t ∈ [t̄, T ].

Step 2. If d̃K(x̂(t̄)) < −η
4

, then x(·) = x̂(·) satisfies our lemma. Indeed, if d̃K(x̂(t̄)) < −η
4

, then

for all t ∈ [t̄, δ̄], we have

d̃K(x̂(t)) ≤ d̃K(x̂(t̄)) + |d̃K(x̂(t))− d̃K(x̂(t̄))| < −η
4

+ ‖x̂(t)− x̂(t̄)‖

≤ −η
4

+

∫ t

t̄

‖ ˙̂x(s)‖ds < −η
4

+ (1 +R)σδ < 0,

and x(·) = x̂(·) is as required.

Step 3. If −η
4
≤ d̃K(x̂(t̄)) ≤ 0, we define the measurable set

S := {s ∈ [t̄, δ̄] : ∃x ∈ ∂K ∩B(x̂(s), η), n ∈ N1
K(x), 〈n, ˙̂x(s)〉 ≥ 0}.

Fix any ε > 0 and ε′ > 0 such that

0 < ε′ <
ε

2R̃

[
1 + exp

(∫ T
0
ζR̄+β(s)ds

)∫ T

0

ζR̄(s)ds

] ,
and let κ ∈ [t̄, δ̄] be defined as follows:

• If µ(S) ≤ Γ max
s∈[t̄,T ]

dK(x̂(s)) + ε′ then set κ = δ̄.

• If µ(S) > Γ max
s∈[t̄,T ]

dK(x̂(s)) + ε′ then take κ be the smallest number in [t̄, δ̄] such that

µ(S ∩ [t̄, κ]) = Γ max
s∈[t̄,T ]

dK(x̂(s)) + ε′.

For each s ∈ S, we have x̂s ∈ (Kλ+ηBC)∩RBC . Indeed, let z ∈ ∂K be such that ‖z− x̂(s)‖ =

dK(x̂(s)). Let us define the function ψ ∈ C([−τ, 0],Rn) by

ψ(θ) = x̂(s+ θ)− x̂(s) + z, θ ∈ [−τ, 0].

The function ψ belongs to Kλ. In addition, we have

‖x̂s(θ)− ψ(θ)‖ = ‖x̂(s)− z‖ = dK(x̂(s)) ≤ dK(x̂(t̄)) + |dK(x̂(s))− dK(x̂(t̄))| < η.
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Then x̂s ∈ (Kλ + ηBC)∩RBC . Thanks, to Lemma 1, for each s ∈ S, we can find w ∈ F (s, x̂s)

satisfying (10). By the measurable selection theorem [2], there exists a measurable function

w : S → Rn such that w(s) ∈ F (s, x̂s), and for a.e. s ∈ S 〈n,w(s)〉 ≤ −ρ, and 〈n,w(s)− ˙̂x(s)〉 ≤ −ρ

∀x ∈ ∂K ∩B(x̂(s), η),∀n ∈ N1
K(x).

(31)

Define the absolutely continuous function y : [t̄− τ, T ] 7→ Rn by yt̄ = x̂t̄ and

ẏ(t) :=

 w(t) if t ∈ S ∩ [t̄, κ]

˙̂x(t) if t ∈ ([t̄, T ] \ S) ∩ [t̄, κ].
(32)

For t ∈ [t̄, T ] and θ ∈ [−τ, 0], we have

‖yt(θ)− x̂t(θ)‖ ≤ ‖
∫ max{t̄,t+θ}

t̄

(
ẏ(s)− ˙̂x(s)

)
ds‖ ≤

∫ t

t̄

‖ẏ(s)− ˙̂x(s)‖ds

=

∫
S∩[t̄,t∧κ]

‖w(s)− ˙̂x(s)‖ds ≤ 2R̃µ(S ∩ [t̄, t ∧ κ])

implying that,

‖yt − x̂t‖C ≤ 2R̃µ(S ∩ [t̄, t ∧ κ]). (33)

Moreover, for a.e. t ∈ [t̄, T ],

dF (t,yt)(ẏ(t)) ≤ sup{dF (t,x̂t)(ξ) : ξ ∈ F (t, yt)}+ dF (t,x̂t)(ẏ(t))

≤ ζR̄(t)‖yt − x̂t‖ ≤ 2R̃µ(S ∩ [t̄, t ∧ κ])ζR̄(t).

Hence, thanks to Theorem 1 applied with δ0 = 0, there exists an F -trajectory x(·) on [t̄− τ, T ]

such that xt̄ = yt̄ and for every t ∈ [t̄, T ]

‖xt − yt‖C ≤ 2R̃ exp

(∫ T

0

ζR̄+β(s)ds

)
ωζR̄(|t− t̄|)µ(S ∩ [t̄, t ∧ κ]).

By the definition of κ, the inequality (33) and the triangle inequality, we have

‖xt − x̂t‖C ≤
ε

ε′
µ(S ∩ [t̄, κ]) ≤ c max

t∈[t̄,T ]
dK(x̂(t)) + ε,

for a constant c independent from t̄ and x̂(·).

Step 4. We show next that {x(t) : t ∈ (t̄, δ̄]} ⊂ IntK. We distinguish two different cases:

Case 1. t ∈ (t̄, κ]: The mean-value theorem (see, e.g., [10, Theorem 2.3.7]), affirms the existence

of some z(t) ∈ [y(t̄), y(t)] and ξ(t) ∈ ∂d̃K(z(t)), such that

d̃K(y(t)) = d̃K(y(t̄)) + 〈ξ(t), y(t)− y(t̄)〉.
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Then,

d̃K(x(t)) ≤ d̃K(y(t)) + ‖x(t)− y(t)‖ ≤ d̃K(y(t)) + ν(δ)µ(S ∩ [t̄, t ∧ κ])

≤ d̃K(y(t̄)) + 〈ξ(t), y(t)− y(t̄)〉+ ν(δ)µ(S ∩ [t̄, t ∧ κ])

≤
∫
S∩[t̄,t]

〈ξ(t), w(s)〉ds+

∫
[t̄,t]\S

〈ξ(t), ˙̂x(s)〉ds+ ν(δ)µ(S ∩ [t̄, t ∧ κ]).

(34)

As in the proof of [15, Theorem 5], it follows that ξ(t) is a convex combination of m vectors

ξα ∈ N1
K(yα), with yα ∈ π∂K(z(t)), such that for all s ∈ [t̄, κ] and α ∈ {1, · · · ,m} we have

‖yα − x̂(s)‖ ≤ η, where 1 ≤ m ≤ n+ 1. Then, from (34) together with (31), we obtain that

d̃K(x(t)) ≤
m∑
α=1

λα

∫
S∩[t̄,t]

〈ξα, w(s)〉ds+
m∑
α=1

λα

∫
[t̄,t]\S

〈ξα, ˙̂x(s)〉ds+ ν(δ)µ(S ∩ [t̄, t ∧ κ])

≤ (ν(δ)− ρ)µ(S ∩ [t̄, t]) < 0.

Case 2. t ∈ (κ, δ̄]: By the mean-value theorem, for some z(t) ∈ [x̂(t), y(t)] and ξ(t) ∈ ∂d̃K(z(t)),

d̃K(y(t)) = d̃K(x̂(t)) + 〈ξ(t), y(t)− x̂(t)〉.

Then,

d̃K(x(t)) ≤ d̃K(y(t)) + ν(δ)µ(S ∩ [t̄, t ∧ κ])

= d̃K(x̂(t)) + 〈ξ(t), y(t)− x̂(t)〉+ ν(δ)µ(S ∩ [t̄, t ∧ κ])

= d̃K(x̂(t)) +

∫ t

t̄

〈ξ(t), ẏ(s)− ˙̂x(s)〉ds+ ν(δ)µ(S ∩ [t̄, t ∧ κ])

= d̃K(x̂(t)) +

∫
S∩[t̄,t]

〈ξ(t), w(s)− ˙̂x(s)〉ds+ ν(δ)µ(S ∩ [t̄, t ∧ κ])

(35)

As in the first case, ξ(t) is a convex combination of m vectors ξα ∈ N1
K(yα), with yα ∈ π∂K(z(t)),

such that for all s ∈ [t̄, κ] and α ∈ {1, · · · ,m} we have ‖yα− x̂(s)‖ ≤ η, where 1 ≤ m ≤ n+1.

Then, from (35), we obtain that

d̃K(x(t)) ≤ d̃K(x̂(t)) + ν(δ)µ(S ∩ [t̄, t ∧ κ]) +
m∑
α=1

λα

∫
S∩[t̄,t]

〈ξα, w(s)− ˙̂x(s)〉ds

≤ d̃K(x̂(t))− ρµ(S ∩ [t̄, κ]) + ν(δ)µ(S ∩ [t̄, t ∧ κ])

≤ d̃K(x̂(t))− (ρ− ν(δ))

[
Γ max
s∈[t̄,T ]

dK(x̂(s)) + ε′
]
< 0.

This completes the proof. �
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Proof of Theorem 3. Let r := (1+λ0τ +r0)eσT and δ = δ(r), c = c(r) > 0 be as in Lemma 6.

Fix t0 ∈ [0, T ] and an F−trajectory x̂(·) such that x̂t0 is λ0-Lipschitz and x̂(t0) ∈ K ∩ r0B.

Let N be the smallest integer satisfying (t0 + Nδ) ∧ T = T . Set ti = (t0 + iδ) ∧ T for all

i = 1, · · ·N . Fix any ε0 > 0. Lemma 6 assures that, for any sequence of positive numbers

ε1, · · · , εN−1, there exists a sequence of F−trajectories {x0(·) = x̂(·), xi(·) : i = 1, · · · , N}

such that for all i = 1, · · · , N
xi(t) = xi−1(t), ∀ t ∈ [t0 − τ, ti−1]

x(t) ∈ IntK, ∀ t ∈ (t0, ti]

‖xi,t − xi−1,t‖C ≤ c max
t∈[t0,T ]

dK(xi−1(t)) + εi−1.

Lemma 6 is applied recursively on the interval [(ti−1 − τ) ∧ T, T ] with reference trajectory

xi−1(·) restricted to this interval, for i = 1, · · · , N . Note that, at each stage of this recursive

construction, the same constant δ and c are used; this is justified by the fact that xi−1,ti−1
∈ rBC ,

for all i = 1, · · · , N . Call x(·) = xN(·), then xt0 = x̂t0 and x(t) ∈ IntK for every t ∈ (t0, T ].

Using the same arguments as in [15, Theorem 5], we prove the existence of some C > 0,

independent from t0, x̂(·) and ε0 such that

‖xt − x̂t‖C ≤ C

(
max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
.

This completes the proof. �

E. Proof of Corollary 1.

Fix a relaxed feasible F -trajectory x̄(·) such that x̄t0 is λ0-Lipschitz and x̄(t0) ∈ K ∩ r0B,

and δ > 0. Let C be as in Theorem 3. By Theorem 2, there exists an F -trajectory x̂(·) on

[t0 − τ, T ] satisfying x̂t0 = x̄t0 and ‖x̂t − x̄t‖C ≤ δ/3C for all t ∈ [t0, T ]. By Theorem 3, for

every ε0 > 0, there exists a feasible F -trajectory x(·) such that xt0 = x̂t0 , x((t0, T ]) ∈ IntK and

‖xt−x̂t‖C < C

(
max
t∈[t0,T ]

dK(x̂(t)) + ε0

)
. Remark that dK(x̂(t)) ≤ dK(x̄(t))+‖x̂t−x̄t‖C < δ/3C.

Set ε0 = δ/3C. Then, ‖xt − x̄t‖C ≤ δ for all t ∈ [t0, T ]. �

F. Proof of Lemma 2.

Lemma 7: Let λ > 0 and assume (H1)–(H4) and (IP λ
rel). Then for every R > 0, ψ̄ ∈ Kλ∩RBC

and every t̄ ∈ [0, T ] there exists ρt̄,ψ̄ > 0 such that ∀ v ∈ coF (t̄, ψ̄) with max
n∈N1

K(ψ̄(0))
〈n, v〉 ≥ 0
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we can find w ∈ Liminf(s,φ)→(t̄,ψ̄)coF (s, φ) satisfying

max
{
〈n,w〉, 〈n,w − v〉 | n ∈ N1

K(ψ̄(0))
}
≤ −2ρt̄,ψ̄. (36)

Proof. The proof follows the same lines as [16, Proof of Lemma 3.7]. �

Proof of Lemma 2. Let R > 0, t̄ ∈ [0, T ] and ψ̄ ∈ Kλ ∩RBC be fixed and let ρt̄,ψ̄ be as

in Lemma 7. We claim the existence of ηt̄,ψ̄ > 0 such that for every t ∈ B(t̄, ηt̄,ψ̄), every

ψ ∈ Kλ ∩BC(ψ̄, ηt̄,ψ̄) + ηt̄,ψ̄BC and every v ∈ coF (t, ψ) with

max
n∈N1

K(x),x∈∂K∩B(ψ(0),ηt̄,ψ̄)
〈n, v〉 ≥ 0,

there exists w ∈ coF (t, ψ) satisfying 〈n,w〉 ≤ −ρt̄,ψ̄ and 〈n,w − v〉 ≤ −ρt̄,ψ̄

∀n ∈ N1
K(x),∀x ∈ ∂K ∩B(ψ(0), ηt̄,ψ̄).

Suppose by contradiction that there exist ti → t̄, ψi → ψ̄, vi ∈ coF (ti, ψi), xi →∂K ψ̄(0) and

ni ∈ N1
K(xi) such that 〈ni, vi〉 ≥ 0 and for every wi ∈ coF (t, ψi) we can find x′i →∂K ψ̄(0), n′i ∈

N1
K(x′i) satisfying

〈n′i, wi〉 ∨ 〈n′i, wi − vi〉 > −ρt̄,ψ̄. (37)

Since F is upper semicontinuous at every point of [0, T ]×Kλ, so is coF . taking subsequences

and keeping the same notations we may assume that vi converge to some v ∈ coF (t̄, ψ̄), ni → n

and n′i → n′. Since the map x  N1
K(x) is upper semicontinuous, we have n, n′ ∈ N1

K(ψ̄(0))

and 〈n, v〉 ≥ 0. Then max
n∈N1

K(ψ̄(0))
〈n, v〉 ≥ 0. Consider w as in (36) corresponding to this v and let

wi ∈ coF (t, ψi) be such that wi → w. From (37) we deduce that 〈n′, w〉 ∨ 〈n′, w− v〉 ≥ −ρt̄,ψ̄,

contradicting the choice of w. The rest of the proof is similar to Step 3 of Lemma 1. �

G. Proof of Theorem 5.

The proof of Theorem 5 is a straightforward consequence of Theorem 4. Indeed, fix t0 ∈ [0, T ]

and let us introduce for every (t, ψ) ∈ [t0, T ]× C([−τ, 0],Rn) the set-valued map F defined by

F (t, ψ) := F(t, ψ(−τ)). It is easy to see that under the assumptions (A1)–(A4), the set-valued

map F verifies (H1)–(H4). In addition, we can show that, under (IP λ
eq), condition (IP λ

rel) holds

true. In fact, let ψ ∈ Kλ. By definition of Kλ, we have ψ(0) ∈ ∂K and ψ(−τ) ∈ ψ(0) + λτB.
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Then, from (IP λ
eq), for every v ∈ F (t, ψ) ≡ F(t, ψ(−τ)) such that max

n∈N1
K(ψ(0))

〈n, v〉 ≥ 0 there

exists w ∈ Liminf(s,z)→(t,ψ(−τ))coF(s, z) satisfying

max
n∈N1

K(ψ(0))
〈n,w − v〉 < 0.

From the inclusion

Liminf(s,z)→(t,ψ(−τ))coF(s, z) ⊂ Liminf(s,φ)→(t,ψ)coF (s, φ),

we deduce that (IP λ
rel) holds true. Hence, Theorem 4 concludes the proof. �
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