
HAL Id: hal-01514747
https://hal.sorbonne-universite.fr/hal-01514747

Submitted on 27 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Adaptive Elicitation of Preferences under Uncertainty in
Sequential Decision Making Problems

Nawal Benabbou, Patrice Perny

To cite this version:
Nawal Benabbou, Patrice Perny. Adaptive Elicitation of Preferences under Uncertainty in Sequential
Decision Making Problems. The 26th International Joint Conference on Artificial Intelligence, Aug
2017, Melbourne, Australia. �hal-01514747�

https://hal.sorbonne-universite.fr/hal-01514747
https://hal.archives-ouvertes.fr

Adaptive Elicitation of Preferences under Uncertainty
in Sequential Decision Making Problems

Nawal Benabbou and Patrice Perny
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6

CNRS, UMR 7606, LIP6, F-75005, Paris, France
4 Place Jussieu, 75005 Paris, France

nawal.benabbou@lip6.fr, patrice.perny@lip6.fr

Abstract
This paper aims to introduce an adaptive prefer-
ence elicitation method for interactive decision sup-
port in sequential decision problems. The Deci-
sion Maker’s preferences are assumed to be rep-
resentable by an additive utility, initially unknown
or imperfectly known. We first study the determi-
nation of possibly optimal policies when admissi-
ble utilities are imprecisely defined by some lin-
ear constraints derived from observed preferences.
Then, we introduce a new approach interleaving
elicitation of utilities and backward induction to in-
crementally determine a near-optimal policy. We
propose an interactive algorithm with performance
guarantees and describe numerical tests demon-
strating the practical efficiency of our approach.

1 Introduction
Automated preference elicitation and preference-based
search are two important lines of research in AI for computa-
tional decision support, see e.g., [Boutilier, 2013]. Methods
for automated preference elicitation are generally grounded
on decision theory and consist in learning the parameters of
a decision model to best fit the preferences of the Decision
Maker (DM), e.g., [Chajewska et al., 2001; Boutilier et al.,
2006; Fürnkranz and Hüllermeier, 2010; Perny et al., 2016].
The resulting models are then involved in preference-based
search algorithms, to explore all possible solutions and de-
termine an optimal choice, see e.g., [Dasgupta et al., 1995;
Perny and Spanjaard, 2002; Boutilier et al., 2004; Brafman
et al., 2010]. Thus, preference elicitation is often seen as a
preliminary stage to preference-based search.

Yet, there is an alternative view which is being actively
developed in AI, that consists in interleaving elicitation and
search. The aim is to focus the elicitation burden on the useful
part of preference information to solve a specific instance of
a decision problem, rather than trying to obtain a full picture
of the DM’s preferences. This approach relies on an adaptive
generation of preference queries in order to progressively re-
duce the indetermination attached to the parameters of the
decision model until an optimal or near optimal solution can
be identified. This incremental approach has proved success-
ful for decision making on explicit sets in various contexts,

e.g., for the elicitation of utility functions, see [White III et
al., 1984; Ha and Haddawy, 1997; Chajewska et al., 2000;
Wang and Boutilier, 2003; Braziunas and Boutilier, 2007;
Hines and Larson, 2010].

However, the extension of adaptive preference elicitation to
combinatorial domains is generally not straightforward. The
determination of informative preference queries and the pro-
gressive elimination of solutions are indeed harder to imple-
ment when the alternatives are very numerous and implic-
itly defined. Yet, some recent contributions propose incre-
mental elicitation procedures for some specific combinatorial
optimization problems considered in AI such as constraint
satisfaction [Gelain et al., 2010], matching [Drummond and
Boutilier, 2013], planning [Weng and Zanuttini, 2013], and
state space search [Benabbou and Perny, 2015a]. The aim
of this paper is propose an incremental approach for another
important problem, namely the determination of an optimal
policy in a sequential decision problem under risk.

This problem appears in various contexts such as strate-
gic resources allocation, investment management, optimiza-
tion of medical treatment policies, or navigation problems. In
these problems, DMs have to identify their preferred policy
among a combinatorial set of possibilities, in a setting where
the consequences of their acts depend on exogenous events.
In such situations, decision support tools may facilitate the
elicitation of their preferences and control the selection of ac-
tions in different possible states by taking into account antic-
ipated future situations, possibly as a result of their own acts.

We consider a sequential decision problem under uncer-
tainty represented by a decision tree T , i.e., an acyclic and
connected graph including three types of nodes: a set DT of
decision nodes (represented by squares), a set CT of chance
nodes (represented by circles) and a set XT of outcome nodes
(leaves). Each decision node represents a decision variable
and the branches starting from that node correspond to the
possible decisions (the domain of the variable). The branches
starting from a chance node correspond to different possible
events and are labelled by their probabilities. The leaves rep-
resent the possible outcomes (e.g., profits, time). An example
of decision tree is given in Figure 1.

The root of the tree is a decision node representing the ini-
tial decision to be made. The rank of the other decision nodes
in the tree indicate the order in which decisions are made
(from the left to the right). In the tree, the selection of an

Figure 1: An example of a decision tree.

D1

C1

C2

D2

D3
up

down D4

D5

0.85

0.15

0.5

0.5

C3

C4

13

6

12

6

0.25

0.75
0.5

0.5

up

down

C5

C6

13

19

13

16

0.1

0.9
0.95

0.05

up

down

C7

C8

up

down
19

3

5

16

0.95

0.05
0.55

0.45

C9

C10

up

down
9

18

9

2

0.35

0.65
0.85

0.15

action at node Di is characterized by an edge (Di, A) where
A is a child of Di. Note that this selection makes irrelevant
all decision nodes outside from the tree rooted at A. For ex-
ample, in the tree pictured in Figure 1, the decision up in D1

makes irrelevant nodes D4 and D5. In the tree, policies are
characterized by the sequential selection of an action at every
(relevant) decision node. Every policy can therefore be repre-
sented by a set of edges in the tree. For example, in Figure 1,
policy π selecting up in nodes D1, D2 and D3 is represented
by the following edges: {(D1, C1), (D2, C3), (D3, C5)}. Ev-
ery policy induces a probability distribution on the leaves of
the tree. This distribution can be represented by a lottery
` = (x1, p1; . . . ;xm, pm) yielding outcome xk with proba-
bility pk, where pk, k = 1, . . . ,m, are strictly positive and
add up to one. For example, policy π corresponds to the lot-
tery ` = (6, .6375; 13, .2275; 19, .135). In the tree depicted in
Figure 1, there exist 8 policies leading to 8 distinct lotteries.

We adopt here the Bayesian theory of rational behavior
under risk [von Neumann and Morgenstern, 1947; Ham-
mond, 1988]. The DM is assumed to be an expected util-
ity maximizer and is consistent with the postulates of von
Neuman and Morgenstern (vNM) theory. In particular, the
DM will be indifferent between two lotteries if these lot-
teries yield the same outcomes with the same probabilities,
even if the same probabilities result from different possible
combinations of actions and events. The DM’s preferences
over lotteries are therefore represented by the expected utility
model defined by f(`, u) =

∑m
k=1 pku(xk) for any lottery

` = (x1, p1; . . . ;xm, pm), where u is the vNM utility func-
tion of the DM. A lottery ` is preferred to a lottery `′ if and
only if f(`, u) ≥ f(`′, u). The set of policies inherits from
the preferences defined over lotteries. Hence a policy is opti-
mal in a tree T if the associated lottery maximizes function f
over the set LT of all lotteries attached to the policies in T .

In this context, we want to elicit preferences in order to de-
termine the preferred policy without resorting to explicit enu-
merations and comparisons. As a preliminary to elicitation,
in the first part of the paper, we address the computation of
possibly optimal lotteries under incomplete preference infor-

mation (Section 2). This topic has been recently addressed in
various contexts related to AI, including multi-agent decision
making [Konczak and Lang, 2005; Xia and Conitzer, 2008;
Roijers et al., 2014; Aziz et al., 2015], valued constraint sat-
isfaction [Gelain et al., 2010; Marinescu et al., 2013] and
multiobjective optimization [Benabbou and Perny, 2015b].
We address here a similar issue in the context of sequential
decision making under risk. This work departs from previ-
ous studies in decision trees that consider partial preferences
induced by imprecise probabilities, see e.g., [Kikuti et al.,
2011]. Here the decision tree is completely specified and the
probabilities of events are precisely known. The indetermi-
nation only derives from imprecise utilities. The second part
of the paper is dedicated to preference elicitation (Section 3).
We assume that the vNM utility u of the DM is initially un-
known and we introduce a new approach interleaving the elic-
itation of u and the exploration of possibly optimal policies
to determine an optimal policy in a decision tree. Finally, we
introduce a representation of imprecise utilities using spline
functions and we provide numerical tests showing the practi-
cal efficiency of the proposed approach (Section 4).

2 Computing Possibly Optimal Lotteries
We consider a situation where the DM’s preferences are in-
complete. The DM may have expressed some preference
statements over various pairs of lotteries, but they are not suf-
ficient to construct a precise vNM utility. These initial pref-
erence statements only induce some constraints on the space
of utilities restricting the set U of admissible utility functions.
Based on this partial information, we are interested in explor-
ing the elements of POU (LT), the set of possibly optimal
lotteries in LT , i.e. lotteries that are f -optimal for at least one
utility function in U . Formally, for any set L of lotteries:

POU (L) =
⋃
u∈U

arg max
`∈L

f(`, u) (1)

This set can be constructed using the U -dominance relation
�U defined as follows:
Definition 1. For any set L of lotteries and for any lottery `0:
L �U `0 ⇔ ∀u ∈ U,∃` ∈ L, f(`, u) > f(`0, u).
For any set L of lotteries, we indeed have:
Proposition 1. `0 ∈ POU (L)⇔ ∀L′ ⊆ L, not(L′ �U `0).
This result directly follows from Definition 1. It shows that
POU (L) is exactly the set of non U -dominated lotteries in L.
Note that, for any set L′ ⊆ L and for any lottery `0 ∈ L, if
L′ �U `0 then L �U `0; therefore, POU (L) = {` ∈ L :
not(L �U `)}. As a consequnce, to conclude on whether a
given lottery `0 ∈ L is in POU (L) or not, it is sufficient to
check if L �U `0 holds (there is no need to enumerate and
make the test for all subsets L′ ⊆ L). Moreover, we have the
following straightforward result:
Proposition 2. For any set L of lotteries and for any lottery
`0: L �U `0 ⇔ min

u∈U
max
`∈L
{f(`, u)− f(`0, u)} > 0.

This result which directly follows from Definition 1 allows
one to check whether L �U `0 is satisfied or not by solving
an optimization problem over U . We will see in Section 4 that

U can be represented by a convex polyhedron, which enables
to solve this optimization problem in polynomial time using
linear programming.

In order to compute POU (LT), we now introduce a back-
ward induction algorithm rolling back the tree from the leaves
to the root. We assume that the root of the tree is a decision
node and that the set DT of decision nodes in T is topolog-
ically sorted: if there exists a path from node Di to node
Dj in the tree, then we necessarily have i < j. Starting
from the last decision node in the topological order, one it-
eratively computes the set of non U -dominated lotteries at-
tached to subpolicies rooted at decision nodes, until reaching
the root of the tree. This idea is implemented in Algorithm
1. In this algorithm, each decision node Di keeps a set Li
of lotteries attached to subpolicies rooted at that node (which
is stored in the lotteries attribute). This set is computed by
examining every child A of node Di. If A is a decision node,
then all lotteries that are stored in A are inserted in Li. If
A is a leaf of the tree, then the lottery (A, 1) yielding out-
come A with probability 1 is inserted in Li. Otherwise, A
is a chance node and all combinations of the lotteries stored
in the descendants of A are inserted in Li. These combina-
tions are computed by recursive calls to Combination from
the initial call Combination(A), where p(A,Ak) denotes the
probability on edge (A,Ak) (see Algorithm 2). Finally, only
the nonU -dominated elements ofLi are stored in the lotteries
attribute of node Di (see line 8). The following propositions
will be used to prove the correctness of our algorithm:

Proposition 3 (Independence). For any lottery `0 and any set
L of lotteries, if L �U `0 then, for any lottery `′ and any λ ∈
(0, 1), we have: {λ`+(1−λ)`′ : ` ∈ L} �U λ`0+(1−λ)`′.

This result directly derives from the fact that the DM is an
EU-maximizer and that vNM independence holds in EU the-
ory. Moreover, let Li be the set of lotteries attached to the
policies rooted at node Di for i ∈ {1, . . . , |DT |}. We have:

Proposition 4. Let (Di, Dj) ∈ D2
T be any pair of nodes such

that Dj is a descendant of Di in T . Let `i be the lottery as-
sociated with a policy π rooted at Di and let `j be the lottery
associated with the subpolicy of π rooted at Dj . If `j is U -
dominated in Lj then `i is U -dominated in Li.

Proof. Since `j is U -dominated in Lj , there exists a set L ⊆
Lj such that L �U `j . We want to prove that L′ �U `i holds
for some set L′ ⊆ Li. Since Dj is a descendant of Di in
the tree, there exists a unique path (A1, . . . , An) from node
Di to node Dj , with A1 = Di and An = Dj . If Ak ∈ DT
for all k ∈ {1, . . . , n}, then we necessarily have `i = `j and
L ⊆ Li. In that case, L �U `i follows from the hypothesis.
Otherwise, `i is necessarily of the form `i = λ`j + (1−λ)`′,
where λ =

∏
k:Ak∈CT p(Ak, Ak+1) and p(Ak, Ak+1) is the

probability labelling the edge (Ak, Ak+1). Since L �U `j
by hypothesis, we obtain L′ �U `i by Proposition 3, where
L′ = {λ`+ (1− λ)`′ : ` ∈ L} ⊆ Li.

Relation �U also satisfies the following property:

Proposition 5 (Transitivity). For all lotteries `0, `1 and for
all sets L,L′ of lotteries, if L �U `1 and {`1} ∪ L′ �U `0
then L ∪ L′ �U `0.

Algorithm 1: Backward induction.
Input: T : a decision tree; U : admissible utilities

1 for i = |DT |, . . . , 1 do
2 Li ← ∅;
3 for each edge (Di, A) in T do
4 if A ∈ DT then Li ← Li ∪A.lotteries;
5 else if A ∈ CT then Li←Li ∪Combination(A);
6 else Li ← Li ∪ {(A, 1)};
7 end
8 Di.lotteries← {` ∈ Li : not(Li �U `)};
9 end

10 return D1.lotteries

Algorithm 2: Combination.
Input: A: a chance node

1 Let A1, . . . An denote the n children of node A;
2 for each edge (A,Ak) in T do
3 if Ak ∈ DT then L′k ← Ak.lotteries;
4 else if Ak ∈ CT then L′k ← Combination(Ak);
5 else L′k ← {(Ak, 1)};
6 end
7 L← ∅;
8 for each (`1, . . . , `n) ∈ L′1 × . . .× L′n do
9 L← L ∪ {

∑n
k=1 p(A,Ak)`k}

10 end
11 return L

This is a direct consequence of the transitivity of the prefer-
ences induced by f(., u) for all u ∈ U . Due to Equation (1),
we also have the following result:

Proposition 6. For any set L of lotteries and any `0 ∈ L, we
have: `0 6∈ POU (L) ⇒ POU (L) �U `0.

The last two results are now used to prove the following one:

Proposition 7. For any two sets L,L′ of lotteries, we have:
POU (L) ⊆ L′ ⊆ L ⇒ POU (L′) ⊆ POU (L).

Proof. Let `′ ∈ POU (L′). We want to prove that `′ ∈
POU (L). Since `′ ∈ POU (L′), we have not(L′′ �U `′) for
all L′′ ⊆ L′ (by (1)). Moreover, we have POU (L) ⊆ L′ by
hypothesis; therefore, not(L′′ �U `′) for all L′′ ⊆ POU (L).
Now, we prove by contradiction that we have not(L′′ �U `′)
for all L′′ ⊆ L. Let us assume that there exists some L′′0 ⊆ L
such that L′′0 �U `′. Since we proved that not(L′′ �U `′)
for all L′′ ⊆ POU (L), we have L′′0 6⊆ POU (L). Hence there
exists some `0 ∈ L′′0 such that `0 ∈ L and `0 6∈ POU (L).
Then, using Proposition 6, we have POU (L) �U `0. More-
over, since L′′0 �U `′, we derive POU (L) ∪ L′′0\{`0} �U `′

by transitivity (see Proposition 5). Let L′′1 = POU (L) ∪
L′′0\{`0}. Note that we have POU (L) ⊆ L′′1 by defini-
tion. If there exists `1 ∈ L′′1 such that `1 6∈ POU (L),
then we can iterate the reasoning to derive L′′2 �U `′ where
L′′2 = POU (L) ∪ L′′1\{`1}. Note that L′′2 = L′′1\{`1} since
POU (L) ⊆ L′′1 and `1 6∈ POU (L). Thus, we can further
iterate to construct an embedded sequence L′′1 ⊃ . . . ⊃ L′′n =

POU (L) such that L′′k �U `′ for all k ∈ {1, . . . , n}. There-
fore, we have POU (L) �U `′. Moreover, POU (L) ⊆ L′ by
hypothesis, which implies `′ 6∈ POU (L′) by Proposition 1.
This yields a contradiction since `′ ∈ POU (L′) by definition.
Hence, there exists no L′′0 ⊆ L such that L′′0 �U `′. More-
over, `′ ∈ L′ ⊆ L by hypothesis. Hence `′ ∈ POU (L).

Proposition 8. Algorithm 1 returns the set POU (LT).

Proof. Let LA denote the output of Algorithm 1. We have to
prove that POU (LT) ⊆ LA and LA ⊆ POU (LT).
• POU (LT) ⊆ LA: using Proposition 4, we know

that only subpolicies leading to U -dominated policies are
deleted (in line 8). Since POU (LT) is exactly the set of
non U -dominated elements in LT (due to Proposition 1),
POU (LT) ⊆ LA holds.
• LA ⊆ POU (LT): this inclusion is implied by Propo-

sition 7 (with L = LT and L′ = LA). More precisely, we
have POU (LT) ⊆ LA ⊆ LT which implies POU (LA) ⊆
POU (LT). Since POU (LA) = LA (due to line 8), we con-
clude that LA ⊆ POU (LT).

Example 1. Coming back to Figure 1 and assuming that no
preference information is available, relation �U eliminates
up inD5 (edge (D5, C9)), down inD3 (edge (D3, C6)), down
in D2 (edge (D2, C4)) and nothing in D4. This leads to
three policies in D1: π1 = {(D1, C1), (D2, C3), (D3, C5)},
π2 = {(D1, C2), (D4, C7), (D5, C10)} and π3 = {(D1, C2),
(D4, C8), (D5, C10)}. Relation �U eliminates no policy in
D1. Hence POU (LT) = {`2, `3, `4}, where `i denotes the
lottery associated to policy πi.

Algorithm 1 relies on the nice properties of �U that make
possible to construct efficiently the optimal policies by dy-
namic programming. However, there exist instances of bi-
nary decision trees of depth d for which all policies are pos-
sibly optimal and correspond to disctinct lotteries. In such
cases, the set of possibly optimal lotteries includes Θ(22

d

)
elements that obviously cannot be enumerated in polynomial
time. This suggests inserting preference queries during the
search so as to progressively reduce the number of possibly
optimal lotteries until being able to determine a near-optimal
lottery. The next section investigates this line.

3 Elicitation in Decision Trees
We propose to refine Algorithm 1 by interleaving preference
elicitation and backward induction. The idea is to perform
an implicit and progressive reduction of POU (LT) by using
new preferences statements to focus the search on the relevant
lotteries. Collecting preference information during the search
is made possible by the following straightforward result:

Proposition 9. For any U,U ′ such that U ′ ⊆ U , for any set
L of lotteries and for any lottery `0: L �U `0 ⇒ L �U ′ `0.

This proposition shows that new preference statements ob-
tained during the search do not invalidate the pruning oper-
ations (based on relation �U) made so far while increasing
pruning opportunities for the rest of the search.

In order to collect preference information, we use an adap-
tive elicitation approach based on regret minimization (as

proposed in [Wang and Boutilier, 2003]) relying on the com-
putations of pairwise max regrets (PMR), max regrets (MR)
and minimax regrets (MMR) defined as follows:

• PMR(`, `′, U) = maxu∈U{f(`′, u)− f(`, u)}
•MR(`,LT , U) = max`′∈LT

PMR(`, `′, U)
•MMR(LT , U) = min`∈LT

MR(`,LT , U)

The optimal lotteries for the minimax regret criterion are the
elements of arg min`∈LT

MR(`,LT , U). By definition, the
utility loss incurred by the choice of any of these lotteries is
bounded above by the minimax regret value MMR(LT , U).
This suggests progressively collecting preference statements
from the DM until MMR(LT , U) drops below a given toler-
ance threshold δ ≥ 0. Ideally, we would like to ask preference
queries until MMR(LT , U) = 0, which corresponds to the
identification of an optimal lottery. However, to reduce the
elicitation burden, it is more efficient to use a threshold δ > 0
representing the maximum admissible gap to optimality.

To determine a lottery ` ∈ LT with aMR below δ, we pro-
pose an interactive backward induction algorithm that gener-
ates preference queries to discriminate between the lotteries
attached to the decision nodes (see Algorithm 3). We ask
preference queries until MMR(Li, U) ≤ δ/η where η de-
notes the maximum number of decision nodes included in a
path from the root to a leaf of the tree. This ensures that
the MR value of the returned lottery is bounded above by δ
(because any path from the root to a leaf includes at most η
decision nodes). Contrary to Algorithm 1, only one lottery
is stored in each decision node Di. This lottery is arbitrarily
chosen among those minimizing MR(`, Li, U) over the set
Li of lotteries attached to node Di (see lines 15-16).

In order to reduce MMR(Li, U) at a given decision node
Di, one may be tempted to ask the DM to compare two lot-
teries in Li and state which one she prefers (as in the Current
Solution Strategy presented in [Boutilier et al., 2006]). How-
ever, lotteries associated with subpolicies in a decision tree
are complex objects with multiple possible outcomes, which
makes direct comparison cognitively difficult. We propose in-
stead to ask the DM to compare lotteries of type `x = (x, 1)
to lotteries of type `λ = (x>, λ;x⊥, 1 − λ), where x> and
x⊥ are respectively the best and worst possible outcomes.
Note that we can impose u(x⊥) = 0 and u(x>) = 1 since
vNM utilities are unique up to positive affine transformations.
Hence f(`λ, u) = λu(x>) + (1 − λ)u(x⊥) = λ for all λ ∈
[0, 1]. Moreover, we have f(`x, u) = u(x) for all x ∈ XT .
Therefore, if the DM prefers `x to `λ, then we derive the con-
straint u(x) ≥ λ; otherwise, we have u(x) ≤ λ. This shows
that we must choose λ = (maxu∈U u(x) + minu∈U u(x))/2
to reduce the uncertainty attached to u(x) as much as pos-
sible in the worst-case scenario of answer. At each itera-
tion step, we choose an outcome x ∈

⋃
`∈Li

S(`) maxi-
mizing maxu∈U u(x) − minu∈U u(x), where S(`) denotes
the set of possible outcomes {x1, . . . , xm} of lottery ` =
(x1, p1; . . . ;xm, pm). This choice enables to obtain interest-
ing performance guarantees as shown below.

Proposition 10. For any set U of admissible utility functions
and any set L of lotteries, if maxu∈U u(x)−minu∈U u(x)≤
δ/(2η) for all x∈

⋃
`∈L S(`), then MMR(L,U)≤δ/η.

Proof. Let u∗ denote the actual vNM utility function of
the DM. Let ` = (x1, p1; . . . ;xn; pn) be an element of
arg max`′∈L f(`′, u∗). We want to show thatMR(`, L, U)≤
δ/η. For all `′ = (x′1, p

′
1; . . . ;x′m; p′m) ∈ L, we have:

PMR(`, `′, U) + f(`, u∗)− f(`′, u∗)

= max
u∈U
{
m∑
k=1

(u(x′k)−u∗(x′k))p′k −
n∑
k=1

(u(xk)−u∗(xk))pk}

≤
m∑
k=1

δ

2η
p′k −

n∑
k=1

− δ

2η
pk =

δ

2η
(

m∑
k=1

p′k +

n∑
k=1

pk) =
δ

η

Thus, PMR(`, `′, U) + f(`, u∗) − f(`′, u∗) ≤ δ/η. Since
f(`, u∗) − f(`′, u∗) ≥ 0 by definition of `, we obtain
PMR(`, `′, U)≤δ/η and so MR(`, L, U)≤δ/η.

Proposition 11. Algorithm 3 has a time complexity of
O(poly(nT , 1/δ)) and uses only O(poly(nT , 1/δ)) queries,
where nT is the number of nodes in tree T .

Proof. On the number of queries: Initially, maxu∈U u(x) −
minu∈U u(x)≤ u(x>)−u(x⊥) = 1 for all outcomes x ∈ XT
since u ∈ U is an increasing function. At each iteration step,
the question asked in line 12 allows us to divide by two the
range of possible values for u(x) for some x ∈

⋃
`∈Li

S(`)

such that maxu∈U u(x) − minu∈U u(x) > δ/(2η). Hence,
for each outcome x in the tree, we need at most dlog2(2η/δ)e
queries to reduce the range from 1 to δ/(2η). We know that
this is sufficient to obtain MMR(Li, U) ≤ δ/η at every de-
cision node Di due to Proposition 10. Then, since we have
|XT | ≤ nT outcomes and η ≤ nT , the overall number of
queries is bounded above by nT dlog2(2nT /δ)e.

On the time complexity: we assume thatU -dominance tests
and PMR computations can be performed in polynomial time
(w.r.t. nT) using linear programming (this point will be justi-
fied in the next section). At each decision nodeDi, Algorithm
3 computes the set Li composed of all the lotteries attached to
themi children ofDi (see lines 2-7); the U -dominated lotter-
ies are then removed from Li (see line 8). Since only one lot-
tery is stored in the lotteries attribute of each decision node,
set Li necessarily includes at most mi elements. Hence, in
the worst-case scenario, the computation of MMR(Li, U)
requires to solve mi(mi − 1) PMR-optimization problems.
Since mi ≤ nT and PMR-optimizations are performed
in polynomial time (w.r.t. nT), we know that all values
MMR(Li, U) are computed in polynomial time (w.r.t. nT).
Moreover, at each decision nodeDi, the valueMMR(Li, U)
is computed exactly qi + 1 times, where qi is the number of
queries generated at step i. Since we just proved that our al-
gorithm uses onlyO(poly(nT , 1/δ)) queries in all, then it has
a time complexity of O(poly(nT , 1/δ)).

Example 2. We illustrate Algorithm 3 on the tree of Figure
1 (with δ = 0.001). We assume that no preference informa-
tion is initially available. In node D5, no preference query
is needed since relation �U eliminates up. This is not the
case in D4 where �U does not discriminate between up and
down whose associated lotteries are ` = (5, 0.55; 16, 0.45)
and `′ = (3, 0.05; 19, 0.95). Since MMR({`, `′}, U) >
δ/2, the DM is asked to compare lottery (5, 1) to lottery

Algorithm 3: Interactive Backward induction.
Input: T : a tree; U : admissible utilities: δ: a threshold

1 for i = |DT |, . . . , 1 do
2 Li ← ∅;
3 for each edge (Di, A) in T do
4 if A ∈ DT then Li ← Li ∪A.lotteries;
5 else if A ∈ CT then Li←Li ∪Combination(A);
6 else Li ← Li ∪ {(A, 1)};
7 end
8 Li ← {` ∈ L : not(L �U `)};
9 while MMR(Li, U) > δ/η do

10 Select x ∈ arg max
x′∈

⋃
`∈Li

S(`)

{max
u∈U

u(x)−min
u∈U

u(x)};

11 λ← (maxu∈U u(x) + minu∈U u(x))/2;
12 Ask the DM to compare `x and `λ;
13 Update U according to the answer;
14 end
15 Select one lottery ` in arg min`′∈Li MR(`′, Li, U);
16 Di.lotteries← {`};
17 end
18 return D1.lotteries

(x⊥, 0.5;x>, 0.5) where x⊥ = 0 and x> = 20. If the DM
prefers the latter, then U is updated by inserting the con-
straint u(5) ≤ 0.5. Now, MMR({`, `′}, U) ≤ δ/2 and up
is eliminated. Nodes D3 and D2 are treated similarly as D5

but down is eliminated instead of up. As a result, in D1, we
only obtain policies π1 and π3 (as defined in Example 1). Lot-
tery `1 is now U -dominated in D1 and therefore lottery `3 is
returned. The problem has been solved with a single query.

4 Implementation
To implement Algorithm 3 efficiently, we first discuss the rep-
resentation of imprecise utility functions by convex polyhe-
dra. Then, we will report some numerical results.

Representation of imprecise utilities. The first idea that
probably comes to mind is to define a variable ux represent-
ing the value u(x) for every outcome x ∈ XT . With this rep-
resentation, any preference statement comparing two lotter-
ies translates into a linear inequality in variables ux, x ∈ XT .
Hence the set U is a convex polyhedron. However, this rep-
resentation has two drawbacks. First, beside the constraints
imposed by the observed preferences, a number (still poly-
nomial) of additional constraints is needed to enforce mono-
tonicity of utilities (i.e. ux > uy whenever x > y). More-
over, the number of parameters to be learned grows with |XT |.

A more compact representation can be obtained if we de-
fine u as a spline function. Spline functions are piecewise
polynomials whose elements connect with a high degree of
smoothness. They are widely used in data interpolation due
to their ability to approximate complex shapes [Beatty and
Barsky, 1995; Ramsay, 1988]. Interestingly enough, spline
functions can be generated by linear combinations of basis
spline functions. This allows to reduce the elicitation of
a spline function to the determination of its weights in the

spline basis. In order to model utility functions which are
non-decreasing functions of outcomes, one particularly ap-
pealing basis of spline functions is the basis of I-spline func-
tions denoted Ii(x; k, t), i = 1, . . . ,m, where k is the order
of the spline function (controlling the degree and the scope of
polynomial pieces), t is a subdivision of their definition in-
terval and m = |t| − k is the size of the spline basis. These
functions are non-decreasing with respect to x. In this paper,
we use I-spline functions of order 3 with a uniform subdivi-
sion of the unit interval (assuming that outcomes have been
normalized to belong to the unit interval). This is a standard
choice to keep a good controllability and flexibility because
we keep low the degree of polynomials pieces while guar-
anteeing that adjacent pieces have matching first and second
derivatives. Using the I-spline representation, the DM util-
ity function writes: u(x) =

∑m
j=1 bjIj(x; 3, t), bj ≥ 0,

j = 1, . . . ,m. Assuming that outcomes are defined in the
[0, 1] interval, individual utilities are normalized in order to
have u(0) = 0 and u(1) = 1 by imposing that

∑m
j=1 bj = 1.

In Figure 2, we give two examples of functions u (plotted
in red) generated from a basis of functions Ij(x; 3, t), j =
1, . . . , 5 (plotted in black, blue, cyan, magenta, green), for a
uniform subdivision of the interval. In the left part of the fig-
ure, the utility is defined from weights (0.3, 0.2, 0.0, 0.2, 0.3)
whereas in the right part of the figure, the utility is defined
from weights (0.5, 0.3, 0.2, 0.0, 0.0). Using only these five
coordinates, we can generate an infinity of smooth functions
covering or well approximating most functions. We might
use a finer subdivision to cover even more complex functions
including local irregularities.

The main advantage of this representation is to provide
a compact definition of the parameter set. Indeed, only m
variables are needed to characterize function u. This num-
ber is independent of the size of the tree. Moreover, al-
though I-spline functions are not linear, it is worth noting
that any preference statement of type “I prefer ` to `′” where
` = (x1, p1; . . . ;xq, pq) and `′ = (x′1, p

′
1; . . . ;x′r, p

′
r) trans-

lates into a linear inequality in variables bj , j = 1, . . . ,m,
which writes as follows:

m∑
j=1

bj

q∑
k=1

pkIj(xk; 3, t) ≥
m∑
j=1

bj

r∑
k=1

p′kIj(x
′
k; 3, t)

Hence U is implicitly represented by a convex polyhedron
defined as the set of all vectors (b1, . . . , bm) that are com-
patible with the available preference statements. Moreover,
function u being defined as a convex combination of the I-

Figure 2: Two examples of utility functions

spline basis functions, it is necessarily monotonic and we can
get rid of any monotonicity constraint.

Numerical tests. Here we consider randomly generated in-
stances of perfect binary trees which alternate decision nodes
and chance nodes along each path. We vary d the depth
of the tree from 8 to 18 and the tolerance threshold from
δ = 0.05 to 0.1. As a baseline for comparison, we consider
the two stage procedure (named TS) that consists in comput-
ing L = POU (LT) using Algorithm 1 and then asking pref-
erence queries until MMR(L,U) drops below δ (queries are
generated as described in Section 3). Within both procedures,
individual utilities are represented by spline functions. Start-
ing from an empty set of preferences statements, simulated
DMs answer to queries according to a randomly generated
utility function. In Table 1, we report both t the computation
times (in sec.) and q the number of queries; in this table, the
symbols “-” simply means that the procedure was still run-
ning after 5 hours1. First, we see that Algorithm 3 is very
efficient both in terms of number of queries and computation
times. For example, for instances involving 22

9−1 policies
(i.e. d = 18), it needs no more than 70 seconds and 23 queries
to compute the result (for δ = 0.1). Moreover, Algorithm 3 is
much faster than TS: when δ = 0.05 and d = 12, Algorithm
3 needs about 1 second to compute the result while TS takes
more than 35 minutes. This shows that interleaving search
and elicitation enables to drastically speed-up the determina-
tion of a near-optimal solution in combinatorial domains.

δ = 0.1 δ = 0.05
Algorithm 3 TS Algorithm 3 TS

d t q t q t q t q
8 0.15 12.1 0.90 7.2 0.22 17.0 1.69 8.9

10 0.39 16.4 11.94 8.6 0.42 21.0 14.46 10.9
12 1.21 19.7 725.51 9.4 1.20 22.3 2103.53 12.2
14 4.33 20.4 - - 4.60 25.8 - -
16 17.10 22.2 - - 17.21 26.7 - -
18 65.07 23.0 - - 68.36 27.4 - -

Table 1: Elicitation in trees (results averaged over 30 runs).

5 Conclusion
We have proposed an adaptive utility elicitation procedure
for the interactive selection of policies in sequential decision
problems under risk. Our procedure interleaves preference
queries with backward induction to progressively reduce the
set of admissible utility functions and therefore the set of pos-
sibly optimal lotteries. The proposed procedure determines a
near-optimal policy in polynomial time, using a polynomial
number of preference queries. In addition to these theoretical
guarantees, our numerical tests show the practical efficiency
of this approach, especially when utility functions are repre-
sented by spline functions. This approach can easily be ex-
tended to the elicitation of additive utilities under risk, either
in a multi-agent setting or in a multiattribute setting.

1The tests are performed on a Intel Core i7-4770 CPU with 15GB
of RAM. LPs are optimized using the Gurobi solver.

References
[Aziz et al., 2015] H. Aziz, M. Brill, F. Fischer, P. Harren-

stein, J. Lang, and H. G. Seedig. Possible and necessary
winners of partial tournaments. Journal of Artificial Intel-
ligence Research, 54:493–534, 2015.

[Beatty and Barsky, 1995] J. C. Beatty and B. A. Barsky. An
introduction to splines for use in computer graphics and
geometric modeling. Morgan Kaufmann, 1995.

[Benabbou and Perny, 2015a] N. Benabbou and P. Perny.
Combining preference elicitation and search in multiob-
jective state-space graphs. In IJCAI, pages 297–303, 2015.

[Benabbou and Perny, 2015b] N. Benabbou and P. Perny. In-
cremental weight elicitation for multiobjective state space
search. In AAAI, pages 1093–1099, 2015.

[Boutilier et al., 2004] C. Boutilier, R. I. Brafman,
C. Domshlak, H. H. Hoos, and D. Poole. Preference-based
constrained optimization with cp-nets. Computational
Intelligence, 20(2):137–157, 2004.

[Boutilier et al., 2006] C. Boutilier, R. Patrascu, P. Poupart,
and D. Schuurmans. Constraint-based Optimization and
Utility Elicitation using the Minimax Decision Criterion.
Artifical Intelligence, 170(8–9):686–713, 2006.

[Boutilier, 2013] C. Boutilier. Computational decision sup-
port: Regret-based models for optimization and prefer-
ence elicitation. CrowleyP. H. ZentallT. R.(Eds.), Com-
parative Decision Making: Analysis and Support Across
Disciplines and Applications, pages 423–453, 2013.

[Brafman et al., 2010] R. I. Brafman, F. Rossi, D. Salvagnin,
K. B. Venable, and T. Walsh. Finding the next solution in
constraint-and preference-based knowledge representation
formalisms. In proc. of KR’10. Citeseer, 2010.

[Braziunas and Boutilier, 2007] D. Braziunas and
C. Boutilier. Minimax regret based elicitation of
generalized additive utilities. In UAI, pages 25–32, 2007.

[Chajewska et al., 2000] U. Chajewska, D. Koller, and
R. Parr. Making rational decisions using adaptive utility
elicitation. In AAAI/IAAI, pages 363–369, 2000.

[Chajewska et al., 2001] U. Chajewska, D. Koller, and
D. Ormoneit. Learning an agent’s utility function by ob-
serving behavior. In ICML, pages 35–42, 2001.

[Dasgupta et al., 1995] P. Dasgupta, P.P. Chakrabarti, and
S.C. DeSarkar. Utility of pathmax in partial order heuristic
search. J. of algorithms, 55:317–322, 1995.

[Drummond and Boutilier, 2013] J. Drummond and
C. Boutilier. Elicitation and approximately stable
matching with partial preferences. In IJCAI, 2013.

[Fürnkranz and Hüllermeier, 2010] J. Fürnkranz and
E. Hüllermeier. Preference learning: An introduction.
Springer, 2010.

[Gelain et al., 2010] M. Gelain, Maria S. Pini, F. Rossi, K. B.
Venable, and T. Walsh. Elicitation strategies for soft con-
straint problems with missing preferences: Properties, al-
gorithms and experimental studies. Artificial Intelligence,
174(3):270–294, 2010.

[Ha and Haddawy, 1997] V. Ha and P. Haddawy. Problem-
focused incremental elicitation of multi-attribute utility
models. In UAI’97, pages 215–222, 1997.

[Hammond, 1988] P. J. Hammond. Consequentialist founda-
tions for expected utility. Theory and decision, 25(1):25–
78, 1988.

[Hines and Larson, 2010] G. Hines and K. Larson. Prefer-
ence elicitation for risky prospects. In AAMAS’10, pages
889–896, 2010.

[Kikuti et al., 2011] D. Kikuti, F. G. Cozman, and R. Shi-
rota Filho. Sequential decision making with partially or-
dered preferences. Artificial Intelligence, 175(7):1346–
1365, 2011.

[Konczak and Lang, 2005] K. Konczak and J. Lang. Voting
procedures with incomplete preferences. In Proc. IJCAI-
05 Multidisciplinary Workshop on Advances in Preference
Handling, volume 20, 2005.

[Marinescu et al., 2013] R. Marinescu, A. Razak, and
N. Wilson. Multi-objective constraint optimization with
tradeoffs. In International Conference on Principles
and Practice of Constraint Programming, pages 497–512.
Springer, 2013.

[Perny and Spanjaard, 2002] P. Perny and O. Spanjaard. On
preference-based search in state space graphs. In AAAI,
pages 751–756, 2002.

[Perny et al., 2016] P. Perny, P. Viappiani, and
A. Boukhatem. Incremental Preference Elicitation for
Decision Making Under Risk with the Rank-Dependent
Utility Model. In UAI’16, pages 597–606, 2016.

[Ramsay, 1988] J. O. Ramsay. Monotone regression spline
in action. Statistical Science, page 425441, 1988.

[Roijers et al., 2014] D. M. Roijers, S. Whiteson, and F. A.
Oliehoek. Linear support for multi-objective coordination
graphs. In AAMAS’14, pages 1297–1304, 2014.

[von Neumann and Morgenstern, 1947] J. von Neumann and
O. Morgenstern. Theory of games and economic behavior.
2nd Ed. Princeton University Press, 1947.

[Wang and Boutilier, 2003] T. Wang and C. Boutilier. Incre-
mental Utility Elicitation with the Minimax Regret Deci-
sion Criterion. In IJCAI’03, pages 309–316, 2003.

[Weng and Zanuttini, 2013] P. Weng and B. Zanuttini. Inter-
active value iteration for markov decision processes with
unknown rewards. In IJCAI’13, pages 2415–2421, 2013.

[White III et al., 1984] C. C. White III, A. P. Sage, and
S. Dozono. A model of multiattribute decision mak-
ing and trade-off weight determination under uncertainty.
IEEE Transactions on Systems, Man, and Cybernetics,
14(2):223–229, 1984.

[Xia and Conitzer, 2008] L. Xia and V. Conitzer. Determin-
ing possible and necessary winners under common voting
rules given partial orders. In AAAI, volume 8, pages 196–
201, 2008.

