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1 Introduction

The determination of the box and Hausdorff dimension of the graph of the Weierstrass function has,

3
since long been, a topic of interest. Let us recall that, given A €]0, 1[, and b such that A\b > 1+ 771-,

the Weierstrass function

+00
r € R— Z)\” cos (mb" x)
n=0
is continuous everywhere, while nowhere differentiable. The original proof, by K. Weierstrass [Wei72|,
can also be found in [Tit77]. It has been completed by the one, now a classical one, in the case
where Ab > 1, by G. Hardy [Harl1].
After the works of A. S. Besicovitch and H. D. Ursell [BU37], it is Benoit Mandelbrot [Man77]
who particularly highlighted the fractal properties of the graph of the Weierstrass function. He also

ni
conjectured that the Hausdorff dimension of the graph is Dyy = 2+ —-. Interesting discussions in

relation to this question have been given in the book of K. Falconer [I%‘al85]. A series of results for
the box dimension can be found in the works of J.-L. Kaplan et al. [KMPY84]|, where the authors
show that it is equal to the Lyapunov dimension of the equivalent attracting torus, and in those by
T-Y. Hu and K-S. Lau [HL93|. As for the Hausdorff dimension, a proof was given by B. Hunt [Hun98|
in 1998 in the case where arbitrary phases are included in each cosinusoidal term of the summation.
Recently, K. Bararisky, B. Barany and J. Romanowska [BBR17| proved that, for any value of the real

b
tioned dimension is equal to Dyy for every b in |\, 1[. Results by W. Shen [Shel5]| go further than the
ones of [BBR17]. In [Kell7], G. Keller proposes what appears as a much simpler and very original proof.

1
number b, there exists a threshold value A, belonging to the interval |—, 1[ such that the aforemen-

In our work [Dav17], where we build a Laplacian on the graph of the Weierstrass function, we came
across a simpler means of computing the box dimension of the graph, using a sequence a graphs that
approximate the studied one. Results are exposed in the sequel.



2 Framework of the study

In this section, we recall results that are developed in [Dav17].

Notation. In the following, A and N are two real numbers such that:

0<A<l , NyeN and ANy, >1
We will consider the (1—periodic) Weierstrass function W, defined, for any real number x, by:

+o00
W(x) = Z A" cos (2 Ny )
n=0

We place ourselves, in the sequel, in the Euclidean plane of dimension 2, referred to a direct or-
thonormal frame. The usual Cartesian coordinates are (z,y).

The restriction I'yy to [0, 1[xR, of the graph of the Weierstrass function, is approximated by means of
a sequence of graphs, built through an iterative process. To this purpose, we introduce the iterated
function system of the family of C* contractions from R? to R?:

{To, ceny TNb—l}

where, for any integer i belonging to {0, ..., N, — 1}, and any (z,y) of R%:

Ti(z,y) = <xN—:Z,)\y+cos (27r <x]\21>>>

Property 2.1.
Ny—1

Iw= {J Ti(lw)
=0

Definition 2.1. For any integer ¢ belonging to {0, ..., N, — 1}, let us denote by:

i 1 211
i (xl’yl) <Nb—1,1—)\COS<Nb_1>>

the fixed point of the contraction T;.

We will denote by Vp the ordered set (according to increasing abscissa), of the points:

{Fo,...,Pn,—1}

The set of points Vp, where, for any i of {0, ..., N, — 2}, the point P; is linked to the point P;1, con-
stitutes an oriented graph (according to increasing abscissa)), that we will denote by I'yy,. Vj is called
the set of vertices of the graph I'yy,.



For any natural integer m, we set:
Ny—1

V= |J T (Vin1)
=0

The set of points V,,, where two consecutive points are linked, is an oriented graph (according to

increasing abscissa), which we will denote by I'yy, . Vi, is called the set of vertices of the graph I'yy, .
We will denote, in the sequel, by

NS =2N" + N, —2

the number of vertices of the graph I'yy,,, and we will write:

Vm — {SgL,S{n,.,Sﬁm_l}

P2

Po polygon 2, polygon 2,

To (P2) =Ty (Po) T1 (P2) =Tz (Po)

1L

Py poiygon P11

1
Figure 1: The polygons P10, P1,1, P12, in the case where A\ = 2 and N, = 3.
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Figure 2: The graphs I'yy, (in green), TI'yy, (in red), I'yy, (in orange), I'y (in cyan), in the case
1
where A = 2 and N, = 3.

Definition 2.2. Consecutive vertices on the graph I'yy,

Two points X et Y de I'yy will be called consecutive wvertices of the graph I'yy if there exists a
natural integer m, and an integer j of {0, ..., N, — 2}, such that:

X =(Tj,0...0T;,)(Pj) et Y= (Tjo0...0T;,)(Pjt1) {it,...yim} € {0,..., N, — 1}"™

or:

X:(T’z OTiQO--'OTim)(PNb—I) et Y:(TilJrloTiQ...OT'i )(P(])

Definition 2.3. For any natural integer m, the Ng consecutive vertices of the graph I'yy,, are, also,
the vertices of N} simple polygons P, ;, 0 < j < Ny* — 1, with N, sides. For any integer j such
that 0 < j < Ny* — 1, one obtains each polygon by linking the point number j to the point num-
ber j 4+ 1 if j =imod N, 0 <7 < Ny — 2, and the point number j to the point number j — Ny + 1
if j = —1mod N;. These polygons generate a Borel set of R2.

Definition 2.4. Word, on the graph I'yy,

Let m be a strictly positive integer. We will call number-letter any integer M; of {0,..., N — 1},
and word of length | M| = m, on the graph I')y, any set of number-letters of the form:

M= M, ..., Mp)

We will write:

Tvg=Tpm,0...0T0,,



Definition 2.5. Edge relation, on the graph I'y,

Given a natural integer m, two points X and Y of I'yy,, will be called adjacent if and only if X and Y
are two consecutive vertices of I'yy,, . We will write:

X~Y

m

This edge relation ensures the existence of a word M = (My,..., M,,) of length m, such that X
and Y both belong to the iterate:

TmVo=(Tm,0...0Txm,,) Vo

Given two points X and Y of the graph I'yy, we will say that X and Y are adjacent if and only if
there exists a natural integer m such that:
X~Y
m

Proposition 2.2. Adresses, on the graph of the Weierstrass function

Given a strictly positive integer m, and a word M = (My,..., My,) of length m € N*, on the
graph Ty, , for any integer j of {1,..., Ny — 2}, any X = Tm(P)) de Viy \ Vo, i.e. distinct from one of
the Ny fized point P;, 0 <1t < Ny — 1, has exactly two adjacent vertices, given by:

Trm(Pit1) et Tam(Pj-1)

where:

Tm=Tpm,0...0T\,,

By convention, the adjacent vertices of Ty (Py) are Taq(Pr) and Ta(Pn,—1), those of Ta(Pny—1), Tam(Pn,—2)
and Tym(Py) .

Definition 2.6. m'"—order subcell, m € N*, related to a pair of points of the graph I'yy

Given a strictly positive integer m, and two points X and Y of V,, such that X ~ Y, we will call
m

m!"—order subcell, related to the pair of points (X,Y), the polygon, the vertices of which

are X, Y and the intersection points of the edge between the vertices at the extremities of the polygon,
i.e. the respective intersection points of polygons of the type Py, ;—1 and Pp, ;, 1 < j < N/ —1, on
the one hand, and of the type Py, ; and Pp, 1, 0 < j < N{* — 2, on the other hand.

Notation. For any integer j belonging to {0, ..., N, — 1}, any natural integer m, and any word M of
length m, we set:

Tm (Py) = (@(Tm (Fy) sy (Tm (P)) 0 Trm(Pvr) = (2 (Tm (Pia) ¥ (Tam (Piva)))

1

Ly = 2 (Tpm (Pj11)) — 2 (T (Pf)) = W~ )N

hjm =y (Trm (Pj+1)) — y (Tm (Py))



subcell to which
X and Y belong

1
Figure 3: A m'"—order subcell, in the case where A = 2> and N, = 7.

Proposition 2.3. An upper bound and lower bound, for the box-dimension of the graph I'\y

For any integer j belonging to {0,1, ..., Ny — 2}, each natural integer m, and each word M of length m,
let us consider the rectangle, the width of which is:

1

L = 2 (Tm (Pj11)) — 2 (Tm (P)) = ™, — )N

and height |hjm|, such that the points Tag (Pjy1) and T (Pjy1) are two vertices of this rectangle.
Then:

- - 2 . . (7(25+1) s
L2 Dy N, _12 Dyy — < hm
m (N —1) T osienp—1" "\ TN, — 1 N =D oy =1 | S ol

and:
\hjm| < ma—pyy LEPW
where the real constant na_p,,, s given by :
5 oD (2N, —1)A(NZ-1) 2N, }
o =272 (N — 1)27Pw {
2-Dw ( ) (Np—12(1—A)ANZ—1) " (ANZ—1)(AN? — 1)



There exists thus a positive constant

- 2 . . (m(25+1) T
— _1)2-Dw _
C*max{(Nb 2 Hl—)\ o@%ﬁ—lsm< No— 1 ) No (Ny — 1) (,\Nb—1)}

such that the graph I'yy on L., can be covered by at least and at most:

7772—Dw}

I 1—Dwy
Nn {C <m> +1p=CLLPwNDwW L N,
N,

L
squares, the side length of which is ——.
m

Proof. For any pair of integers (i, j) of {0, ..., Ny — 2}2:

1. (7)) = (P eos (20 (2502

For any pair of integers (i, im—1,7) of {0,..., Ny — 2}3:

:Ej;\;im_‘_imil , T+ xjj\/tim_Fimf]_
T, (T, (Py)) = bT’)\ yj+)\cos<27r< ]Nb ))—I—cos 27 bT

B z; + Im lm—1 2 Tj+ im r; + im Tm—1
= ( I + Nb,)\ yj+/\cos(27r< N, +cos (27 N2 + N,

For any pair of integers (i, im—1,im—2,7) of {0, ..., Ny — 2}4:

Ti+1 Tm—1 tyn—9
Tim—2 (Emfl (Tim (PJ))) - ]N‘S - + K]’Q + T’Ji]b )
b b

Ny; 4+ A% cos (27r <%§7”>>

Ti+1 Tin—1 Tj+im Tin—1 Im—2
A 2 J T4 2 J
—+A cos < T ( Nb2 + N, + cos ™ Nz? + Nb2 + N,

Given a strictly positive integer m, and two points X and Y of V,,, such that:

X~Y

m

there exists a word M of length | M| = m, on the graph I'yy, and an integer j of {0, ..., N, — 2}2, such
that:

X=Tm(P) , Y=Tu(Pj)

Let us write Th¢ under the form:

Tw="1;, 0T, ,0...0T;
where (il, e ,im) S {O, ey Np — 1}m-

One has then:




and:

Yy (Tam (Fy))

Il
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+
[
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3
|
kol
(@]
o
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/N
()
)
~/
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_l’_
(1~
-
40
J\N
~_—
~_—

m k) .
y(Tm (Pj+1)) = A"y + Z)\m_k cos (27T (m]i/? + Z ;\7[,;_[2>>
This leads to:

m k. k.
_ T Ty T Ty
hj,m_)\m (yj+1_yj) — E Ak {cos <27‘r <]JV4’;1+§ : k—i)) — oS (271' (]ij_z k—i))}
b b b Ny

Taking into account:

- Am 27 (j+1) 27
A (Y —y) = T\l N1 ) o

= -2 A™ sin il sin M
N 1—X Ny —1 Ny —1

one has:
_ AT ™ (T2 S vk ™ , (25 +1) " it
hjm + 2 Y sm(Nb_1> sin (7]\71)—1 ) = 2;)\ sin (Nf“ (Nb1)> sin (N:“ (No— 1) + 27 ;Nfl>
Thus:
A m _ 7r(2j+1))' T 2p Ak
T (P;)) — vy (T (P; -2 sin sin (| ———= < _—
T (7)) =y T (Pr)) = 2 i (7 ) s (e >

1
A" <1— AmNg">

AN, Ny (N = 1) (1= 3% )
A"
Ny (Np — 1) (AN, — 1)

which leads to:

A T . (m(25+1) T
(T (B) ~y @B > 27 (50) o ("0ET) - =D am oD

or:



A T . (m(25+1) T ™
YT (Pra)) =y (T (F)) > 21_A51“<Nb_1> Sm( N, —1 )‘me—l) (AN, — 1)

Due to the symmetric roles played by T\ (P;) and T (Pj41), one may only consider the case when:

me T . (Tm(25+1) TA™
y(Tm(By) =y (Tm (Bjr1)) > 27 Sln(Nb_l Sm( Ny — 1 >_Nb(Nb—1) (AN, — 1)

2 T(25+1) ™
>z A" — -
{1—)\ o B 1sm< N, —1 ) Ny(Np —1) ANy — 1)

The predominant term is thus:
/\m — em (Dw—2) In Ny, — N;TL (DW—Z) _ L%n_DW (Nb _ 1)2—DW

One also has:

. k.

2N 72 (25 + 1) N 2j+1 bt T
him| < 2 AT — 42

|7jml 1—X (N, —1)2 - Z {Nb—l)Néf—i_ Z [ (

B 2\ 772(2j+1)+27r2)\m2m: (2j+1))\—k+2iim_4>\—k
B L=X (Ny=1)2  Ny—1 & | (N, —1) N — N

2\ 72 (254 1)

1—X (N, —1)2
2720 [ATIN2(25+1) (- AN, ™) i’”‘: Ny —)AF1— Nt
Ny —1 (N — 1) 1- AN, 2 P Nf’f 1- Nt
. 2N 72 (2N, —1) 272 A™ (2N, — 1) (1 =A™ N, ™)
= 1—X (Ny—1)2 Ny—1 (Ny—1) ANZ -1
+27r2 A" ATLN2 (N, — 1) (1 — A~™ N2
N, —1 (1-N;H (A =A1N;?)
272 A™ ) ATLN, 3 (N — 1) (1= AT N, 3™
Ny—1 (1-NH (1 - A1NP
< 2™ 12 (2N, —1) 272 A™ (2N, — 1) 1

1-x (Ny—12 " Ny—1 (Ny—1) ANZ—1

+47r2Nb)\m 1 1
Ny—1 |ANZ—=1 ANE-1

_ m (2N, =) A(NG - 1) 2N,
B 2 {(Nb_1)2(1_)‘)(g‘Nb2_1)+()‘NbQ_l)()‘Ng)_l)}




Since:

and:

one has thus:

1
2 (Tam (Pjg1)) — 2 (Tam (Py)) = Ny~ )N
In A (Dyw—2) In Ny (Dw—2)
DW:2+]an , A=e :Nb
) 2N, — 1) A (N2 — 1) 2 N
Y DW{ 2N, ;
|hjm (Vg ) (Nb_1)2(1_)\)()\Nb2—1) ()\Ng—l)()‘Ng_l)
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