M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.
DOI : 10.1038/415389a

R. Hancock and G. Diamond, The role of cationic antimicrobial peptides in innate host defences, Trends in Microbiology, vol.8, issue.9, pp.402-410, 2000.
DOI : 10.1016/S0966-842X(00)01823-0

P. Nicolas, Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides, FEBS Journal, vol.129, issue.22, pp.6483-6496, 2009.
DOI : 10.1111/j.1742-4658.2009.07359.x

J. Conlon, N. Al-ghaferi, B. Abraham, and J. Leprince, Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents, Methods, vol.42, issue.4, pp.349-357, 2007.
DOI : 10.1016/j.ymeth.2007.01.004

J. Conlon, M. Mechkarska, M. Lukic, and P. Flatt, Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents, Peptides, vol.57, pp.67-77, 2014.
DOI : 10.1016/j.peptides.2014.04.019

J. M. Conlon, J. Kolodziejek, and N. Nowotny, Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1696, issue.1, pp.1-14, 2004.
DOI : 10.1016/j.bbapap.2003.09.004

A. Rinaldi, J. Conlon, and . Temporins, In: Kastin AJ editor. Handbook of Biologically Active Peptides, 2 nd edition, pp.400-406, 2013.

J. Conlon, J. Kolodziejek, and N. Nowotny, Antimicrobial peptides from the skins of North American frogs, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.8, pp.1556-1563, 2009.
DOI : 10.1016/j.bbamem.2008.09.018

M. Mangoni and . Temporins, Temporins, anti-infective peptides with expanding properties, Cellular and Molecular Life Sciences, vol.63, issue.9, pp.1060-1069, 2006.
DOI : 10.1007/s00018-005-5536-y

M. Simmaco, G. Mignogna, S. Canofeni, R. Miele, M. Mangoni et al., Temporins, Antimicrobial Peptides from the European Red Frog Rana temporaria, European Journal of Biochemistry, vol.133, issue.3, pp.788-792, 1996.
DOI : 10.1006/bbrc.1995.1963

M. Amiche, A. Ladram, and P. Nicolas, A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae, Peptides, vol.29, issue.11, pp.2074-2082, 2008.
DOI : 10.1016/j.peptides.2008.06.017

P. Nicolas and L. A. Dermaseptins, In: Kastin AJ editor. Handbook of Biologically Active Peptides, 2 nd edition, pp.350-363, 2013.

M. Mangoni and Y. Shai, Short native antimicrobial peptides and engineered ultrashort lipopeptides: similarities and differences in cell specificities and modes of action, Cellular and Molecular Life Sciences, vol.27, issue.13, pp.2267-2280, 2011.
DOI : 10.1007/s00018-011-0718-2

F. Abbassi, O. Lequin, C. Piesse, N. Goasdoue, T. Foulon et al., Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide, Journal of Biological Chemistry, vol.285, issue.22, pp.16880-16892, 2010.
DOI : 10.1074/jbc.M109.097204

URL : https://hal.archives-ouvertes.fr/hal-00578813

A. Rinaldi, M. Mangoni, A. Rufo, C. Luzi, D. Barra et al., Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles, Biochemical Journal, vol.368, issue.1, pp.91-100, 2002.
DOI : 10.1042/bj20020806

E. Urban, E. Nagy, T. Pal, A. Sonnevend, and J. Conlon, Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria, International Journal of Antimicrobial Agents, vol.29, issue.3, pp.317-321, 2007.
DOI : 10.1016/j.ijantimicag.2006.09.007

C. Hernandez, A. Mor, F. Dagger, N. P. Hernandez, A. Benedetti et al., Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin, Eur J Cell Biol, vol.59, pp.414-424, 1992.

M. Mangoni, J. Saugar, M. Dellisanti, D. Barra, M. Simmaco et al., Temporins, Small Antimicrobial Peptides with Leishmanicidal Activity, Journal of Biological Chemistry, vol.280, issue.2, pp.984-990, 2005.
DOI : 10.1074/jbc.M410795200

G. Eggimann, K. Sweeney, H. Bolt, N. Rozatian, S. Cobb et al., The Role of Phosphoglycans in the Susceptibility of Leishmania mexicana to the Temporin Family of Anti-Microbial Peptides, Molecules, vol.157, issue.2, pp.2775-2785, 2015.
DOI : 10.1111/j.1462-5822.2010.01439.x

L. Rivas, J. Luque-ortega, and D. Andreu, Amphibian antimicrobial peptides and Protozoa: Lessons from parasites, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.8, pp.1570-1581, 2009.
DOI : 10.1016/j.bbamem.2008.11.002

URL : http://doi.org/10.1016/j.bbamem.2008.11.002

S. Cobb and P. Denny, Antimicrobial peptides for leishmaniasis, Curr Opin Investig Drugs, vol.11, pp.868-875, 2010.

M. Torrent, D. Pulido, L. Rivas, and D. Andreu, Antimicrobial Peptide Action on Parasites, Current Drug Targets, vol.13, issue.9, pp.1138-1147, 2012.
DOI : 10.2174/138945012802002393

J. Luque-ortega, W. Van-'t-hof, E. Veerman, J. Saugar, and L. Rivas, Human antimicrobial peptide histatin 5 is a cell-penetrating peptide targeting mitochondrial ATP synthesis in Leishmania, The FASEB Journal, vol.22, issue.6, pp.1817-1828, 2008.
DOI : 10.1096/fj.07-096081

S. Sundar, Drug resistance in Indian visceral leishmaniasis, Tropical Medicine and International Health, vol.793, issue.11, pp.849-854, 2001.
DOI : 10.1086/318122

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1365-3156.2001.00778.x/pdf

S. Croft, S. Sundar, and A. Fairlamb, Drug Resistance in Leishmaniasis, Clinical Microbiology Reviews, vol.19, issue.1, pp.111-126, 2006.
DOI : 10.1128/CMR.19.1.111-126.2006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360270

R. Rojas, L. Valderrama, M. Valderrama, M. Varona, M. Ouellette et al., Infection, The Journal of Infectious Diseases, vol.193, issue.10, pp.1375-1383, 2006.
DOI : 10.1086/503371

URL : https://hal.archives-ouvertes.fr/hal-00866399

F. Perez-victoria, S. Castanys, and F. Gamarro, Leishmania donovani Resistance to Miltefosine Involves a Defective Inward Translocation of the Drug, Antimicrobial Agents and Chemotherapy, vol.47, issue.8, pp.2397-2403, 2003.
DOI : 10.1128/AAC.47.8.2397-2403.2003

O. Lequin, F. Bruston, O. Convert, G. Chassaing, and N. P. , Helical Structure of Dermaseptin B2 in a Membrane-Mimetic Environment, Biochemistry, vol.42, issue.34, pp.10311-10323, 2003.
DOI : 10.1021/bi034401d

N. Papo and Y. Shai, Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes?, Peptides, vol.24, issue.11, pp.1693-1703, 2003.
DOI : 10.1016/j.peptides.2003.09.013

A. Tossi, L. Sandri, and A. Giangaspero, Amphipathic, alpha-helical antimicrobial peptides, 1<4::AID-BIP30>3.0.CO;2-M PMID, pp.4-301097, 2000.
DOI : 10.1002/1097-0282(2000)55:1<4::aid-bip30>3.0.co;2-m

I. Zelezetsky and A. Tossi, Alpha-helical antimicrobial peptides???Using a sequence template to guide structure???activity relationship studies, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1758, issue.9, pp.1436-1449, 2006.
DOI : 10.1016/j.bbamem.2006.03.021

S. Rex, Pore formation induced by the peptide melittin in different lipid vesicle membranes, Biophysical Chemistry, vol.58, issue.1-2, pp.75-85, 1996.
DOI : 10.1016/0301-4622(95)00087-9

N. Verma, G. Singh, and C. Dey, Miltefosine induces apoptosis in arsenite-resistant Leishmania donovani promastigotes through mitochondrial dysfunction, Experimental Parasitology, vol.116, issue.1, pp.1-13, 2007.
DOI : 10.1016/j.exppara.2006.10.007

D. Farrell, M. Robbins, W. Rhys-williams, and W. Love, Investigation of the Potential for Mutational Resistance to XF-73, Retapamulin, Mupirocin, Fusidic Acid, Daptomycin, and Vancomycin in Methicillin-Resistant Staphylococcus aureus Isolates during a 55-Passage Study, Antimicrobial Agents and Chemotherapy, vol.55, issue.3, pp.1177-1181, 2011.
DOI : 10.1128/AAC.01285-10

K. Kosowska-shick, C. Clark, G. Pankuch, P. Mcghee, B. Dewasse et al., Activity of Telavancin against Staphylococci and Enterococci Determined by MIC and Resistance Selection Studies, Antimicrobial Agents and Chemotherapy, vol.53, issue.10, pp.4217-4224, 2009.
DOI : 10.1128/AAC.00742-09

L. Mäler, Solution NMR studies of cell-penetrating peptides in model membrane systems, Advanced Drug Delivery Reviews, vol.65, issue.8, pp.1002-1011, 2013.
DOI : 10.1016/j.addr.2012.10.011

D. S. Wishart, C. Bigam, A. Holm, R. Hodes, and B. Sykes, 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects, Journal of Biomolecular NMR, vol.114, issue.1, pp.67-81, 1995.
DOI : 10.1007/BF00227471

Y. Zhang, R. Lewis, and R. Mcelhaney, Calorimetric and Spectroscopic Studies of the Thermotropic Phase Behavior of the n-Saturated 1,2-Diacylphosphatidylglycerols, Biophysical Journal, vol.72, issue.2, pp.779-793, 1997.
DOI : 10.1016/S0006-3495(97)78712-5

K. Lohner and E. Prenner, Differential scanning calorimetry and X-ray diffraction studies of the specificity of the interaction of antimicrobial peptides with membrane-mimetic systems, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1462, issue.1-2, pp.141-156, 1999.
DOI : 10.1016/S0005-2736(99)00204-7

R. Mcelhaney, Differential scanning calorimetric studies of lipid-protein interactions in model membrane systems, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.864, issue.3-4, pp.361-421, 1986.
DOI : 10.1016/0304-4157(86)90004-3

J. Alvar, I. Velez, C. Bern, M. Herrero, P. Desjeux et al., Leishmaniasis Worldwide and Global Estimates of Its Incidence, PLoS ONE, vol.83, issue.30, pp.35671-22693548, 2012.
DOI : 10.1371/journal.pone.0035671.s101

L. Kedzierski, A. Sakthianandeswaren, J. Cutris, P. Andrews, P. Junk et al., Leishmaniasis: Current Treatment and Prospects for New Drugs and Vaccines, Current Medicinal Chemistry, vol.16, issue.5, pp.599-614, 2009.
DOI : 10.2174/092986709787458489

S. Croft and G. Coombs, Leishmaniasis??? current chemotherapy and recent advances in the search for novel drugs, Trends in Parasitology, vol.19, issue.11, pp.502-508, 2003.
DOI : 10.1016/j.pt.2003.09.008

L. Carlier, J. P. Khemtémourian, L. Lacombe, C. Nicolas, P. et al., Investigating the role of GXXXG motifs in helical folding and self-association of plasticins, Gly/Leu-rich antimicrobial peptides, Biophysical Chemistry, vol.196, pp.40-52, 2015.
DOI : 10.1016/j.bpc.2014.09.004

URL : https://hal.archives-ouvertes.fr/hal-01072550

T. Wieprecht, M. Dathe, M. Beyermann, E. Krause, W. Maloy et al., Peptide Hydrophobicity Controls the Activity and Selectivity of Magainin 2 Amide in Interaction with Membranes, Biochemistry, vol.36, issue.20, pp.6124-6132, 1997.
DOI : 10.1021/bi9619987

M. Dathe, T. Wieprecht, H. Nikolenko, L. Handel, W. Maloy et al., Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides, FEBS Letters, vol.403, issue.2, pp.208-212, 1997.
DOI : 10.1016/S0014-5793(97)00055-0

T. Pál, A. Sonnevend, S. Galadari, and J. Conlon, Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2, Regulatory Peptides, vol.129, issue.1-3, pp.85-91, 2005.
DOI : 10.1016/j.regpep.2005.01.015

R. Bessalle, H. Haas, A. Goria, I. Shalit, and M. Fridkin, Augmentation of the antibacterial activity of magainin by positive-charge chain extension., Antimicrobial Agents and Chemotherapy, vol.36, issue.2, pp.313-317, 1992.
DOI : 10.1128/AAC.36.2.313

O. Belokoneva, E. Villegas, G. Corzo, L. Dai, and T. Nakajima, The hemolytic activity of six arachnid cationic peptides is affected by the phosphatidylcholine-to-sphingomyelin ratio in lipid bilayers, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1617, issue.1-2, pp.22-30, 2003.
DOI : 10.1016/j.bbamem.2003.08.010

P. Grieco, V. Luca, L. Auriemma, A. Carotenuto, M. Saviello et al., Alanine scanning analysis and structure-function relationships of the frog-skin antimicrobial peptide temporin-1Ta, Journal of Peptide Science, vol.9, issue.5, pp.358-365, 2011.
DOI : 10.1002/psc.1350

L. Yang, T. Harroun, T. Weiss, L. Ding, H. Huang et al., Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores, Biophysical Journal, vol.81, issue.3, pp.1475-148510, 2001.
DOI : 10.1016/S0006-3495(01)75802-X

URL : http://doi.org/10.1016/s0006-3495(01)75802-x

M. Mangoni, A. Rinaldi, D. Giulio, A. Mignogna, G. Bozzi et al., Structure-function relationships of temporins, small antimicrobialpeptides from amphibian skin, European Journal of Biochemistry, vol.47, issue.5, pp.1447-1454, 2000.
DOI : 10.1046/j.1432-1327.2000.01143.x

T. Shireen, M. Singh, T. Das, and K. Mukhopadhyay, Differential Adaptive Responses of Staphylococcus aureus to In Vitro Selection with Different Antimicrobial Peptides, Antimicrobial Agents and Chemotherapy, vol.57, issue.10, pp.5134-5137, 2013.
DOI : 10.1128/AAC.00780-13

G. Perron, M. Zasloff, and G. Bell, Experimental evolution of resistance to an antimicrobial peptide, Proceedings of the Royal Society B: Biological Sciences, vol.415, issue.6870, pp.251-256, 2006.
DOI : 10.1038/415389a

L. Hein-kristensen, H. Franzyk, A. Holch, and L. Gram, Adaptive Evolution of Escherichia coli to an ??-Peptide/??-Peptoid Peptidomimetic Induces Stable Resistance, PLoS ONE, vol.43, issue.9, pp.73620-24040003, 2013.
DOI : 10.1371/journal.pone.0073620.t005

J. Vizioli and M. Salzet, Antimicrobial peptides versus parasitic infections? Trends Parasitol, pp.475-476, 2002.
DOI : 10.1016/s1471-4922(02)02428-5

F. Liew, S. Millott, C. Parkinson, R. Palmer, and S. Moncada, Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine, J Immunol, vol.144, pp.4794-4797, 1990.

N. Moradin and A. Descoteaux, Leishmania promastigotes: building a safe niche within macrophages, Frontiers in Cellular and Infection Microbiology, vol.2, pp.121-23050244, 2012.
DOI : 10.3389/fcimb.2012.00121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445913

S. André, S. Washington, E. Darby, M. Vega, A. Filip et al., Structure???Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity, ACS Chemical Biology, vol.10, issue.10, pp.2257-2266, 2015.
DOI : 10.1021/acschembio.5b00495

M. Coleman, E. Sahai, M. Yeo, M. Bosch, A. Dewar et al., Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I, Nature Cell Biology, vol.3, issue.4, pp.339-345, 2001.
DOI : 10.1038/35070009

P. Raina and S. Kaur, Chronic heat-shock treatment driven differentiation induces apoptosis in Leishmania donovani, Molecular and Cellular Biochemistry, vol.32, issue.9, pp.83-90, 2006.
DOI : 10.1007/s11010-006-9151-5