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Abstract

We consider minimization problems in the calculus of variations set in a
sequence of domains the size of which tends to infinity in certain directions
and such that the data only depend on the coordinates in the directions
that remain constant. We study the asymptotic behavior of minimizers
in various situations and show that they converge in an appropriate sense
toward minimizers of a related energy functional in the constant direc-
tions.
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1 Introduction

In this article, we revisit the “¢ — 4+00” problem in the context of the calculus
of variations. This class of problems was introduced by Chipot and Rougirel in
2000, [8], see also the monograph by Chipot [4], and has since then given rise
to many works by several authors dealing with various elliptic and parabolic
problems up to until recently.

A prototypical £ — +oo problem is the following. Let w =]—1,1[, £ > 0 be
a real number and €, C R? the rectangle |-/, /[xw. We denote by z; the first
variable in |-/, ¢[ and z2 the second variable in w. Any function f € L?(w) in
the second variable gives rise to a function in two variables still denoted f by



setting f(z1,z2) = f(x2). We thus consider the two boundary value problems:
find ug, a function in (1, z2), such that

—Auy = f in Qy,
ug =10 on €Yy,

and find u, a function in x5, such that

2
fdd;%“’ =f inw,
Uso = 0 on dw = {—1,1}.

Now the function us, can also be considered as a function in two variables that
is independent of x;. In this case, it can be shown that, for any ¢, > 0, one has

Up — Uso in H'(Ly,) when £ — 400,

hence the name of the problem. In other words, when the data does not depend
on the elongated dimension, the solution of the above boundary value problem
converges in some sense at finite distance to the solution of the correspond-
ing boundary value problem posed in the non-elongated dimension when the
elongation tends to infinity.

The majority of works on the ¢ — +oco problem makes use of the boundary
value problem itself, i.e., the PDE plus boundary condition. One exception to
this rule are the recent papers [5, 7], in which the authors consider instead a
sequence of problems in the calculus of variations posed on elongated domains,
see also [6]. This is the approach we adopt here as well.

Our main motivation for this is that certain models, such as nonlinear hy-
perelasticity, are naturally posed as problems in the calculus of variations for
which no Euler-Lagrange equation, i.e., non underlying PDE even in a weak
form, is available, see [2]. Moreover, questions surrounding the Saint Venant
principle in elasticity, see [16, 17], are typically set in elongated domains, albeit
in one direction only. Consequently, it makes sense to attempt dealing with
some ¢ — +o0o problems by using only energy minimization properties and no
Euler-Lagrange equation whatsoever.

We are however quite far from achieving the goal of treating nonlinear elas-
ticity, since the approach that we develop below relies a lot on convexity, whereas
convexity is not an appropriate hypothesis for nonlinear elasticity. We are
nonetheless able to encompass a wide range of nonlinear energies, including
the p-Laplacian with some technical restrictions on the number of elongated
dimensions with respect to the exponent p. Our hypotheses are weaker and our
results are sometimes stronger than those of [7]. The techniques are somewhat
different too, with an emphasis here on weak convergence and weak lower semi-
continuity techniques, and reliance on such classical techniques as the De Giorgi
slicing method which are not dependent on convexity. As a general rule, we try
to make as little use of convexity as we can at any given point.

Let us describe our results a little more precisely. We consider bounded open
subsets Qy of R” which are Cartesian products of the form fw’ xw”, with w’ C R”
and W’ CR" " with 1 <r <n-—1. Welet z = (¢/,2") with 2’ € R" being the
elongated variable and 2’/ € R™~" the non-elongated variable. Likewise, for a
scalar-valued function v: ; — R, we decompose the gradient Vo = (V'v, V"v)
with obvious notation.



We consider an energy density F': R® — R and a function f on w”, and
introduce the minimization problem of finding u, € W, *(€,) such that Jy(u) =
nf,cp1r g, Ji¢(v) where

Je(v) = /Q (F(Vu(z)) — f(2")v(z)) dz.

We assume that F' has p-growth, p-coerciveness and is convex. In particular,
there is no assumption of strict convexity or uniform strict convexity made on
F.

We then introduce F”: R"~" — R by letting F"' (") = F(0,£"), again with
obvious notation. Of course, F” is convex, has p-growth and p-coerciveness
and the minimization problem of finding wu., € WO1 P(w") such that Juo(teo) =
) Joo(v) where

Joo(U) — /” (F”(V”U(.’L‘”)) _ f(ZCH)’U((EH)) d(E”,

admits solutions. It turns out that, under additional hypotheses, this problem is
the “¢ — 400" limit of the family of minimization problems under consideration.

These hypotheses include appropriate growth and coerciveness hypotheses
on the function G: R" - R, G(§) = F(§) — F"(£"), of the form

VE € R™ AL + kI [PFIENT) < G(&) < A(IE'1P + kI P~FIE')F),

for some 0 < A < A and 0 < k < p. Depending on the case, there is no more
additional hypothesis (for k¥ = 0), or a hypothesis of strict convexity of F”, or
a hypothesis of uniform strict convexity of F” (for k > 0).

The results are a “f — 4+00” convergence in the weak sense for £ = 0 when
r < p, sharpened to strong sense when F” is furthermore assumed to be strictly
convex, and a strong “¢ — 400" convergence for k > 0 when r < kp/(p — k). In
the case of the p-Laplacian, p > 2, we thus obtain strong “¢ — 400” convergence
when r < 2p/(p — 2), see also [18].

In addition, in the case k = 0, if we assume that F”’ is uniformly strictly con-
vex, we obtain strong convergence at an exponential rate without any restriction
on r. This includes the known behavior of the 2-Laplacian in the “/ — 400”
context.

We conclude the article with a few comments and perspectives on the vec-
torial case, in connection with nonlinear elasticity in particular.

2 Statement of the problem

We consider two bounded open sets w’ C R” with 0 € w’ and w’ is starshaped
with respect to 0, and w” C R"™" with n > > 1. Let £ > 0 and set

wy = lw" and Qy = wy x W’ C R™. (1)
Points « in ©, will be denoted by z = (2/, ") with &’ = (21,22, ...,2,) € w}
and 2" = (xy41,...,2,) € W’. Likewise, vectors £ in R™ will be decomposed as

£=(¢,¢"), with ¢ e R” and £’ e R"".



Note that because of the starshaped assumption, we have 2, C 0y as soon
as £ < ¢ and we are thus dealing with a “growing’ family of open sets. We make
an additional regularity hypothesis on w’, which is as follows. Define first the
gauge function of w’ as

g(2') =inf{t e RY; 2"/t € W'}.

Since w' is starshaped and bounded, this is well defined, w;, = {2'; g(z") < ¢},
and there exists 0 < Ry < Ry such that R;|2'| < g(z') < Rgla’| for all 2/ € R".

Now we assume that w’ is such that ¢ is a Lipschitz function with Lipschitz
constant K. By Rademacher’s theorem, this implies that ¢ is almost everywhere
differentiable, with [V'g(2')| < K a.e. Moreover, it is known that g then belongs
to Wli)’coo (R") and that its almost everywhere derivatives equal its distributional
derivatives. This is true for example if w’ is convex. This regularity hypothesis
is for convenience only: we use g to build cut-off functions inside the domains,
and not up to the boundary. It should be quite clear that our results can be
rewritten in order to accommodate arbitrary open sets w’.

We are interested in a sequence of problems in the calculus of variations P,
of the form

Jo(ug) = inf  Je(v), (2)
vEW, P (Q)

with ug € Wy *() and
Hlo) = [ [F(70(@) = (" )o(a)] da 3)

where f” € LV (w”), 1 + L =1, is a given function. Observe that the term
corresponding to the force term for this problem only depends on the “non-
elongated” variable 2’/ so that it is reasonable to expect that u, behaves as a
function mostly in z” in the limit / — +o00, in a sense made precise below.
We could also consider more general semilinear force terms of the form h(z”,v)
satisfying appropriate growth and convexity assumptions, but we stick here with
a linear term for simplicity.
We assume that the energy density F': R™ — R is convex. We let

F" R = R and G:R* — R (@)
&~ Fo¢) M £ = F(&)-F'(¢"
so that
F(g/,g//) _ F//(é—//) + G(é—/,g//), (5)

and F” is convex. These functions are assumed to satisfy the following coer-
civeness and growth hypotheses

e € R™ NP < F(€) < Algl + 1), (6)
e € R™ (S + KIE"PHEY) < GE) < A(ET +RIEPHIE), (D

for some 0 < A < A, p>1and 0 <k < p.! Here, for £ € R [£] denotes the
canonical Euclidean norm of ¢ in R?.

INote that k = p yields the same hypothesis as k = 0.



Clearly, condition (6) implies the similar condition
vé—l/ c Rn—r, )\|£I/|p S FI/(E/I) S A(|§Il|p + 1)’ (8)

for F.

Energy densities of the form above include that associated with the p-
Laplacian for p > 2. Indeed, in this case, F(§) = %|£|p = %(|§'|2 + |€"|2)p/?
and we can take k = 2 for p > 2, or k = 0 for p = 2. Another simple energy
density that is covered by our analysis is F/(£) = %(|§/|p +1£"|P) or more gener-
ally energies of the form F(§) = F'(¢') + F”(£”), with appropriate hypotheses
on F' and F”. Here, assuming without loss of generality that F’(0) = 0, we
have G(¢',¢") = F'(¢') and we can take k = 0.

In addition to the above growth and coerciveness hypotheses, which obvi-
ously imply that problem P, has at least one solution wu,, we assume that F”
is uniformly strictly convex for k > 0, in the sense that there exists a constant
B > 0 such that for all &’, (" € R"" and all 0,4 € [0,1] with § + p = 1, we
have

F”(Gf” —|—,u§”) S HF/I(fll) + ,U/FH(CH) _ kﬁ@,u(@p_l +Mp—1)|£l/ _ Cll|p- (9)

see for instance [1, 12, 14]. The p-Laplacian for p > 2, k = 2, satisfies this
hypothesis (the 2-Laplacian satisfies the alternate hypothesis (53) that will be
used later on in Section 5). Note that when k = 0, the hypothesis becomes
redundant, and there is actually no requirement of even strict convexity, let
alone uniform strict convexity, of F”' in this case.

We now introduce our candidate limit problem P, as that of finding u, €
WP (w") such that

Joo(uso) = inf  Jo(v), (10)
veW, P (w')
with
Joo(v) — /” [FN(V”’U(ZL'N)) o f”(l'”)’()(l‘”ﬂ dZL'N. (11)

It also clear that problem P, has at least one solution .
Here and in the sequel, we use the following notational device

vlz(alv"'vaT)v VI/:(8T+15"'5871)5

that we apply indifferently to functions defined either on €y or on w”. For
brevity, we refer to V' as the “horizontal” part of the gradient and to V" as the
“vertical” part of the gradient.

We want to study the asymptotic behavior of uy when ¢ — 400 and compare
it with a minimizer ., of the n —r dimensional vertical problem P,. Actually,
our goal is to show that the former converges to the latter in a sense that will
be explained later on.

3 Preliminary estimates

We first give several estimates that we will use in the proofs of our convergence
results. The first estimate follows immediately from Poincaré’s inequality.



Lemma 3.1 There exists a constant ¢c; = ¢1(w"”) independent of ¢ such that for
all v € WHP(Qy) whose trace vanish on wj x w"”, we have

[ollr (o) < e1llV 0|l Lo prn-r).- (12)
Let us now give a first, coarse estimate of wy.

Lemma 3.2 There exists a constant cs independent of £, such that
/ [Vue|P de < cof". (13)
Q
Proof. Let us take v = 0 as a test-function in problem (2). It follows that

F(Vug(z))dz < | f"(z")ue(x) dx + AL
Qp Qp

where A = F(0)L"(w')L" " (w") does not depend on ¢ (L£L? denotes the d-
dimensional Lebesgue measure). By Holder’s inequality and the coerciveness
assumption (6), it follows that

1/
u)dz) "+ 20

Vug(2)P de < %(/ L (@) dfc)l/p/( By

Q[ Q[ Ql

B A
<t PNV il Lo () + 3

with B = e[| f[| o () £ ()" which does not depend on ¢. Consequently,
we obtain an estimate of the form

HVWH]Zp(Q“Rn) < cyprlp Vel Lo (pmny + DL, (14)

where C' and D are constants that do not depend on ¢. Let us set X =
0=7/P||Vug|| . Estimate (14) now reads

X? < CX + D,

so that there exists co depending only on C' and D such that X < c;/ P which
completes the proof. O

We now recall an elementary estimate similar to what can be found in [13]
for instance.

Lemma 3.3 Let h(t) a nonnegative bounded function defined on an interval
[0, 71], T0 > 0. Suppose that for 1o <t < s < 11, we have

h(t) < Oh(s) + C(s — )™ + D(s — t) 7",

where C, D, v1,v5,0 are nonnegative constants with 0 < 6 < 1. Then, for all
T <t<s<m, we have

h(t) <e(C(s—t)"" 4+ D(s —t)""?),

where ¢ is a constant that only depends on v1, vs and 0.



Proof. If we have two sequences of nonnegative numbers a; and b; such that
a; S 90,1'+1 + bi+1, it follows by induction that ao S Giai + 23;10 Ojij. We
apply this remark to the sequences a; = h(t;) and biy1 = C(tiy1 — ;)" +
D(ti1 —t;) 772, where t; =t + (1 —0*)(s — t), 0 < 0 < 1 to be chosen later on,
is an increasing sequence in [1p, 71| such that to = ¢. This yields the estimate

i—1 i i—1 i
, C 0\’ D 0\’
h(t) <O0'h(t;))+———(1—0)™™ —(1—0)™™ .
(>— ( >+(S_t)1/1( U> Z<Uu1) +(S_t)l/2( U) Z(O‘VZ)
Jj=0 j=0
We now choose ¢ < 1 in such a way that 6‘21 < 1and 022 < 1, and conclude by
letting ¢ — +o00, remembering that h(t;) is bounded. O

Next, we estimate the horizontal part of the gradient of wy in LP(€y,) in
terms of ¢, £y, uy and a minimizer us, of the vertical problem P,.

Theorem 3.4 There exists a constant c3 independent of all the other quantities
such that, for all 0 <t < s < ¢ and all minimizers uo, of the vertical problem,
we have

||vlu€|‘2p(9t;ﬂv) + kHv”(ué - U’OO)HII)‘P(Qt;]R”*T)

503
< G IV e = w0,y

Cgk
(s — t)kp/(0=k) {HV”MVZP(QS\Q,;R%T) + (1 =0V (ue — UOO)HIZMQS\QMWJ)} '

(15)

+

where 6 =1 4f 0 <k <p/2, § =0 otherwise.

Proof. We first define a family of cut-off functions as follows. For all 0 < t <
s < £, we set

poa(a!) = —— min{(s — g(a’)) 4,5 — 1}

By the definition of the gauge function, we see that p, =0 on wy \w., pst =1
on w; and 0 < ps; < 1. By our regularity assumption on w’, ps, is Lipschitz
and such that

1
V/Ps,t(w/) = - tv/g(‘r/)lw;\wé (x/)’

s —
so that we can estimate

K
[V ps.i(a)] < Py AV (@) (16)
We pick a number 0 < o < 1 and then set

vi(2) = (1= apsi(a))ue(r) + apsi(a)uso (2"), (17)

and
va(z) = (1 — aps (")) uoo (2") + aps s (2" )ue (). (18)

Clearly, v; belongs to WO1 "P(Qy) and is thus a suitable test-function for problem
Py, hence

/Q [F(Vue(z)) — f" (2" Yue(z)] da < / [F(Vvi(z)) — (2" )vi(z)] dz. (19)

Qp



Next we note that, owing to the embedding Wy (Q) < LP(w); Wy (w")),
vy is suitable test-function for problem P, for almost all 2/, hence

/// I:F/I(VHUOO(-T”)) _ f”(.’I]”)UOO(.’L'”)] d:L_/I

S / [F”(V”’UQ(ZEI,ZE”)) _ f”(ZC”)’UQ(ZEI,ZE”ﬂ dZC”. (20)

w!

Integrating estimate (20) over wj, we obtain

/Q [F”(VHUOO(ZE”)) —f”(ZC”)UOO(.’L'”)] d.’L‘
S/ [F"(V"va(x)) — f" (2" )va(x)] dw.  (21)
Qe

We add estimates (19) and (21) together and note that all the terms involving
f"" cancel out since v, + vy = Uy + Us. Therefore,

/Q [F(Vue(z)) + F" (V' (2"))] da < / [F(Vui(x)) + F"(V'"va(2))] da.

Q
(22)
We observe that v = uy and vy = us on € \ Qs, so that estimate (22) boils
down to

/ [F(Vue(@)) + F" (Voo (a"))] d < / [F(Vor(@)) + F"(V"03())] do
Qs Q:\ Q¢

+ / [F(Vor (@) + F(V"0s(x))] de.
Q
(23)
The left-hand side of (23) can be rewritten as
/ [F(Vw(ac)) + F”(V”uoo(x”))] dx
Qs

_ /( [G(Vug(x)) + F"(V'ug(x)) + F" (V"o (z”))] dz.  (24)

Let I; and I be the first and second integrals in the right-hand side of (23).
To estimate I, we just use the convexity of F”, since the vertical gradients of
v1 and vy are convex combinations of the vertical gradients of uy and uxo,

Iy = / [G(Vm(:c)) + F" (V"1 (x)) + F”(V”vg(z))] dx
Q\Q
< / [G(Vm () + F"(V"ug(x)) + F”(V”uoo(:c))} dz. (25)
Q\Q

To estimate I, we note that v; = (1 — @)up + Qus and v = aup + (1 — a)u



on €, thus owing to the convexity of F' and the uniform convexity (9) of F”,

I, < /Q [(1 — a)F(Vug) + aF(VUOO) + (1 _ CY)F”(V”’UOO) + CYF”(V”U@)
— |V (1o — w)|?] da
N /Q [(1 — a)G(Vug) + F"(V'up) + F"' (V" o) = kvIV" (oo — ue)|p] dx,
| (26)

for some v > 0. Putting estimates (23), (25), (26) and equation (24) together,
we obtain

/ G(Vuy) dm—i—/ [aG(Vuug) +ky |V (oo —ug)[P] da < / G(Vu () dz,
2\ (oH Q\Q

which, upon using the coerciveness hypothesis (7), yields
a/ [(IVuel? + BN ueP~F IV ug|*) 4 |V (oo — ug)[P] da
N

S/Qs\m G(Vvi(x))dx, (27)

where a > 0 is a small generic constant that only depends on the other constants
involved.
We now focus on estimating the right-hand side of (27). We have
V'vr = (1 — apst)V'ue + aV' ps t(uoo — u), (28)
VI/'UI = (1 - aps,t)vlluﬂ + CYps,tv”uoo-

Based on (28) and the definition of ps;, we have the following estimates for
any exponent g:

|V/vp |7 < 2971V g9 42971 [thoo — wel?,

(s —t)a (29)
|V 01 |7 < 2971V ug|? 4 2971V (oo — )9

We will use exponents ¢ = p and ¢ = k for the first line and ¢ = p — k for the
second line. Due to the growth hypothesis (7), we have

|uoo - Ul|p

1
/
G(Vvl) < A<|V Uz|p + m

RV P 4 [V (tow = )Y (19l 4 k|uooue|k)>, (30)

1
(s —1)
where A is a large generic constant that only depends on the other constants
involved. For k > 1, three of the four product terms that appear need to be
estimated. For this purpose, we will use Young’s inequality in the following
form

k p—k

afpPh < 2P 4 e
p



for a,b > 0 (recall that p > k). We thus obtain

|uoo - Ul|p

1
4 p -
G(Vuvy) < A<|V ue|? + (s— 0
1
+k(|V”W|p—k|V'W|k+|uoo—w|p+m|V”W|p+|vu(uoo—ue)|p)),
(31)

where A is another generic constant. We integrate this inequality over Qg \ Q;
and use Poincaré’s inequality in the vertical variables to obtain

/ G(Vvy)de < A/ (|V/ue|p+k|vl/ue|p7k|V’w|k+k|V”(uoofue)|p) dx
Q. \Q Qs \ Q2
Ak

1" 1
el (e = u)lzr @00 T W”V uelr @) (32)

with A yet another generic constant.
We now consider two different cases. First, for 0 < k < p/2, let us set

h(t) = / (19 uel? + V" e P~V ag* + k|V" (oo — ue)|P) d.
Q

Inequalities (27) and (32) may be rewritten as

1
h(t) < Oh(s) + T Hv//(uoo — Ue)H]Zp(QS\Qt)
k " P
oo 1Y wlirena) (33)
with § = -4 € 10,1]. Let t < t; < 81 < s. We invoke Lemma 3.3, with

A+a
v =D, C = HVH(UOO — UZ)H;ZP(QS\QJ;)’ Vo = kp/(p — k/’), D = k”v”u@”ip(gs\gt)v
to conclude that

h(tl) < C(C(Sl — tl)_ul + D(Sl — tl)_uz). (34)

The result follows in this case by letting ¢t; — t and s; — s since the constant
¢ only depends on vq, v5 and 0, and h is continuous (recall that § = 1).

Now the second case is when p/2 < k < p. Estimate (32) still holds true,
but we now use Young’s inequality once more in the form

avpp~v < Lop + P Wy

with w = w to deduce that

1 w 1 Y p—k 2k—p 1
=1 — < + 5
(s —t)P (s — t)p/(p w) k ko(s— t)kp/(p k)

so that we can actually write

k
O < 006) + gy (19 (e vl 19"l 1)
(35)
with the same function h, but with another value for 6, which we do not write
here. We conclude as before with Lemma 3.3 and the first constant C' = 0 for
instance. O

10



The following is an immediate consequence of the previous estimate.

Corollary 3.5 We have, for all £ > £y,

I el g,y + MV (1 = ) [ v

dcs
(f Ly)P TtV (e OO)H]ZP(Q@R"*T)
Cgk
i (0 = €o)kr/(=k) {”VNW”LP(QE gy + (L= )V (e — “00)”]2?(9@;11%4)} ’
(36)
where 6 =1 4f 0 <k <p/2, § =0 otherwise.
Proof. Indeed, we take s = ¢, t = ¢y and notice that Q, \ 2y, C Q. O

Let us remark that if £ = 0 and there is actually no strict convexity assump-
tion made on F”, i.e., " may well be not strictly convex, the previous result
boils down to

||V WHLP (e, Rr) - (g g ) ||VN( oo)”}zp(m;Rnfr)'

However, when k& > 0, we make crucial use of the uniform strict convexity to
derive the estimate.

Let us close this section with an estimate similar to that obtained in Lemma 3.2.
Recall that u, is a minimizer on ,, whereas the following estimate is on §2y,.
See [5] for a very similar argument.

Lemma 3.6 There exist constants ¢ and cy4, independent of £, such that for all
4 S KO S 67
/ [Vue|P de < cylf). (37)

Proof. Let 1 <t </¢—1 and set ps = pry1+. We take v o = (1 — prlue as a
test-function in problem (2). This test-function is equal to uy “far away” and is
0 in ;. We obtain

/ F(Vuy)de < / (F(VUM) (V.0 — ue ) dx
Qp

Q

= / F(0)dx + ' updx + [F(Vvee) + f prue)| da
Q Qq Qep1\ Q2

+ / F(Vug)dz.
Qo\Qig1

Therefore, we see that

F(Vug)dr < At" —|—/

Qg1

vef" ug dx + / F(Vuy ) dx

Qt+1 Qt+1\Qt

with A = F(0)L"(w")L" " (w") and vy = 1q, + prla,, \q,-
By the coerciveness and growth hypotheses (6), we infer that

A wpdesses [ (fwldeen [ Vs,
Qg1 Q41 41\
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for some constant B, since 0 < 14 < 1 and the Lebesgue measure of ;11\ € is
of the order of "~ 1.
In Qt+1 \ Qt, we have

[Vorel? = [(1 = p) Vg — ugVpe [P < 207 (|VuglP + KP|ug|?).

Clearly, estimate (12) is also valid on Q1 \ €4, thus,

/ |ue|? da < cf/ [V uel? da < cf/ [Vug|P de,
Q1 \ Qe 41\ Qe 41\ Qe

so that
/ |V ofP dae < 2071 4 chp)/ [Vug|P de.
Qi1 \ Q¢ Qi1 \ Qe
Furthermore,
" € (t + 1)T ’ '
< = P r p ,
JL e [ e s R @I
c? C
< 4 [Vue|P de + ——1t",
P Jo,., ep'/p
with € > 0 to be chosen afterwards.
Let us set
h(t) = |Vug|P da.

Q

Putting all the above estimates together, it follows that

Nh(t+1) < E(h(t+1) — h(t)) + Dt", (38)
with M = A= Z4, D = B+ —¢_ and E = 2~'A(1 + KP). We now pick ¢ in
P er’/p

such a way that A\’ > 0. Inequality (38) may be rewritten as
h(t) < Oh(t+ 1)+ Ht", (39)

where § = 1 — % €10,1[ and H = £ depend neither on ¢ nor on /. Iterating
inequality (39), we see that for n = [£ — ], we have

h(t) < 0"h(t +n) + H ni (t+m) ™. (40)

m=0

Let us now set t = £5. We have h(ly + [£ — £y]) < h(f) < cof" by Lemma
3.2. Hence

Ol p(t + [€ — £o]) < cofl= 00l < cppt=to= 1y,

Now, for £g > —g5, the function in the right-hand side is decreasing, hence
maximum for ¢ = {y. Therefore,

oL h(t + [0~ to]) < T4,

12



for £ > 0y > ——=,. Moreover, for £y > 1,

Ing-
[e—to]|—1 [e—to]|—1 o
S trmrem=t S (1420
m=0 m=0
[£—£o] -1 +oo
mro™m
< gr 1 rem < m=1 gr
— %0 7n220 ( =+ m) — 9 0
which completes the proof with ¢ = max(l, fﬁ). O

We now turn to the convergence results. As a consequence of Lemma 3.6,
we have, without any restriction on r with respect to p and k,

Theorem 3.7 There exists a subsequence ¢ — 400 and a function u* € V[/lif(ﬂoo)
such that, for all £y,

ug0, — urmo weakly in WP (Qy,). (41)
Moreover, u* =0 on 0.

Note that the weak convergence above implies that u, — u* weakly in
Wli’Cp(Qoo). We will sometimes omit the restriction notation in the sequel when
unnecessary.

Proof. By estimates (12) and (37), for all n € N*, uy is bounded in WP (£,,).
Using the diagonal procedure, we thus construct a sequence ¢,, such that for all
m, ug,|q,, — U, weakly in WLP(Q,,), with u,, = 0 on w/, x Ow”. Now, since
Qn C Qe as soon as m < m/, it follows that w), = u}, q,,+ SO that we have
constructed a single limit function u* in the desired class. Furthermore, for all
Ly, if we choose an integer m > £y, we see that convergence (41) holds true. O

In the sequel, we will always consider a weakly convergent subsequence uy
in the sense of Theorem 3.7.

4 Identification of the limit when ¢ — +o0o

In this section, we do not make any further use of assumption (9) of uniform
strict convexity of F”’, other than the fact that we used it to establish Theorem
3.4.2 The results will only hold for values of  small enough depending on p.
We let Qo =R" x w”.

Let us first show that the asymptotic behavior of u, is independent of the
elongated dimension if r is small enough.

Theorem 4.1 Assume thatr < p if k =0, or thatr < kp/(p—k) if 0 < k < p.
Then we have V'u* = 0 and u* may be identified with a function in the z”
variable only, still denoted u*, which belongs to Wol’p(w”).

Proof. By estimates (13) and (36) and the triangle inequality, it follows that

0 k
/ P e
HV UZHLp(Q[O;Rr) < C<(€ — fo)p + (6 — Eo)kp/(pfk) )E — 0 (42)

?Keep in mind that this hypothesis is void for k = 0 anyway.

13



When ¢ — +oo with ¢y fixed. Indeed, when 0 < k < p/2, we actually have
- k < p and since ¢ — 400, the first term in the right hand side of estimate
(42) is bounded from above by the second term.

Now V'uy — V'u* weakly in L (), hence we see that V'u* = 0, which
concludes the proof of the Theorem. O

In order to get a feeling of what Theorem 4.1 says, let us look at a few
examples. For the Laplacian, we have p = 2 and we can take k = 0, which
restricts this result to r = 1 (see Section 5 for a more general result with
additional hypotheses, that applies in this case). For the p-Laplacian, p > 2, we
can take k = 2 and the result is restricted to r < 2p/(p — 2). This restriction
for the p-Laplacian can already be found in [18]. Note that » =1 and r = 2 are
allowed for any value of p. This is not optimal in this particular case, since it
is known that ¢ — 400 convergence holds without restriction on the dimension
with respect to p, see [10].

Let us now identify the limit function. We first need another estimate.

Lemma 4.2 There exists a constant cs such that for all t < s,

lim sup/ [VuelP dx < es(s” —t"). (43)
2\

{— 400

Proof. We may assume that ¢t > 0, since the case t = 0 is already covered by
Lemma 3.6. We use here De Giorgi’s classical slicing trick. Let n be an integer
large enough so that 0 <t — % < s+ % < {. For each integer m, 1 < m < n, we
consider the cut-off function

Xomn(2') = Py s (@) (1= s ()

n2

1], 1t is 0 whenever g(a') >s —|—

This cut-off functlon takes its values in [0
/) S
") <

gla’) <t— 75, e <g(x
us call Sy, the slice where 0 < (2

1. We observe that

U S = Q1 \QSUQt\Qt_% C Quy1,

m=1

and that Sy, , N Sy = 0 when m # m/.
Let us consider the test-function vempn = (1 — Xm,n)te + Xmnu®. The
minimization problem yields the estimate

F(Vug)dz < F(NVvgmn)de — I X (U —ug) dx
Qp Qp Qp
= / F(NVvgm,n)de — / I X (0 — ug) d.
Qg Qs+1

14



Taking into account the specific form of the cut-off function, this implies that

/ F(Vug)dx < / F(Vug)dz
QA

Qo m \Q,_ m
s+n2 t o)

< / F(Vvgm,n) de — F"Xmn(u" = ug) dz
(25+%\Qt7ﬂ2 QS+1

< / F(NVvgm,n)de + / F(Vu*)dx
S

m,n

QSerﬁ_El \Qt,m_gl

n

- / I Xmn (0" —ug) d. (44)
Qst1
Let us estimate each term in the right-hand side separately. First of all, we have
[ £l =) o] < A (517 47 s o 0”20, (45
Qst1

with A = L"(w'). Secondly, we see that

[ ra] (o 1) (o )

n
s 71.2 71.2

(46)
We now come to the slicing argument stricto sensu. By the growth estimate
(6), we have

/ F(Vogmn)de < 2?*1/\(/ (IVugl? + |V P + 1) d
Spam Sm

+ KPp?P / lu* fw|pdz). (47)
The only term that causes a difficulty is the last term coming from Vx, ,,. We
now plug estimates (45), (46) and (47) into the right-hand side of estimate (44),
sum for m = 1 to n and divide the result by n. Observing that the sum of

integrals over the slices Sy, , gives rise to integrals over the union of all slices,
which is included in €441, this yields

/ . F(Vug)dz < AV (s + 1)"7|| || Lot (o Iu™ — el Lo ) (48)
Q:\ Q2
1 " 1 " 1 1, x
+A((s+£) ~(t- 5) NE" (V") |y (49)
2P A
+ I (s 1)+ 2T AR |t — gD (50)

We first let £ — 4-00. Due to the Rellich-Kondrasov theorem, [|u*—u||1r(q,,,) =
0 and it follows from the coerciveness estimate that

lim sup /Qs\m Vel de < é((s F ) = (= ) VI ) o

{——+o00 n
2pAC4
nA

We finally let n — +o00 to obtain the result with c5 = £ ||F"(V"u*)|| g1 (o). O

(s+1)".
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We now are in a position to prove the main result of this section.
Theorem 4.3 The function u* is a minimizer of problem Peo.

Proof. Let z € Wy (w") be arbitrary. We use the test function v, = (1 —
p)ue + prz, With py = pig14, so that vp = up on Qp \ Q41 and vy = z on Q.
We thus have

/ [F(Vug) — f"up) do < / [F(Vve) — v dx +/ [F(Vz)— f"z] dz.
Qg1 Qer1\ Qe Q
(51)
It follows from Lemma 4.2 that

1imsup‘/Q “ [F(Vve) — f"ve] dx‘ <C@t+1)!
t4+1 t

{— 400

for some constant C' independent of ¢ and ¢. The left-hand side of estimate (51)
is weakly lower-semicontinuous, hence, letting ¢ — +00, we obtain

(t+1)7 L7 (W) / [F(Vu*) — fu']da’ < Ot + 1)1

w!’

L (W) / [F(V2) = f"2] da’

w!

and the result follows from letting ¢ — +oo, since F(Vu*) = F”(V"u*) and
F(Vz)=F"(V"z). O

We now apply a classical trick to obtain strong convergence when F” is
strictly convex. Of course, when k£ > 0, this is already the case by assumption
(9). Strict convexity is only a new assumption if & = 0. In this case, the
solution u, of the limit problem is unique and this uniqueness implies the weak
convergence of the whole family u,.

Theorem 4.4 Assume that F" is strictly conver. Then u* = us and uy — Uso
strongly in WHP(Qy,) for all £o.

We recall the following two lemmas that can be found e.g. in [3].

Lemma 4.5 Let F: RM — R be strictly conver. Let p €10,1[ and aj,a € RM
such that

wF(aj) + (1 — p)F(a) — F(pa; + (1 — p)a) = 0 as j — +oo.
Then a; — a.

The second lemma is a slight variation on Fatou’s lemma.

Lemma 4.6 Let F;, F,H;, H € L'(Q) with F; > H; > 0 for all j, F; — F and
H; — H a.e., and [, Fjdx — [, Fdx. Then

/ Hidx — | Hdx.
Q Q
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Proof of Theorem 4.4. We already know that V'u;, — 0 = V'u* strongly in
LP(€)) by estimate (42). We thus just have to prove the strong convergence of
V" uy.

We use a similar slicing as before, with the test-functions p, o g m1 U for

n large enough, 1 < m < n. Skipping the details, this slicing implies that
1imsup/ F(Vug)dx < / F(Vu")dx.
l—=+4o00 JQ, Qq

On the other hand, for almost all 2/, the function uy ¢: 2" — ue(2’,2") is
an admissible test-function for the limit problem, so that

/ [F//(v//u*) _ f//u*] d:r// S / [F”(V”um/’e) . f”uz/7e] d:r//.
We integrate this inequality with respect to 2’ € tw’ and obtain
/Q [F//(v//u*) - f”u*]d:c S/Q [F”(V”w) o f//ul] da.
t t

We now let ¢ — +o0o, which yields

F"(V"u*)dx < lim inf/ F"(NV"ug) dx.
O, {—~+o00 Q,

By hypothesis (7), G > 0, which implies that F" (") < F(¢',¢"”) for any &'. Tt
follows that

/ F"(NV"ug) dx — F'"(V"u*)dx (52)
Q Q

when ¢ — +o0, since F”'(V"u*) = F(Vu*).
Let us pick p € ]0, 1] and set

g[ — MF//(V//UZ) + (1 _ ,U/)FN(VNU*) _ F”(MV”U@ + (1 _ M)v//u*)

By weak lower semicontinuity, it is clear that

lim inf/ F"'(uNV"ue + (1 — p)V'u*) dx > / F'(V"u*)dx.
{—+o00 Q, Q

Therefore

0< 1imsup/ gedx < / F'"(V"u*)dx — / F"(V"u*)dx = 0,
Q Q Qq

——+o00

so that g¢ — 0 a.e. (up to a subsequence). We then apply Lemma 4.5 to deduce
that V"up, — V"u* a.e. up to that same subsequence.
We now let

Hy = |V"up — V"u*|P < 207 YF"(V"wp) + |V"u*|P) = Fy,

and invoke Lemma 4.6 and (52) to obtain the result for ¢y = ¢. To conclude for
all £y, we use the diagonal process. O
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5 Convergence rates

In the previous section, we obtained convergence results without taking advan-
tage of the term involving & in the left-hand side of estimate (36). This makes
them valid in particular for £ = 0 without strict or uniform strict convexity. It
should however be clear that for k& > 0, the term in question can be used to
obtain a much shorter convergence proof with convergence rate, which we do
not detail here. More precisely,

Theorem 5.1 Under the previous hypotheses with 0 < k < p and r < kp/(p —
k), we have

lue — uOOHWlP(m ) < < Cﬁr—_

The proof is a direct consequence of Corollary 3.5 and Lemma 3.2.

In any case, the estimates do not seem to allow a convergence proof without
any restriction on r with respect to p in all generality, whereas it is known in
some cases, for instance in the case of the Laplacian, that convergence holds
true for all values of r.

In order to partially overcome these shortcomings, we assume now that k£ = 0
and that F" is uniformly strictly convex in the sense that

F (6" + ") < OF"(€") + (") = Bou(6"™" + )" = ¢, (53)

for some 8 > 0. Note that this is equivalent to allowing k = p in hypotheses
(7) and (9). In some sense, kTpk is then infinite and it is to be expected that
there should be no restriction on the allowed dimensions r, plus faster than
polynomial convergence. This is what we now proceed to show.

Under assumption (53), it is fairly clear that we still have an estimate similar
to that of Theorem 3.4, namely,

C
IV el o,y + 11V (e = o) 1o (q,) < WHV”(W — uoo)I o @00 (O4)

Let us thus prove that not only does convergence hold without restrictions
on the elongated dimension r, but that it also occurs at an exponential rate.
The extra control makes things actually much easier.

Theorem 5.2 Under hypotheses (6)-(7) with k = 0 and (53), then for allT <n
and all by, there exist constants C' and o > 0 independent of £ such that we have

IV (e = too)| o () < Ce™*
Proof. We take s =t + 1 in estimate (54), which yields

|V ue“Lp @) T IV (ue — uoo)”ip(ﬂt) < OV (ug — uOO)”ILJP(QHl\Qt)
< ClIV'uelog, 00

+ C||V" (ug — Uoo>|\§p(9,,+1\ﬂz)'

Setting
9(8) = IVuel ) + 19" (e = o) 2
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we have just shown that

g(t) < Cg(t+1) —g(t)),

or in other words

g(t) < 0g(t +1) (55)

with § = %5 €10, 1].
We iterate inequality (55) using the sequence t,, = n+4£y, n =0,...,[{—{p].
Obviously
9(lo) = g(to) < 0"g(tn)

for all such n, and in particular for the last one,
g(ﬁo) < elﬁ_eojg(tlﬁ_eoj) < 9@—@0—1g(£) < C@—éo—leéln 967"7

with Inf < 0. Now, for all r, we can pick a such that Inf < pa < 0 and
etmbyr < e=Pet for ¢ large enough, which completes the proof since V't = 0.
O

Theorem 5.2 applies to energies of the form F (&) = F'(¢') + F"(£"), for in-
stance. We recover in particular the known result for the case of the 2-Laplacian.
See also the monograph [6] for exponential estimates in this context.

6 Extension to the vectorial case

We have written everything so far in the context of a scalar problem, i.e., the
functions uy are scalar-valued. All previous developments only made use of
the minimization problem, under various convexity assumptions. Now clearly,
absolutely nothing is changed if we consider instead vector-valued problems in
the calculus of variations, with functions u, taking their values in some RY, if
the energies are supposed to satisfy the same growth, coercivity and convexity
assumptions as before, and the same convergence results hold true.

Unfortunately, in the vectorial case of the calculus of variations, the relevant
condition that guarantees lower-semicontinuity of the energy functional is not
convexity, but much weaker conditions such as quasiconvexity, or in the case
of energies that can take the value +oo, as is the case in nonlinear elasticity,
polyconvexity, see [11]. Indeed, convexity is not suitable in nonlinear elasticity
for well-known modeling reasons. This explains why we have striven to use as
little convexity as possible (in some sense) at any given point in the sequence of
arguments. This comment should however be mitigated by the fact that some
instances of our uses of convexity will also work with rank-1-convexity, which is
a reasonable assumption in the vectorial case. There are also notions of strict
uniform quasiconvexity that may apply, see [12].

The fact that the Euler-Lagrange equation is not available in nonlinear elas-
ticity is also an incentive to try and only use the minimization problem. Now,
it is at this point unclear to us how to attack the elongation problem in such
nonconvex vectorial cases, since we still heavily rely on (strict uniform) convex-
ity at crucial points of the proofs. Moreover, the Dirichlet boundary condition
considered here is not necessarily the most interesting one in the context of
nonlinear elasticity, in particular if we have the Saint Venant principle in mind.
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Even the potential limit problem is not so clear. In another dimension

reduction context, when considering a body whose thickness goes to zero, and
with different boundary conditions, it can be seen that quasiconvexity is not
conserved through an “algebraic” formula of the kind found here, and that a
relaxation step is necessary, see for instance [15]. Physically, this due to the
possibility of crumpling such a thin body. A similar phenomenon may quite
possibly happen here, but maybe not in the same fashion.

To the best of our knowledge, the nonconvex vectorial case remains open.
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