M. Crisp, Coupling of the nucleus and cytoplasm, The Journal of Cell Biology, vol.115, issue.1, pp.41-5310, 2006.
DOI : 10.1242/jcs.01642

B. A. Sosa, A. Rothballer, U. Kutay, and T. U. Schwartz, LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins, Cell, vol.149, issue.5, pp.1035-1047, 2012.
DOI : 10.1016/j.cell.2012.03.046

D. N. Simon and K. L. Wilson, The nucleoskeleton as a genome-associated dynamic 'network of networks', Nature Reviews Molecular Cell Biology, vol.18, issue.11, pp.695-70810, 2011.
DOI : 10.1038/nrm3207

F. Haque, SUN1 Interacts with Nuclear Lamin A and Cytoplasmic Nesprins To Provide a Physical Connection between the Nuclear Lamina and the Cytoskeleton, Molecular and Cellular Biology, vol.26, issue.10, pp.3738-3751, 2006.
DOI : 10.1128/MCB.26.10.3738-3751.2006

G. G. Gundersen and H. J. Worman, Nuclear Positioning, Cell, vol.152, issue.6, pp.1376-1389031, 2013.
DOI : 10.1016/j.cell.2013.02.031

W. Chang, H. J. Worman, and G. G. Gundersen, Accessorizing and anchoring the LINC complex for multifunctionality, The Journal of Cell Biology, vol.114, issue.1, pp.11-2210, 2015.
DOI : 10.1083/jcb.201401138

J. Lammerding, Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction, Journal of Clinical Investigation, vol.113, issue.3, pp.370-37810, 2004.
DOI : 10.1172/JCI200419670

R. Attali, Mutation of SYNE-1, encoding an essential component of the nuclear lamina, is responsible for autosomal recessive arthrogryposis, Human Molecular Genetics, vol.18, issue.18, pp.3462-346910, 2009.
DOI : 10.1093/hmg/ddp290

M. Brosig, J. Ferralli, L. Gelman, M. Chiquet, and R. Chiquet-ehrismann, Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis, The International Journal of Biochemistry & Cell Biology, vol.42, issue.10, pp.1717-1728, 2010.
DOI : 10.1016/j.biocel.2010.07.001

M. L. Lombardi and J. Lammerding, Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function, Biochemical Society Transactions, vol.14, issue.6, pp.1729-173410, 2011.
DOI : 10.1093/hmg/ddq549

X. Zhang, Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation, Development, vol.134, issue.5, pp.901-90810, 2007.
DOI : 10.1242/dev.02783

M. J. Puckelwartz, Nesprin-1 mutations in human and murine cardiomyopathy, Journal of Molecular and Cellular Cardiology, vol.48, issue.4, pp.600-608, 2010.
DOI : 10.1016/j.yjmcc.2009.11.006

S. Taranum, Cytoskeletal Interactions at the Nuclear Envelope Mediated by Nesprins, International Journal of Cell Biology, vol.114, issue.11, pp.736524-11736524, 2012.
DOI : 10.1016/j.ejcb.2008.10.001

M. Fanin, gene mutation, Muscle & Nerve, vol.72, issue.1, pp.145-14710, 2015.
DOI : 10.1002/mus.24357

S. Taranum, LINC complex alterations in DMD and EDMD/CMT fibroblasts, European Journal of Cell Biology, vol.91, issue.8, pp.614-628003, 2012.
DOI : 10.1016/j.ejcb.2012.03.003

P. Meinke, Muscular Dystrophy-Associated SUN1 and SUN2 Variants Disrupt Nuclear-Cytoskeletal Connections and Myonuclear Organization, PLoS Genetics, vol.4, issue.9, 2014.
DOI : 10.1371/journal.pgen.1004605.s010

URL : http://doi.org/10.1371/journal.pgen.1004605

D. E. Jaalouk and J. Lammerding, Mechanotransduction gone awry, Nature Reviews Molecular Cell Biology, vol.2, issue.1, pp.63-7310, 2009.
DOI : 10.1038/nrm2597

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668954

E. S. Folker, C. Ostlund, G. W. Luxton, H. J. Worman, and G. G. Gundersen, Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement, Proceedings of the National Academy of Sciences, vol.406, issue.1, pp.131-13610, 2011.
DOI : 10.1016/S0076-6879(06)06045-9

L. Yang, Mutations in LMNA Modulate the Lamin A - Nesprin-2 Interaction and Cause LINC Complex Alterations, PLoS ONE, vol.366, issue.8, 2013.
DOI : 10.1371/journal.pone.0071850.s005

M. L. Lombardi, The Interaction between Nesprins and Sun Proteins at the Nuclear Envelope Is Critical for Force Transmission between the Nucleus and Cytoskeleton, Journal of Biological Chemistry, vol.286, issue.30, pp.26743-26753, 2011.
DOI : 10.1074/jbc.M111.233700

Q. Zhang, Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity, Human Molecular Genetics, vol.16, issue.23, pp.2816-2833, 2007.
DOI : 10.1093/hmg/ddm238

J. Swift, Nuclear Lamin-A Scales with Tissue Stiffness and Enhances Matrix-Directed Differentiation, Science, vol.26, issue.15, pp.975-124010410, 2013.
DOI : 10.1128/MCB.00211-06

G. W. Luxton, E. R. Gomes, E. S. Folker, E. Vintinner, and G. G. Gundersen, Linear Arrays of Nuclear Envelope Proteins Harness Retrograde Actin Flow for Nuclear Movement, Science, vol.11, issue.19, pp.956-95910, 2010.
DOI : 10.1016/S0960-9822(01)00475-4

C. M. Hale, Dysfunctional Connections Between the Nucleus and the Actin and Microtubule Networks in Laminopathic Models, Biophysical Journal, vol.95, issue.11, pp.5462-5475139428, 2008.
DOI : 10.1529/biophysj.108.139428

S. B. Khatau, A perinuclear actin cap regulates nuclear shape, Proceedings of the National Academy of Sciences, vol.6, issue.3, pp.19017-1902210, 2009.
DOI : 10.1038/nmeth.1299

A. B. Chambliss, The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction, Scientific Reports, vol.35, issue.1, pp.10-1038, 2013.
DOI : 10.1080/07853890310016333

D. H. Kim, Actin cap associated focal adhesions and their distinct role in cellular mechanosensing, Scientific Reports, vol.123, issue.555, p.555, 2012.
DOI : 10.1038/srep00555

C. Y. Ho, D. E. Jaalouk, M. K. Vartiainen, and J. Lammerding, Lamin A/C and emerin regulate MKL1???SRF activity by modulating actin dynamics, Nature, vol.172, issue.7450, pp.507-51110, 2013.
DOI : 10.1038/nature12105

A. T. Bertrand, Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors, Journal of Cell Science, vol.127, issue.13, pp.2873-288410, 2014.
DOI : 10.1242/jcs.144907

M. A. Chesarone, A. G. Dupage, and B. L. Goode, Unleashing formins to remodel the actin and microtubule cytoskeletons, Nature Reviews Molecular Cell Biology, vol.20, issue.1, pp.62-7410, 2010.
DOI : 10.1038/nrm2816

M. M. Kozlov and A. Bershadsky, Processive capping by formin suggests a force-driven mechanism of actin polymerization: Figure 1., The Journal of Cell Biology, vol.78, issue.6, pp.1011-1017, 2004.
DOI : 10.1016/j.cub.2003.09.057

A. Jegou, M. F. Carlier, and G. Romet-lemonne, Formin mDia1 senses and generates mechanical forces on actin filaments, Nature Communications, vol.67, pp.10-1038, 1883.
DOI : 10.1038/ncomms2888

S. Kutscheidt, FHOD1 interaction with nesprin-2G mediates TAN line formation and nuclear movement, Nature Cell Biology, vol.406, issue.7, pp.708-71510, 2014.
DOI : 10.1091/mbc.E13-06-0307

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113092

S. Quijano-roy, mutations cause a new form of congenital muscular dystrophy, Annals of Neurology, vol.30, issue.2, pp.177-1862, 2008.
DOI : 10.1002/ana.21417

I. Holt, Specific localization of nesprin-1-alpha2, the short isoform of nesprin-1 with a KASH domain, in developing, fetal and regenerating muscle, using a new monoclonal antibody, BMC Cell Biol, vol.17, issue.26, pp.12860-12876, 2016.

T. Voit, C.O.4 Congenital muscular dystrophy with adducted thumbs, mental retardation, cerebellar hypoplasia and cataracts is caused by mutation of Enaptin (Nesprin-1): The third nuclear envelopathy with muscular dystrophy, Neuromuscular Disorders, vol.17, issue.9-10, pp.833-834245, 2007.
DOI : 10.1016/j.nmd.2007.06.245

URL : https://hal.archives-ouvertes.fr/in2p3-00001918

A. J. Engler, Myotubes differentiate optimally on substrates with tissue-like stiffness, The Journal of Cell Biology, vol.20, issue.6, pp.877-887, 2004.
DOI : 10.1152/ajpcell.00269.2001

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2172122

K. Burridge, C. E. Turner, and L. H. Romer, Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly, The Journal of Cell Biology, vol.119, issue.4, pp.893-903, 1992.
DOI : 10.1083/jcb.119.4.893

R. Samarakoon, M. Goppelt-struebe, and P. J. Higgins, Linking cell structure to gene regulation: Signaling events and expression controls on the model genes PAI-1 and CTGF, Cellular Signalling, vol.22, issue.10, pp.1413-1419, 2010.
DOI : 10.1016/j.cellsig.2010.03.020

S. Bogdan, J. Schultz, and J. Grosshans, Formin??? cellular structures, Communicative & Integrative Biology, vol.31, issue.6, pp.10-4161, 2013.
DOI : 10.1080/10635150600755453

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977921

R. Takeya, K. Taniguchi, S. Narumiya, and H. Sumimoto, The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells, The EMBO Journal, vol.16, issue.4, pp.618-628, 2008.
DOI : 10.1038/emboj.2008.7

S. Hannemann, The Diaphanous-related Formin FHOD1 Associates with ROCK1 and Promotes Src-dependent Plasma Membrane Blebbing, Journal of Biological Chemistry, vol.283, issue.41, pp.27891-27903, 2008.
DOI : 10.1074/jbc.M801800200

S. A. Rizvi, Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly, Chemistry & Biology, vol.16, issue.11, pp.1158-1168006, 2009.
DOI : 10.1016/j.chembiol.2009.10.006

J. Pourati, Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells?, Am J Physiol, vol.274, pp.1283-1289, 1998.

K. Burridge and E. S. Wittchen, The tension mounts: Stress fibers as force-generating mechanotransducers, The Journal of Cell Biology, vol.83, issue.1, pp.9-19201210090, 2013.
DOI : 10.1242/jcs.001586

P. J. Stewart-hutchinson, C. M. Hale, D. Wirtz, and D. Hodzic, Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness, Experimental Cell Research, vol.314, issue.8, pp.1892-1905, 2008.
DOI : 10.1016/j.yexcr.2008.02.022

T. J. Chancellor, J. Lee, C. K. Thodeti, and T. Lele, Actomyosin Tension Exerted on the Nucleus through Nesprin-1 Connections Influences Endothelial Cell Adhesion, Migration, and Cyclic Strain-Induced Reorientation, Biophysical Journal, vol.99, issue.1, pp.115-123011, 2010.
DOI : 10.1016/j.bpj.2010.04.011

J. L. Broers, Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies, Human Molecular Genetics, vol.13, issue.21, pp.2567-2580, 2004.
DOI : 10.1093/hmg/ddh295

L. Sansores-garcia, Modulating F-actin organization induces organ growth by affecting the Hippo pathway, The EMBO Journal, vol.22, issue.12, pp.2325-2335157, 2011.
DOI : 10.1038/emboj.2011.157

A. Schonichen, FHOD1 is a combined actin filament capping and bundling factor that selectively associates with actin arcs and stress fibers, Journal of Cell Science, vol.126, issue.8, pp.1891-190110, 2013.
DOI : 10.1242/jcs.126706

M. Aragona, A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors, Cell, vol.154, issue.5, pp.1047-1059042, 2013.
DOI : 10.1016/j.cell.2013.07.042

K. Mamchaoui, Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skeletal muscle 1, pp.10-1186, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00651121

K. N. Randles, Nesprins, but not sun proteins, switch isoforms at the nuclear envelope during muscle development, Developmental Dynamics, vol.115, issue.3, pp.998-1009, 2010.
DOI : 10.1002/dvdy.22229

M. Prager-khoutorsky, Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing, Nature Cell Biology, vol.14, issue.11, pp.1457-1465, 2011.
DOI : 10.1128/MCB.20.5.1772-1783.2000

M. Dembo and Y. L. Wang, Stresses at the Cell-to-Substrate Interface during Locomotion of Fibroblasts, Biophysical Journal, vol.76, issue.4, pp.2307-231610, 1999.
DOI : 10.1016/S0006-3495(99)77386-8

D. Ambrosi, A. Duperray, V. Peschetola, and C. Verdier, Traction patterns of tumor cells, Journal of Mathematical Biology, vol.60, issue.1-2, pp.163-18110, 2009.
DOI : 10.1007/s00285-008-0167-1

URL : https://hal.archives-ouvertes.fr/hal-00256642

R. Michel, Mathematical framework for traction force microscopy, SAIM: Proceedings, EDP Sciences 42, pp.61-83201342005, 2013.
DOI : 10.1051/proc/201342005

URL : https://hal.archives-ouvertes.fr/hal-00772155

V. Peschetola, Time-dependent traction force microscopy for cancer cells as a measure of invasiveness, Cytoskeleton, vol.103, issue.4, pp.201-214, 2013.
DOI : 10.1002/cm.21100

URL : https://hal.archives-ouvertes.fr/hal-00696105

D. Ambrosi, Cellular Traction as an Inverse Problem, SIAM Journal on Applied Mathematics, vol.66, issue.6, pp.2049-206010, 2006.
DOI : 10.1137/060657121

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.104.4980