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In this work, a spectral model is derived to investigate numerically unstably stratified
homogeneous turbulence (USHT) at large Reynolds numbers. The modeling relies on an
earlier work for passive scalar dynamics [Briard et al., J. Fluid Mech. 799, 159 (2016)] and
can handle both shear and mean scalar gradients. The extension of this model to the case
of active scalar dynamics is the main theoretical contribution of this paper. This spectral
modeling is then applied at large Reynolds numbers to analyze the scaling of the kinetic
energy, scalar variance, and scalar flux spectra and to study as well the temporal evolution
of the mixing parameter, the Froude number, and some anisotropy indicators in USHT. A
theoretical prediction for the exponential growth rate of the kinetic energy, associated with
our model equations, is derived and assessed numerically. Throughout the validation part,
results are compared with an analogous approach, restricted to axisymmetric turbulence,
which is more accurate in term of anisotropy description, but also much more costly in
terms of computational resources [Burlot et al., J. Fluid Mech. 765, 17 (2015)]. It is notably
shown that our model can qualitatively recover all the features of the USHT dynamics,
with good quantitative agreement on some specific aspects. In addition, some remarks are
proposed to point out the similarities and differences between the physics of USHT, shear
flows, and passive scalar dynamics with a mean gradient, the two latter configurations
having been addressed previously with the same closure. Moreover, it is shown that the
anisotropic part of the pressure spectrum in USHT scales in k−11/3 in the inertial range,
similarly to the one in shear flows. Finally, at large Schmidt numbers, a different spectral
range is found for the scalar flux: It first scales in k−3 around the Kolmogorov scale and
then further in k−1 in the viscous-convective range.

DOI: 10.1103/PhysRevFluids.2.044604

I. INTRODUCTION

Rayleigh-Taylor instability is a phenomenon that occurs for fluid of variable density. This
instability can be found in various areas, such as geophysical, astrophysical, and confined industrial
flows [1,2]. More specifically, the Rayleigh-Taylor instability can happen in natural flows such as
atmospheric ones because of the mean vertical temperature gradient, when the heavy fluid, located
above the lighter one, pushes it downward due to gravitational acceleration, which creates a mixing
zone.

To investigate both numerically and theoretically a mechanism as complex as Rayleigh-Taylor
instability, it is convenient to work in the framework of unstably stratified homogeneous turbulence
(USHT), which notably discards inhomogeneity, considers the turbulent fluctuations of the velocity
and buoyant fields, and uses the Boussinesq approximation to reflect the retroaction of the convected
buoyant field on the velocity one [3–6]. In particular, such an idealized configuration permits one
to study the time evolution of the turbulent fluctuations through second-order moments such as
the kinetic energy K = 〈uiui〉/2, where ui is the fluctuating velocity field, and the repartition
of anisotropy in the flow by the means of dedicated spectra. Furthermore, for simplicity and for
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comparisons purposes, we consider that the stratification frequency N is constant. We note that
frameworks different from USHT can be considered as well, for instance, variable-density flows
where the Boussinesq approximation is not used anymore [7,8].

A deep understanding of unstably stratified turbulence is of great interest: from a practical point
of view, for the improvement of one-point models by having an accurate knowledge of the global
dynamics, and for theoretical considerations as well, when it comes to the investigation of asymptotic
anisotropic states at large Reynolds numbers. These different features have been addressed recently
with an axisymmetric eddy-damped quasinormal Markovian (EDQNM) model developed by Burlot
and co-workers [4–6] to analyze the large Reynolds numbers dynamics of USHT. In what follows,
this model will be referred to as the axisymmetric EDQNM model. As specified by its name, this
spectral approach is dedicated to axisymmetric configurations and permits an accurate investigation
of the scale-by-scale anisotropy distribution and of the time evolution of one-point statistics such as
the Froude number Fr and the mixing intensity �, which will be defined later on.

However, this axisymmetric EDQNM model cannot handle, at least in the present form, shear
flows, where there is no particular symmetry. For this reason, we propose an alternative method to
investigate the asymptotic states at large Reynolds numbers of USHT. Our method is also based on
the EDQNM procedure classically used in homogeneous and isotropic turbulence (HIT) [9,10], but in
addition a departure from isotropy is modeled through spherically averaged spectra that measure both
directional and polarization anisotropies [11]. Basically, spectral second-order correlations of inter-
est, namely, the velocity-velocity, scalar-scalar, and mixed velocity-scalar two-point correlations, are
expanded into spherical harmonics and this expansion is further truncated at the second order. Angular
information about anisotropy is then partially recovered due to spectral anisotropy indicators. This
two-step method (the classical EDQNM model combined with a model for anisotropy), referred to
as anisotropic EDQNM modeling, developed by Mons et al. [12] and further applied by Briard et al.
[13], was first used to study shear-driven turbulence, such as sustained shear flows, axisymmetric
contractions and expansions, shear-released turbulence, and plane distortion. Afterward, the
anisotropic EDQNM modeling was consistently extended to handle the transport of a passive scalar
field by Briard et al. [14], to deal in particular with turbulence submitted to both shear and mean
scalar gradients. In the latter reference, a configuration of interest is tackled: homogeneous isotropic
turbulence with a mean scalar gradient (HITSG), which is the counterpart of USHT for a passive
scalar field instead of an active one. The anisotropic EDQNM modeling was successfully assessed
by comparisons with several direct numerical simulations (DNSs) and experiments in Refs. [12–14].
Thus, it can be used in multiple configurations, but only axisymmetry will be considered here.

Consequently, it is proposed in the present work to extend theoretically this spectral model
to the case of active scalar dynamics with USHT and to compare it to the results obtained with
the axisymmetric EDQNM model of Burlot and co-workers. Throughout this paper, USHT will
be qualitatively compared to results obtained with the same anisotropic EDQNM closure in the
frameworks of pure shear flows and HITSG: Similarities and differences will be pointed out and the
physics behind it will be discussed as well. Pressure spectra, with an anisotropic part resulting from
stratification, are also addressed.

The extension of the anisotropic EDQNM modeling to unstable stratification is a step further
towards the modeling and understanding of high-Reynolds-number geophysical flows, such as
atmospheric and oceanic ones. Indeed, under the assumption of homogeneity, such flows contain
the effects of shear, temperature, and concentration gradients, stratification, rotation, and helicity.
Shear and temperature gradient mechanisms have already been addressed with our model [14] and
helicity is currently the topic of another work [15], so stratification appears to be an natural extension,
whereas the effects of rotation were addressed independently with another approach [16–18]. Indeed,
rotating turbulence, as well as stably stratified turbulence, requires a more sophisticated EDQNM
model that can take into account the effects of dispersive waves on the dynamics of the three-point
third-order correlations.

Finally, the present model is used to address, from a fundamental point of view, the effects of large
Schmidt numbers Sc on the inertial scaling of the scalar flux spectrum, which differs from passive
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scalar dynamics [19], where Sc is the ratio of kinematic viscosity ν to the molecular diffusivity a.
Despite the theoretical interest in determining the asymptotic regimes of USHT at large Reynolds
and Schmidt numbers, this framework represents some practical interests when it comes to the
modeling of oceanic flows, where unstable stratification can results from double diffusion processes
[20] with saltwater (102 � Sc � 103). Indeed, at the ocean surface, hot salty water is on top of
cooler and saltier water, so the stratification is stable; however, when the temperature drops off in
the air layer above the ocean, the upper salty water cools down very rapidly, because heat transfers
are much more efficient than mass transfers. In the end, one has a heavier fluid on top, causing the
appearance of unstably stratified water columns [21].

The paper is structured as follows. The main features of the original anisotropic EDQNM modeling
and the extension to active scalar dynamics are presented in Sec. II. Some additional theoretical
considerations about the modeling are proposed in the Appendix. The model is applied to investigate
the large-Reynolds-number asymptotic anisotropic states of USHT in Sec. III. More precisely,
scalings of spectra are addressed in the infrared and inertial ranges, along with the scale-by-scale
distribution of anisotropy and the time evolution of one-point statistics. This section should be seen
as an advanced validation of our approach since multiple qualitative and quantitative comparisons
with the axisymmetric EDQNM model are made. In addition, further insights are proposed while
comparing the dynamics of USHT with the one of HITSG and shear flows, configurations that
have been consistently investigated with the same closure. Applications of our modeling are finally
exposed in Sec. IV. The emphasis is put on pressure spectra in Sec. IV A to underline the strong
analogy with shear flows. The effects of large Schmidt numbers Sc on spectral scalings and on
the dynamics of USHT are revealed in Sec. IV B. A summary is given and results are discussed in
Sec. V.

II. SPECTRAL MODELING FOR USHT

In this section the spectral model for passive scalar dynamics developed in Ref. [14] is consistently
extended to the case of an active scalar for unstably stratified turbulence. The extension is rather
simple, because stratification amounts to two additional production terms with respect to the case
of passive scalar fluctuations in HITSG: a retroaction of the spectral scalar-scalar correlation on the
scalar flux equation and similarly a retroaction of the scalar flux on the spectral velocity-velocity
correlation equation. This strong coupling notably causes the kinetic energy, scalar variance, and
mixed correlation to grow exponentially at the same rate, which is fundamentally different from
passive scalar dynamics in HITSG, where the scalar variance increases algebraically whereas the
mixed correlation and kinetic energy both decay algebraically.

A. Main equations of USHT

In this section the exact evolution equations for the second-order spectral correlations are derived.
First, as commonly done for USHT, one can scale the scalar fluctuations θ , which can be, for instance,
a concentration, as a buoyant velocity c [3] according to

c = 2Agθ

N
, (1)

where N is the stratification characteristic time, or buoyancy frequency

N =
√

2Ag
d�

dx3
, (2)

with g the gravitational acceleration, � the mean scalar field, and A the Atwood number A =
(ρ1 − ρ2)/(ρ1 + ρ2), where ρ1 and ρ2 are the densities of the heavy and light fluids, respectively. In
addition, N is expressed in units of τ−1

0 , where τ0 is the characteristic eddy turnover time. Further,
N should be compared qualitatively to the shear intensity S in shear flows, so that here for USHT,
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Nt represents the relevant dimensionless time. The mean gradient is chosen to be vertical (along x3)
so that the evolution equations of the fluctuating velocity and scalar fields are

∂c

∂t
+ uj

∂c

∂xj

= a
∂2c

∂xj ∂xj

+ Nu3, (3)

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+ ν
∂2ui

∂xj ∂xj

+ Nc δi3, (4)

where ν is the kinematic viscosity and a the scalar diffusivity. The spectral counterpart of these
equations are straightforward and can be found, for instance, in Ref. [4].

The three two-point second-order spectral correlations of interest are as follows: the spectral
Reynolds tensor R̂ij , or velocity-velocity correlation; the scalar-scalar correlation ET ; and the scalar
flux Fi , or mixed velocity-scalar correlation. Their respective definitions are

R̂ij (k,t)δ(k − p) = 〈û∗
i ( p,t)ûj (k,t)〉, (5)

ET (k,t)δ(k − p) = 〈ĉ∗( p,t)ĉ(k,t)〉, (6)

Fi(k,t)δ(k − p) = 〈û∗
i ( p,t)ĉ(k,t)〉, (7)

where a caret denotes the Fourier transform, an asterisk denotes the complex conjugate, ûi and ĉ

are the spectral fluctuating velocity and scalar fields, respectively, and k and p are wave vectors.
These definitions are similar to the ones given in Ref. [14], except that here the scalar θ̂ (k) has been
replaced by the spectral buoyant velocity ĉ(k). The exact evolution equations of these correlations
R̂ij , Fi , and ET read(

∂

∂t
+ 2νk2

)
R̂ij (k,t) = T NL

ij (k) + N [Pj3Fi(k,t) + Pi3Fj (k,t)]︸ ︷︷ ︸
additional coupling

, (8)

(
∂

∂t
+ (ν + a)k2

)
Fi(k,t) = T

F,NL
i (k,t) + NR̂i3(k,t) + NPi3 ET (k,t)︸ ︷︷ ︸

additional coupling

, (9)

(
∂

∂t
+ 2ak2

)
ET (k,t) = T T,NL(k,t) + 2NF3(k,t), (10)

where T NL
ij , T

F,NL
i and T T,NL are the exact spectral nonlinear transfers, which can be expressed as

functions of three-point triple correlations, and Pij = δij − αiαj is a projector, with αi = ki/k. These
evolution equations are exact, and the terms labeled “additional coupling” refer to the supplementary
production terms arising from stratification, compared to HITSG, which were mentioned previously.
In the next section the main features of the modeling developed in Ref. [14] for passive scalar
dynamics are recalled and the final spherically averaged evolution equations of USHT are consistently
derived.

B. Modeling of anisotropy: Link with the axisymmetric EDQNM model

The previous spectral evolution equations (8)–(10) are exact and the two-step anisotropic EDQNM
modeling method of [12,14] is now applied. The first step consists into closing the nonlinear terms
and the second one into modeling anisotropy through spherically averaged spectra. All the details are
gathered in Refs. [12,14] and the main elements are given here for the sake of clarity. We first recall
the principal features of the anisotropy modeling and the decomposition of the spectral second-order
correlations. Considerations about the classical EDQNM procedure, i.e., the closure of nonlinear
terms, are discussed after the final spherically averaged evolution equations.
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The starting point is the optimal trace-deviator intrinsic decomposition of R̂ij in terms of isotropic,
directional, and polarization parts [11,12]

R̂ij (k,t) = E(k,t)

4πk2
Pij (k)︸ ︷︷ ︸

R̂
(iso)
ij (k,t)

+
(
E(k,t) − E(k,t)

4πk2

)
Pij (k)︸ ︷︷ ︸

R̂
(dir)
ij (k,t)

+ Re[Z(k,t)Ni(k)Nj (k)]︸ ︷︷ ︸
R̂

(pol)
ij (k,t)

, (11)

with E(k,t) the kinetic energy spectrum

E(k,t) =
∫

Sk

1

2
R̂ii(k,t)d2k =

∫
Sk

E(k,t)d2k, (12)

where E(k,t) refers to the directional anisotropy and measures the departure from isotropy along the
wave vector k; Z(k,t) reflects the polarization anisotropy, i.e., the difference of energy between the
components of the spectral Reynolds tensor, and Ni are helical modes [16,22].

Then R̂ij , and more precisely E and Z, are expanded into spherical harmonics in order to
compute anisotropic descriptors that depend only on the wave-number modulus k and no longer on
the orientation of the vector k, which dramatically reduces the computational time. The expansion
in spherical harmonics is further truncated at the second order: Consequences of such a truncation
and validations of this approximation are thoroughly presented and discussed in Refs. [12–14].
The spectral anisotropy descriptors H

(dir)
ij and H

(pol)
ij resulting from this modeling are symmetric

deviatoric tensors, linked to directional and polarization anisotropies, respectively, obtained by
integrating the second-order expansion of R̂ij on the sphere Sk of radius k,

2E(k,t)H (dir)
ij (k,t) =

∫
Sk

R̂
(dir)
ij (k,t)d2k, (13)

2E(k,t)H (pol)
ij (k,t) =

∫
Sk

R̂
(pol)
ij (k,t)d2k. (14)

From the previous equations, one can determine the spectral tensor

φij (k,t) =
∫

Sk

R̂ij (k,t)d2k = 2E(k,t)

(
δij

3
+ H

(dir)
ij (k,t) + H

(pol)
ij (k,t)

)
. (15)

A similar procedure was applied in Ref. [14] to extract from the spectral scalar-scalar correlation its
directional anisotropy part, which yielded the definition of H

(T )
ij , equivalent to H

(dir)
ij for the velocity

field

2ET (k,t)H (T )
ij (k,t) =

∫
Sk

(
ET (k,t) − ET (k,t)

4πk2

)
Pij (k)d2k, (16)

where ET (k,t) is the scalar variance spectrum, which can also be called the buoyancy spectrum in
USHT, given by

ET (k,t) =
∫

Sk

ET (k,t)d2k. (17)

Obviously, there is no polarization anisotropy for the buoyant field since it is a scalar quantity.
Interestingly, H (T )

ij , which is specific to the anisotropic EDQNM modeling developed in Ref. [14], can
be linked to another indicator of anisotropy often used [4–6], which could be called a scale-by-scale
dimensionality parameter

sin2 γT (k,t) = 1

ET (k,t)

∫
Sk

sin2 θk(k)ET (k,t)d2k = 2H
(T )
33 (k,t) + 2

3
, (18)

where θk(k) is the angle between the vertical axis (here x3) and the wave vector k: θk is sketched
in Fig. 1. When the considered scales are isotropic, one has sin2 γT = 2/3 and H

(T )
ij = 0. Then the
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FIG. 1. Craya-Herring frame (e(1),e(2),e(3)) in blue and the wave vector k in red. The fluctuating spectral
velocity û is contained in the plane (e(1),e(2)).

scalar flux is decomposed as

Fi(k,t) = 3

2

EF
j (k,t)

4πk2
Pij (k), (19)

as defined in Refs. [14,23,24]. The spectrum EF
j is real and is the spherical average of the scalar

flux according to

EF
i (k,t) =

∫
Sk

Fi(k,t)d2k. (20)

Since the only nonzero component of the scalar flux is the component along the mean gradient, we
further define the cospectrum as F = EF

3 , as in Ref. [14] for HITSG.
Before presenting the final spherically averaged evolution equations of the present anisotropic

EDQNM modeling, we expose the equations solved numerically in Ref. [4]. From the exact
evolution equation of R̂ij and the decomposition (11), one obtains exact equations for E and Z.
For axisymmetric turbulence without helicity, these two quantities can be related to the toroidal and
poloidal potentials E (toro) and E (polo) through

E(k) = E (polo)(k) + E (toro)(k), Z(k) = E (polo)(k) − E (toro)(k). (21)

These potentials E (toro) and E (polo) are defined as

E (toro)(k)δ(k − p) = 〈û(toro)∗( p)û(toro)(k)〉, (22)

E (polo)(k)δ(k − p) = 〈û(polo)∗( p)û(polo)(k)〉, (23)

where the spectral fluctuating velocity is

ûi(k) = û(toro)(k)e(1)
i (k) + û(polo)(k)e(2)

i (k), (24)

in the Craya-Herring frame (e(1),e(2),k) [22,25], illustrated in Fig. 1. All the details for the linkage
of the Craya-Herring decomposition to its toroidal-poloidal counterpart are given in Ref. [22], as
well as its connection to various wave-vortex decompositions, which are of physical interest for
rotating stably stratified turbulence. Indeed, it separates the nonpropagating and propagating parts
of the flow, the latter being linked to inertial-gravity waves.
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In the axisymmetric EDQNM model of Burlot and co-workers, the evolution equations of E (toro),
E (polo), ET , and F3 are solved. Their production terms, which depend linearly on the stratification
frequency N , are exact and a classical EDQNM procedure is used to close the triple correlations.
The toroidal and poloidal potentials can be related to the present deviatoric tensors H

(dir)
ij and H

(pol)
ij

appearing through the modeling of anisotropy [12,14]. After some algebra and the truncation at the
second order, one gets

E (dir)(θk,k) = − 15
2 E0(k)H (dir)

33 (k)(3 cos2 θk − 1), Z(θk,k) = 15
2 E0(k)H (pol)

33 (k) sin2 θk, (25)

where E0 = E/4πk2 and E (dir) = E − E0, so that

E (toro)(θk,k) = E0(k)

2

[
1 − 15

2

[
H

(pol)
33 (k) sin2 θk + H

(dir)
33 (k)(3 cos2 θk − 1)

]]
, (26)

E (polo)(θk,k) = E0(k)

2

[
1 + 15

2

[
H

(pol)
33 (k) sin2 θk − H

(dir)
33 (k)(3 cos2 θk − 1)

]]
. (27)

So far in this section, the relations between the present approach using a model for anisotropy and
the axisymmetric EDQNM model were given in a manner similar to [26]. In the next section the final
spherically averaged equations of the present anisotropic EDQNM modeling are presented, along
with the additional production terms mentioned earlier. As a conclusion to this section, we remark
that injecting (26) and (27), resulting from the present modeling, in the equations of E (toro) and E (polo)

solved in the axisymmetric EDQNM model would yield the final equations presented hereafter.

C. Final anisotropic EDQNM modeling for USHT

In the previous exact evolution equations (8)–(10), the nonlinear transfer terms are closed by
a classical EDQNM procedure: Third-order correlations are expressed as functions of the spectral
second-order moments R̂ij , ET , and Fi . Finally, using the definitions of H

(dir)
ij , H

(pol)
ij , H

(T )
ij , and

F , which result from the modeling of anisotropy, one obtains the final spherically averaged Lin
equations for USHT (

∂

∂t
+ 2νk2

)
E(k,t) = SNL(iso)(k,t) + SL,USHT(iso)(k,t), (28)(

∂

∂t
+ 2νk2

)
E(k,t)H (dir)

33 (k,t) = S
NL(dir)
33 (k,t) + S

L,USHT(dir)
33 (k,t), (29)(

∂

∂t
+ 2νk2

)
E(k,t)H (pol)

33 (k,t) = S
NL(pol)
33 (k,t) + S

L,USHT(pol)
33 (k,t), (30)(

∂

∂t
+ 2ak2

)
ET (k,t) = ST,NL(iso)(k,t) + 2NF(k,t), (31)(

∂

∂t
+ 2ak2

)
ET (k,t)H (T )

33 (k,t) = S
T,NL(dir)
33 (k,t) + 2

15
NF(k,t), (32)(

∂

∂t
+ (ν + a)k2

)
F(k,t) = S

F,NL
3 (k,t) + Nφ33(k,t) + S

F,L,USHT
3 (k,t). (33)

Some remarks need to be said about these equations. First, only the H
( )
33 component along the mean

gradient is involved, because USHT is an axisymmetric configuration, so there are no extra-diagonal
components. In addition, because of incompressibility and symmetry, the H

( )
ij tensors are trace-free,

so H
( )
11 = H

( )
22 = −H

( )
33/2. Hence, in terms of equations to solve simultaneously, USHT is simpler

that a passive scalar advected by a turbulent shear flow, where sixteen independent equations need
to be solved, instead of six here.
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On the right-hand sides of Eqs. (28)–(33), the first terms with the upper index ( )NL refer to the
spherically averaged nonlinear transfers, which are exactly the same as in passive scalar dynamics,
whose explicit formulas are gathered in Ref. [14]. The fact that the nonlinear transfers are identical
for both passive and active scalar dynamics is because the linear operators, of the equations for the
three-point third-order correlations, are not taken into account, consistently with [12,14]. The other
right-hand-side terms of Eqs. (28)–(33) are the linear spherically averaged transfers, or production
terms linked to the mean scalar gradient, which can be divided into two parts: the new ones written
with the upper index ( )L,USHT and the ones already present in HITSG (2NF , 2NF/15, and Nφ33).
The former terms come from the extension of the anisotropic EDQNM modeling for passive scalar
dynamics to the case of unstable stratification and as such represent the main theoretical contribution
of this work. Here are their definitions and expressions:

SL,USHT(iso)(k,t) = N

∫
Sk

Pi3(k)Fi(k,t)d2k = NF(k,t), (34)

S
L,USHT(dir)
ij (k,t) = N

2

∫
Sk

Pl3(k)Fl(k,t)Pij (k)d2k − δij

3
NF(k,t)

= N

20

[
EF

i (k,t)δj3 + EF
j (k,t)δi3 − 2

3
F(k,t)δij

]
, (35)

S
L,USHT(pol)
ij (k,t) = N

4

∫
Sk

[Pl3(k)Fn(k,t) + Pn3(k)Fl(k,t)]N∗
l N∗

nNiNjd
2k

= 3N

10

[
EF

i (k,t)δj3 + EF
j (k,t)δi3 − 2

3
F(k,t)δij

]
, (36)

S
F,L,USHT
i (k,t) = N

∫
Sk

ET (k,t)Pi3(k)d2k = 2NET (k,t)

[
1

3
δi3 + H

(T )
i3 (k,t)

]
. (37)

More specifically, one has here

S
L,USHT(dir)
33 (k,t) = N

15
F(k,t), S

L,USHT(pol)
33 (k,t) = 2N

5
F(k,t). (38)

Consequently, because of our anisotropic modeling, the set of equations (28)–(33) is different from
the one of Burlot and co-workers and this will have strong theoretical impact, notably in Sec. III B 3
for the prediction of the exponential growth rate of one-point statistics. Here are the definitions of the
important one-point statistics, computed from spherically averaged spectra, such as kinetic energy,
scalar variance, mixed correlation, and their respective dissipation rates

K(t) = 1

2
〈uiui〉 =

∫ ∞

0
E(k,t)dk, ε(t) = 2ν

∫ ∞

0
k2E(k,t)dk, (39)

KT (t) = 〈θ2〉 =
∫ ∞

0
ET (k,t)dk, εT (t) = 2a

∫ ∞

0
k2ET (k,t)dk, (40)

KF (t) = 〈u3θ〉 =
∫ ∞

0
F(k,t)dk, εF (t) = (ν + a)

∫ ∞

0
k2F(k,t)dk. (41)

In the next section basic elements of our numerical simulations are exposed.

D. Numerical setup

Some numerical aspects of our simulations are briefly presented here. The six previous spherically
averaged Lin equations of USHT are solved using a third-order Runge-Kutta scheme with implicit
treatment of diffusion terms. The wave-number space is discretized using a logarithmic mesh
ki+1 = 101/f ki , where f = 15 is the number of points per decade. This mesh spans from kmin to kmax,
where kmax = 10kη for Sc = 1 and kmax = 10kB for Sc � 1, where kη = (ε/ν3)1/4 is the Kolmogorov
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wave number and kB = √
Sckη is the Batchelor wave number. The time step is monitored by defining

a constant Courant-Friedrichs-Lewy number and is obtained by considering the characteristic time
scales of scalar and kinetic dynamics.

Two types of large-scale initial conditions are mainly addressed: Saffman and Batchelor
turbulence, which correspond, respectively, to infrared slopes σ = 2 and σ = 4, where E(k <

kL) ∼ kσ , with kL the integral wave number. We define as well in a similar manner the scalar
infrared slope σT : ET (k < kT ) ∼ kσT , with kT the peak of the scalar variance spectrum. The initial
conditions are isotropic, meaning that F(k,t = 0) = 0, and are borrowed from [27]

E(k,t = 0) = K0 k−5/3 ε2/3fL(kL) fη(kη), (42)

where fL and fη are shape functions for large and small scales, respectively,

fL(x) =
(

x

(x1.5 + 1.5 − σ/4)2/3

)5/3+σ

,

fη(x) = exp{−5.3[(x4 + 0.44)1/4 − 0.4]}. (43)

For simplicity, we choose ET (k,t = 0) = E(k,t = 0), and some considerations on what values
should be chosen for σ and σT are proposed hereafter in Sec. III A. The initial Reynolds number
based on the Taylor microscale is Reλ(0) ∼ 5, and in all the present simulations, the realizability
conditions derived in Refs. [12,14] are always verified.

Moreover, let us specify here that in the nonlinear transfers of Eqs. (28)–(33), the eddy-damping
terms are kept isotropic and the constants involved are identical, for consistency purposes, to the
ones chosen in Ref. [14], meaning that A1 = 0.355 for the velocity field and A2 = 0 and A3 = 1.3
for the scalar and scalar flux fields. This is a classical choice of constants for isotropic turbulence
[10,28]; moreover, such a setting proved to be efficient for passive scalar dynamics in complex flows,
such as turbulent shear flows with a mean scalar gradient. This further justifies the choice of the
authors to keep the constants as in Ref. [14]. Interestingly, in Refs. [4,5], the choice of eddy-damping
constants is A1 = A2 = A3 = 0.355. A quantitative comparison with [4] is proposed in Sec. III B 5,
where we choose the setting A1 = A2 = A3 = 0.355, and the impact of changing the eddy-damping
constants is briefly illustrated and discussed in the Appendix.

III. DYNAMICS AT VERY LARGE REYNOLDS NUMBERS

In this section the present anisotropic EDQNM modeling, extended to active scalar dynamics, is
used to investigate the large-Reynolds-number regimes of unstably stratified turbulence at Sc = 1.
This part should be considered as a validation of our approach since the main features of [5]
are recovered. In addition, throughout this section, qualitative comparisons with the cases of
passive scalar dynamics (HITSG) and shear flows are presented since these two configurations
were addressed with the same closure previously [13,14].

First, the inertial scaling of the kinetic energy, scalar variance, and scalar flux spectra are
addressed, along with some considerations about the large-scale initial conditions σ and σT . Then
the time evolution of one-point statistics is studied, such as the kinetic energy and its exponential
growth rate, the Froude number, the mixing parameter, and global anisotropy indicators. The
influence of large-scale initial conditions σ and of the intensity of the stratification N on the
asymptotic anisotropic states of the previous quantities is also analyzed. Afterward, a quantitative
comparison with the axisymmetric EDQNM model is proposed. Finally, the scale-by-scale repartition
of anisotropy in spectral space is addressed and some considerations of the structure of the flow are
proposed.
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FIG. 2. Evolution of the spectra in Saffman USHT: (a) kinetic energy spectrum E(k,t), (b) scalar variance
spectrum ET (k,t), and (c) cospectrum F(k,t). Squares denote the peaks of the spectra, which are represented
at three dimensionless times Nt = 19, 22, and 25 and Reλ(Nt = 25) = 3 × 104.

A. Spectral scaling and infrared dynamics

In this section the emphasis is put on the three main spectra of USHT: the kinetic energy spectrum
E(k,t), the scalar variance spectrum ET (k,t), and the cospectrum F(k,t), which are investigated at
large Reynolds numbers. First, the inertial scaling is discussed and then we focus on the infrared
dynamics.

1. Inertial scaling and compensated spectra

First, the scaling of E(k,t), ET (k,t), and F(k,t) is studied at large Reynolds numbers. Similarly
to the passive scalar case of HITSG, both E and ET scale in k−5/3 in the inertial range and F in
k−7/3, as revealed in Fig. 2.

Moreover, we note from Fig. 2 that the peaks of the three spectra evolve in k−3 with increasing
Nt , as already assessed in Fig. 11 of [4]. We propose here a brief argument, which is inspired by a
Rayleigh-Taylor analysis in Ref. [29]. Let us call Emax the maximum of the kinetic energy spectrum,
which represents the kinetic energy K at the integral scale L, so that Emax(t) ∼ L(t)K(t). At large
Reynolds numbers, in the self-similar state, the kinetic energy grows exponentially at the rate β [4],
so K ∼ exp(βNt). Furthermore, by dimensional analysis, one has L ∼ K3/2/ε, where the kinetic
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FIG. 3. (a) Spectral slope of the isotropic, directional, and polarization parts of the spectral tensor φ33(k,t),
with log10 φ33/ log10 k as a function of log10 k. (b) Normalized linear and nonlinear transfers of kinetic energy.
Both are for Saffman USHT at Nt = 25, where Reλ = 3 × 104.

energy dissipation rate grows exponentially at the rate β as well, so L ∼ exp(βNt/2). This eventually
gives Emax ∼ exp(3βNt/2). Then, at high Reynolds numbers, one can assume that kmax(t) ∼ kL(t),
so the time t can be expressed as follows: t ∼ −2 ln(kL)/(βN ). Injecting this formula into Emax

finally provides

Emax(t) ∼ k−3
L , (44)

in agreement with numerical simulations.
Furthermore, the possibility of an anisotropic correction to the Kolmogorov spectra is discussed

in Ref. [5], where it is shown numerically that the anisotropic part of φ33(k,t) scales in k−3 (mostly
at the beginning of the inertial range). Nevertheless, in the corresponding Fig. 12 of [5], it appears
that k−3 is steeper than the inertial range slope obtained numerically. This is in agreement with our
numerical simulations displayed in Fig. 3(a), where the isotropic, directional, and polarization parts
of φ33(k,t) are presented. Clearly, the isotropic part φ

(iso)
33 scales in k−5/3, whereas one has for φ

(pol)
33

(and φ
(dir)
33 ) a spectral slope steeper than k−7/3, but not as sharp as k−3. Our results are qualitatively

in good agreement with the recent DNS [6], where the spectral scaling of φ
(pol)
33 is also closer to

k−7/3 than k−3. Furthermore, it is recovered, in agreement with [5], that the polarization part is more
intense at large scales than the directional one.

In Fig. 3(b) the linear and nonlinear transfers of kinetic energy are displayed for Saffman
turbulence. It is revealed that at large scales, linear production mechanisms dominate over nonlinear
transfers that take energy from these large scales and bring it to smaller scales. This feature, that
production is strong at large scales and thus that anisotropy is dominant at large scales, will be used
later on.

Now we investigate the inertial scaling of E(k,t), ET (k,t), and F(k,t). Basically, we saw in
Figs. 2 and 3(a) that both E and ET scale in k−5/3 in the inertial range and that F scales in k−7/3.
The remaining point to study is the value of the Kolmogorov and Corrsin-Obukhov constants K0

and KCO, respectively. These constants are obtained by compensating the spectra with an adapted
scaling. For the kinetic energy and buoyancy spectra, it is shown in Fig. 4(a) that the usual isotropic
inertial scalings

Einertial(k,t) = E(k,t) ε−2/3 k5/3, (45)

ET,inertial(k,t) = ET (k,t) ε−1
T ε1/3 k5/3 (46)
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FIG. 4. Compensated spectra in the inertial range, with the integral and Kolmogorov wave numbers kL and
kη: (a) compensated kinetic energy spectrum (45) and scalar variance spectrum (46) for σ = 2 at Reλ(Nt =
25) = 3 × 104, along with the Kolmogorov constant K0 = 1.31 and Corrsin-Obukhov constant KCO = 0.76,
and (b) compensated cospectrum with the scaling (48) for σ = 1 at Reλ(Nt = 30) = 3 × 106. The Lumley
scaling (47) is not displayed since the curve is similar, but the plateau is located around 12.

are relevant and allow one to recover classical values for the constants K0 = 1.31 and KCO = 0.76,
similar to what is obtain for passive scalar dynamics [14,24]. This is different when it comes to the
cospectrum F . First, let us point out that there exist two different inertial scalings: the classical one
proposed by Lumley [30], which was shown to work nicely for passive scalar dynamics in HITSG
[14], with a constant CF 	 3, and a more recent one, which can be found in Ref. [5], which, unlike
Lumley’s, takes into account the scalar dissipation rate εT ,

FLumley
inertial (k,t) = F(k,t)N−1ε−1/3 k7/3, (47)

FBurlot
inertial(k,t) = F(k,t)N−1(K0ε

1/3 + KCOεT ε−2/3)−1k7/3. (48)

The inertial scaling FBurlot
inertial was first derived in Ref. [2] and inspired by [31]. Taking into account

the scalar dissipation rate εT in the scaling seems a priori relevant. Indeed, unlike passive scalar
dynamics where F can be determined numerically without ET , the buoyant field is critical in
the dynamics of USHT and acts as a production term for the cospectrum. This scaling FBurlot

inertial is
presented in Fig. 4(b) at the very large Reynolds number Reλ 	 3 × 106, where the plateau of the
compensated cospectrum starts appearing around 3.7, whereas for the passive scalar case, at lower
Reynolds numbers 104 � Reλ � 105, the compensated F was displaying a clear plateau around
CF 	 3 in the inertial range [14]. Nevertheless, the scaling FBurlot

inertial seems to be more relevant than
Lumley’s. Indeed, for FBurlot

inertial, a plateau appears around 3.7, whereas FLumley
inertial settles around 12 and

is consequently not displayed in Fig. 4(b), which is much higher than values of usual constants close
to unity such as the Kolmogorov and Corrsin-Obukhov ones. The fact the scaling (48) is better than
FLumley

inertial is very likely because it takes the scalar dissipation rate εT into account.

2. Infrared dynamics: Large-scale initial conditions

Now that the inertial range of the spectra has been investigated, the infrared dynamics is
considered. It is recalled that in HITSG for a passive scalar, if initially σT is different from σ (greater
or lesser, it does not matter), it always results in σT = σ after a few turnover times (see Appendix A
of [14]). In USHT, it is fundamentally different since because of stratification, all of the three main
spectra E, ET , and F are coupled through the linear production terms at large scales. Hence, the
most energetic initial spectrum, the one with the smallest infrared slope, imposes the minimum of
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FIG. 5. Infrared dynamics of E(k,t) and ET (k,t), with log10 E/ log10 k as a function of log10 k: (a) σ (t =
0) = 2 and σT (t = 0) = 4, with black curves at Nt = 0 and gray ones at Nt = 1; (b) σ (t = 0) = 4 and
σT (t = 0) = 2, with black curves at Nt = 0 and gray ones at Nt = 1; and (c) initially σ (t = 0) = 5 and then
σ varies from Nt = 0 to Nt = 4.

energy to the others, so that in the end one has always σ = σT = min[σ (t = 0),σT (t = 0)]. This
is completely different from HITSG where the passive scalar field has no effect on the kinetic
field. Two examples are presented in Figs. 5(a) and 5(b). In Fig. 5(a) one has σ (t = 0) = 2 and
σT (t = 0) = 4. The minimum energy is thus imposed by E so that the scalar infrared slope results
very rapidly, within one dimensionless time Nt , in σT = 2. This is identical to what happens in
HITSG. In the opposite case illustrated in Fig. 5(b), one has σ (t = 0) = 4 and σT (t = 0) = 2: The
minimum energy is this time imposed by ET so that after one Nt , σ = 2. This case is completely
different from HITSG, where σT would have changed to 4.

A last aspect is presented in Fig. 5(c): Because of strong backscatter of energy towards large scales
when σ � 4, if the slope is initially σ = 5, it eventually becomes σ = 4 in a few dimensionless
times Nt . The same mechanism of strong inverse transfers of energy occurs in decaying isotropic
turbulence [32].

From this analysis, one can choose, without any loss of generality, σ = σT � 4. This result
for USHT infrared dynamics notably simplifies the study of asymptotic anisotropic states of the
flow in Sec. III B. In particular, we choose to investigate only integer values of the infrared slopes:
σ = σT = {1; 2; 3; 4}.
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FIG. 6. Influence of initial parameters σ and N on the Froude number Fr = ε/KN : (a) various σ at
N = 1τ−1

0 and (b) various N for σ = 2.

B. One-point statistics

Here two important quantities of unstably stratified turbulence are addressed, namely, the Froude
number

Fr(t) = ε(t)

K(t)N
, (49)

which is the ratio of the stratification characteristic time 1/N to the inertial one K/ε, and the mixing
parameter

�(t) = KT (t)

K(t)
, (50)

which is the ratio of the scalar variance to kinetic energy. Since the scalar field is scaled as a
buoyant velocity, � is dimensionless. Then the exponential growth rate β of the kinetic energy
K = 〈uiui〉/2 is analyzed, along with the time evolution of global anisotropy using the normalized
deviatoric Reynolds stress tensor bij . More precisely, the influence of N and σ on the asymptotic
values reached by Fr, �, β, and b33 at large Nt and Reλ is studied. Finally, a quantitative comparison
with the axisymmetric EDQNM model [5] is proposed.

1. Froude number Fr

As said earlier, the Froude number Fr can be interpreted as the ratio of characteristic time scales
of USHT. As such, it could be qualitatively compared to the shear rapidity SR = ε/KS in shear
flows, notably addressed with the same anisotropic EDQNM modeling in Ref. [13]. In Fig. 6(a)
it is revealed that Fr, unlike SR , depends on σ in the asymptotic anisotropic state. Final values of
Fr span from 0.44 for σ = 1 to 0.66 for σ = 4. The smaller σ is, the smaller Fr becomes. This is
expected since for small σ , large scales contain more energy and consequently are more anisotropic,
because of the production terms that act dominantly at large scales, as illustrated in Fig. 3(b). With
the production terms being dynamically dominant with a small σ , the characteristic time scale 1/N

diminishes, thus making Fr decrease. Nevertheless, the values reached here by Fr are slightly higher
than the values obtained in Ref. [5] (Fr = 0.3 for σ = 1). This means that the flow within the present
EDQNM modeling is less anisotropic than with the axisymmetric EDQNM model. It is shown in the
Appendix that by changing the eddy-damping constants, we can increase the impact of stratification
and thus reduce the Froude number. Asymptotic values of Fr are gathered in Table I.

In Fig. 6(b), however, it is shown that Fr, similarly to SR , does not depend on the intensity of
the mean gradient N , except at small Nt in the transitory regime. The larger N is, the smaller Fr
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TABLE I. Comparison of the asymptotic values at large Reλ of one-point statistics, obtained with the
present anisotropic EDQNM modeling, and obtained with the axisymmetric EDQNM model [5]. For the present
modeling, values in parentheses correspond to the setting of eddy-damping constants (EDC2) (see the Appendix
for details).

Froude number Fr Mixing intensity � Growth rate β Global anisotropy b33

Infrared slope σ Present Ref. [5] Present Ref. [5] Present Ref. [5] Present Ref. [5]

1 0.443 (0.265) 0.306 1.607 (1.580) 1.56 0.893 1 0.265 (0.287) 0.410
2 0.551 (0.337) 0.385 1.508 (1.466) 1.45 0.715 4/5 0.239 (0.260) 0.375
3 0.624 (0.387) 0.435 1.440 (1.387) 1.37 0.596 2/3 0.224 (0.242) 0.346
4 0.659 (0.412) 0.460 1.407 (1.347) 1.31 0.540 4/7 0.217 (0.234) 0.323

is initially. This is consistent with a strong stratification intensity making production of buoyant
fluctuations dominant initially.

2. Mixing intensity �

Now the mixing intensity � is addressed. Similarly to Fr, its asymptotic value depends on σ as
recovered in Fig. 7(a), but not on its initial value �(0), except for short times of course as shown in
Fig. 7(b). The dependence on N is not presented since it is very similar to what happens for Fr, i.e.,
a dependence on N only at short times. The final values of � are contained between 1.6 for σ = 1
and 1.4 for σ = 4, which is quantitatively in good agreement with [5]. Asymptotic values of � are
gathered in Table I.

Let us point out that the initial variations of KT /K at a fixed σ strongly depend on parameters
such as the initial Reynolds number Reλ(0) and the stratification frequency N . Indeed, � initially
decreases in Ref. [5], whereas it initially increases here. This is because of a different initial Reynolds
number. Here Reλ(0) 	 5 implies that linear production mechanisms dominate whatever the value
of N is roughly N � 0.1τ−1

0 . In Ref. [5], Reλ(0) 	 70, which requires at least N = 1τ−1
0 to make

� increase initially, meaning that linear production overcomes nonlinearity. This is illustrated in
Fig. 7(c).

3. Exponential growth rate β

The emphasis is now put on the exponential growth rate β of the kinetic energy K(t) in USHT.
It was assessed by Burlot and co-workers that this growth rate strongly depends on the large-scale
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FIG. 7. Mixing intensity � for different configurations: (a) various σ at N = 1τ−1
0 , (b) various initial values

�(0) for σ = 2 and N = 1τ−1
0 , and (c) short time dynamics of � for various N and Reλ(0) with σ = 2. Here

Reλ(0) = 70 is shown in black and Reλ(0) = 5 in gray.
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TABLE II. Comparison between the present theoretical prediction βth for the kinetic energy exponential
growth rate and the numerical result β obtained with our anisotropic EDQNM modeling. The prediction βBurlot

is reported as well.

Large-scale Present Present Burlot et al.
initial condition σ prediction βth EDQNM model β prediction βBurlot

1 0.894 0.893 1
2 0.716 0.715 4/5
3 0.596 0.596 2/3
4 0.511 0.540 4/7

initial condition σ , according to the theoretical prediction

K(t) ∼ K(0) exp(βBurlotNt), βBurlot = 4

σ + 3
, (51)

which comes from the more general work [3] where the stratification frequency N can vary. Equation
(51) corresponds to the specific case where N is constant. Furthermore, (51) relies on the fact that the
largest eigenvalue of the linear operator of the evolution equations of [4] is 2N . Indeed, equalizing
the growth rate of their linear limit E ∼ exp(2Nt) with the one coming from dimensional analysis
E ∼ exp[(σ + 3)βNt/2] directly yields (51).

In our case, because of the anisotropy modeling through a truncated expansion into spherical
harmonics, our evolution equations (28)–(33) are different from those of the axisymmetric EDQNM
model. The largest eigenvalue of the linear operator associated with (28)–(33) is 4N/

√
5 here, in

contrast to 2N from [4–6]. This leads to a different theoretical prediction for the exponential growth
rate of the kinetic energy

K(t) ∼ K(0) exp(βthNt), βth = 8√
5(σ + 3)

. (52)

The present theoretical predictions and those of [4] are gathered in Table II. It is worth noting that
for a given large-scale initial condition σ , our predictions yield a smaller growth rate than those of
Burlot and co-workers. This is very likely due to our truncated expansion into spherical harmonics
of the spectral correlations. Indeed, because of the truncation, there is a loss of angular information,
so only partial anisotropy of the flow is captured: This is consistent with a final global anisotropy
that is smaller here than in Ref. [4]. We could conjecture that taking into account more spherical
harmonics would increase the exponential growth rate of the kinetic energy up to the limit βBurlot.

The predictions for the exponential growth rate of the kinetic energy are compared to our numerical
results in Fig. 8(a). The agreement is excellent: For σ = 1, 2, and 3, the prediction βth is recovered
within 1%. There is a slight difference in the case of Batchelor turbulence, where the numerical
result is 5% higher than the prediction: This is very likely because of the strong inverse nonlinear
transfers that naturally occur in Batchelor turbulence [32]. One could add a backscatter parameter,
i.e., a correction for Batchelor turbulence, to the prediction (52) in the specific case σ = 4, as
usually done for decaying HIT [33,34]. In Batchelor HIT, one usually replaces σ by σ − p, where
p = 0.55 is the backscatter parameter. Here, for USHT, in order to adapt the theoretical prediction
in Batchelor turbulence to our numerical result, a least-squares fit leads to the backscatter parameter
pUSHT = 0.37, so

βth = 8√
5(σ − pUSHT + 3)

, pUSHT =
{

0 for σ � 3
0.37 for σ = 4.

(53)

It is revealed in Fig. 8(b) that the scalar variance KT and the mixed correlation KF both grow
at the same rate β, in agreement with [4–6]. This can be qualitatively compared with the case of a
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FIG. 8. (a) Kinetic energy exponential growth rate β for σ = 1, 2, 3, and 4. Straight lines indicate the
numerical results and squares the theoretical prediction (52), without the correction pUSHT. (b) Exponential
growth of K , KT , and KF for σ = 2.

passive scalar field advected by a turbulent shear flow with an imposed mean scalar gradient, where
KT and KF also grow exponentially with the same rate as K [14].

In conclusion, the kinetic energy exponential growth rate strongly depends on the large-scale
initial conditions σ in the asymptotic states of USHT. This is interesting, since for shear flows, K(t)
is growing at the same rate independently of σ [12,13], at least within the same anisotropic EDQNM
modeling. This illustrates two intrinsically different mechanisms of kinetic energy production in
shear flows and USHT.

4. Global anisotropy b33

The time evolution of global anisotropy is now addressed. The scale-by-scale distribution of
anisotropy is the subject of Sec. III C. First, the global anisotropy is investigated at the velocity level
with the classical indicator bij , defined as the normalized deviatoric part of the Reynolds tensor

bij = 〈uiuj 〉
2K

− δij

3
= b

(dir)
ij + b

(pol)
ij , (54)

which can be split into two parts due to the decomposition of the spectral Reynolds tensor R̂ij

into polarization and directional anisotropies [11]. Therefore, bij can be computed using H
(pol)
ij and

H
(dir)
ij , as done in Refs. [5,12–14], according to

bij (t) = 1

K(t)

∫ ∞

0
E(k,t)

[
H

(dir)
ij (k,t) + H

(pol)
ij (k,t)

]
dk. (55)

Similarly, one can define a scalar anisotropy indicator bT
ij as in Ref. [14], which only reflects

directional anisotropy

bT
ij (t) = 1

KT (t)

∫ ∞

0
ET (k,t)H (T )

ij (k,t)dk. (56)

In Figs. 9(a)– 9(d), b33 and bT
33 first increase, which shows the departure from the isotropic state, and

then decrease and reach a final nonzero value. This decrease is the signature of a return to isotropy
of the small scales when the Reynolds number increases, and this will be explained in Sec. III C.

More specifically, it is revealed in Fig. 9(a) that polarization anisotropy for b33 is stronger than
the directional one, in agreement with [5]. The strong anisotropy in the component ( )33 furthermore
shows that turbulent structures mainly align with the mean scalar gradient. In addition, the values
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FIG. 9. Global anisotropy indicators for the velocity and scalar fields: (a) polarization and directional
anisotropy parts of b33 for N = 1τ−1

0 and σ = 2, (b) b33 at N = 1τ−1
0 for various σ , (c) bT

33 at N = 1τ−1
0 for

various σ , (d) b33 at σ = 2 for various N (the same behavior is observed for bT
33), and (e) a return to isotropy,

with normalized pressure-velocity �33 and pressure-scalar �F correlations in Saffman (black) and Batchelor
(gray) turbulence.

reached by bT
33 in Fig. 9(c) are quite similar to the ones reached by b

(dir)
33 . Another important feature is

to compare the influence of initial conditions, such as σ and N , on the final state of anisotropy. The
same conclusions as for Fr and � are drawn for b33 and bT

33: As shown in Figs. 9(b)–9(d), varying
N affects only the short time dynamics of b33 (the same is observed for bT

33), whereas increasing σ

decreases the asymptotic values of the velocity and scalar anisotropy indicators. The latter feature
is expected because by increasing σ , one diminishes the large-scale energy and consequently the
amount of anisotropy injected in the flow.

The results obtained here are quite different from shear flows, where the asymptotic anisotropic
state of bij no longer depends on σ , whereas for both shear flows and USHT, varying the mean
gradient intensity impacts only short times of bij . Hence, the main difference from [4,5] is that
the present anisotropic EDQNM modeling underestimates the global anisotropy of the flow, so the
asymptotic anisotropic states of b33 are lower in our case. Values are reported in Table I. It is shown
in the Appendix that we can slightly increase the global anisotropy of the flow by changing the
eddy-damping constants.

Finally, in addition to these global anisotropy indicators, the pressure-velocity �33 and pressure-
scalar �F correlations are presented in Fig. 9(e); their definitions are, respectively,

�F (t) =
〈
p

∂c

∂x3

〉
=

∫ ∞

0
S

F,NL
3 (k,t)dk, (57)

�33(t) =
〈
2p

∂u3

∂x3

〉
= 2

∫ ∞

0

(
1

3
SNL(iso) + S

NL(dir)
33 + S

NL(pol)
33

)
dk. (58)

The return to isotropy at the level of the scalar flux is found to be more intense than the one of
the velocity field. This is expected since the cospectrum is a purely anisotropic quantity, for which
pressure is the destructive mechanism. Furthermore, in agreement with previous statements, the

044604-18



ANISOTROPIC SPECTRAL MODELING FOR UNSTABLY . . .

0 5 10
0

0.5

1

1.5

Nt

C
om

pa
ri

so
n

-
F

r

Present modeling
Ref. [5]

(a)

0 5 10
0

0.5

1

1.5

2

Nt

C
om

pa
ri

so
n

-
Λ

Present modeling
Ref. [5]

(b)

FIG. 10. Comparison of the present anisotropic EDQNM modeling with the axisymmetric EDQNM model
[5] with σ = 2, Reλ(0) 	 70, N = 4τ−1

0 , and kpeak = 40kL(0) for (a) Froude number Fr and (b) mixing
intensity �.

return to the isotropy mechanism is stronger for Saffman turbulence than for Batchelor turbulence,
because large scales are less anisotropic in the latter case than in the former.

5. Comparison with Refs. [4,5]

In this section we compare quantitatively the results of our anisotropic EDQNM modeling to the
axisymmetric EDQNM model [4,5], where the linear production terms are exactly treated, without
any modeling of anisotropy. The emphasis is put on two one-point statistics investigated in the
previous sections: the Froude number Fr, defined in Eq. (49), and the mixing intensity � defined in
Eq. (50).

First, it was observed in the previous sections that the asymptotic states reached with the present
anisotropic EDQNM modeling are less anisotropic than the ones obtained in Ref. [5]; this was
notably seen through Fr and b33. In order to provide here a meaningful comparison, and only in
this section, we use the eddy-damping constants A1 = A2 = A3 = 0.355. The impact on USHT
dynamics of the two different settings of eddy-damping constants is discussed in the Appendix:
The setting A1 = 0.355, A2 = 0, and A3 = 1.3 is called EDC1 for the present modeling, and the
setting A1 = A2 = A3 = 0.355 is called EDC2. So for the comparison, we use the setting EDC2
in Saffman turbulence (σ = 2), an initial turbulent Reynolds number close to ReT = 833, with
Reλ = √

20 ReT /3, and the initial peak of energy is kpeak = 40kL(0). Even though it is stated in
Ref. [4] that the initial Froude number is Fr = 1.2, it seems to not be the case in Fig. 1(b) therein.
Consequently, we choose the stratification frequency N = 4τ−1

0 so that the initial behavior of Fr is
recovered; taking 1τ−1

0 � N � 4τ−1
0 would not have changed much.

The results are presented in Fig. 10. For the Froude number, the overall agreement is excellent:
The transient regime is correctly captured and in particular the strong decrease; the asymptotic value
of Fr is quite well recovered. For the mixing ratio �, the initial behavior is quite well captured, with
very good agreement for the asymptotic value. In conclusion, there is satisfactory agreement with
the axisymmetric EDQNM model if one changes the eddy-damping constants from EDC1 to EDC2.
The drawback is that, as illustrated in the Appendix, by doing so the Corrsin-Obukhov constant
decreases.

6. Conclusion on one-point statistics

In this section various one-point statistics of crucial importance in unstably stratified turbulence
were studied: the Froude number Fr, the mixing intensity �, the growth rate β of the kinetic energy,
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FIG. 11. Spectral anisotropy indicators, along with the integral, Ozmidov, and Kolmogorov wave numbers
kL, kO , and kη, respectively; the Taylor scale λ is displayed as well: (a) H

(dir)
33 and H

(pol)
33 for σ = 2 at Reλ(Nt =

25) = 3 × 104 and (b) sin2(γT ) for σ = 2 and σ = 4 at different Nt so that for both Reλ = 3500.

scalar variance, and scalar flux, and the velocity and scalar global anisotropy indicators b33 and bT
33.

The different results, obtained in Refs. [4,5] and recovered here, could be summarized as follows.
(i) All these quantities strongly depend on σ in the asymptotic anisotropic state at large Nt or

equivalently at large Reynolds numbers. When σ increases, the large-scale energy diminishes along
with the quantity of anisotropy injected in the flow, so Fr increases and �, β, b33, and bT

33 decrease.
(ii) In contrast, the asymptotic anisotropic state does not depend on N : Changing the intensity of

the mean scalar gradient only impacts the short time dynamics.
It appears that our model can recover qualitatively all the features of USHT analyzed in Refs. [4–6].

Furthermore, good quantitative agreement is found. In addition, higher Reynolds numbers were
reached here using a very reasonable amount of time and computational resources.

Finally, the main difference between the two approaches is that the flow is less anisotropic in our
case, probably due to the truncation of the spherical harmonics expansion of spectral correlations
for the modeling of anisotropy. The principal consequences are (i) an exponential growth rate of
the kinetic energy 10% lower than in Ref. [4], but nevertheless in agreement with our theoretical
prediction, and (ii) smaller values for b33 as well. Asymptotic values of the one-point statistics
analyzed so far, obtained with both the present anisotropic EDQNM modeling and the axisymmetric
EDQNM model, are gathered in Table I.

Furthermore, throughout this section, qualitative comparisons were made with the cases of passive
scalar dynamics (HITSG) and shear flows. It notably appeared that the asymptotic anisotropic states
in USHT and shear flows strongly differ. Indeed, in shear flows, at least within the same anisotropic
EDQNM modeling, the asymptotic anisotropic state does not depend on the mean-field gradient
intensity or on the large-scale initial conditions σ .

C. Scale-by-scale anisotropy and structure of the flow

In this section the scale-by-scale distribution of anisotropy is investigated for the velocity and
scalar fields, at the level of the second-order moments, with H

(dir)
33 (k,t), H

(pol)
33 (k,t), and H

(T )
33 (k,t).

More precisely, we use, instead of H
(T )
33 directly, the dimensionality parameter defined in Eq. (18),

whose value is 2/3 for isotropic scales.
It was shown in Figs. 9(a)–9(d) that in the asymptotic anisotropic state, the global anisotropy indi-

cators b33 and bT
33 are nonzero, meaning that there is anisotropy in the flow. It is revealed in Fig. 11(a)

that anisotropy is mainly gathered at large scales for the velocity field, as presented previously in
Fig. 3(b), where H

(dir)
33 and H

(pol)
33 are different from zero, unlike small scales that have returned to
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FIG. 12. (a) Lumley’s triangle. Gray lines correspond to the boundaries between the isotropic two-
component axisymmetric (Axi.2C) and one-component (1C) configurations and the black line corresponds
to our simulation. (b) Normalized potentials E (toro)/E0 and E (polo)/E0, for σ = 2, at a wave number located in
the infrared range.

isotropy. One can remark that, as in Fig. 9(a), the polarization anisotropy is much stronger than the
directional one at large scales. An interpretation of this is provided later. Similarly in Fig. 11(b) for the
scalar field, small scales have returned to isotropy (sin2 γT = 2/3), whereas anisotropy is gathered
at large scales. This figure additionally illustrates further that Saffman turbulence is globally more
anisotropic than Batchelor turbulence, because the linear production at large scales is stronger in
Saffman turbulence than in Batchelor turbulence. Interestingly, for both the velocity and scalar fields,
Figs. 11(a) and 11(b) show that from the longitudinal Taylor scale λ = √

20νK/ε, the scales have
completely returned to isotropy. In particular, this indicates that even in USHT, isotropic statistics
could be used for scales smaller than λ. The Ozmidov wave number kO = 2π

√
N3/ε, defined in

Ref. [6], is displayed as well: It is clear that for scales larger than kO , stratification and anisotropy
dominate, whereas for scales smaller, nonlinear transfers yield the return to isotropy mechanism.

In addition to the previous considerations about the distribution of anisotropy scale by scale,
it is possible to obtain some qualitative information about the spatial structure of the flow. If one
considers the Lumley triangle [35], which displays the second invariant of bij , −2II = bij bij , as a
function of the third one 3III = bij bilbjl , one obtains the gray curves of Fig. 12(a). In our simulation
(black curve), the flow evolves from an isotropic state toward a one-component state following an
axisymmetric configuration and tends to be two dimensional, indicating an invariance along the
direction of the mean scalar gradient (accordingly, the Reynolds stresses have a rodlike shape).

Another possibility is to investigate the energy contained in the toroidal and poloidal modes
defined in Eq. (21) and linked to the spectral anisotropy descriptors H

(dir)
33 and H

(pol)
33 in Eqs. (26) and

(27). The variations of both E (toro) and E (polo) as functions of θk are displayed in Fig. 12(b) for a wave
number located in the infrared range: This is where the anisotropy is gathered, as shown in Fig. 11(a).
For 0 � θk � π , one has E (polo) > E (toro) and the poloidal and toroidal potentials are maximum for
θk = π/2. The poloidal mode being more intense means that in the configuration θk = π/2, spectral
velocity fluctuations are preferentially aligned in the mean scalar gradient direction. This is an
interesting feature. Indeed, in the previous sections it was underlined that polarization anisotropy is
stronger than directional anisotropy at large scales. This is assessed in Fig. 12(b), where in the infrared
range one has clearly Z > E (dir). Consequently, the present results show that in USHT, a dominant
polarization anisotropy corresponds to spectral velocity fluctuations mainly aligned with the mean
scalar gradient, so the principal component is the poloidal one, in agreement with Fig. 12(a), where
our simulation goes toward the one-component (1C) state. Also, for θk = 0 or θk = π , in a plane
perpendicular to the mean scalar gradient, E (toro) = E (polo), so there is no polarization anisotropy.
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IV. PRESSURE SPECTRA AND HIGH SCHMIDT NUMBERS

So far, the dynamics of USHT at Sc = 1 has been addressed at large Reynolds numbers and the
strong dependence of the asymptotic anisotropic state on the infrared slope σ has been recovered,
with good overall agreement with the axisymmetric EDQNM model. In the present section, our
anisotropic EDQNM modeling is applied to two cases. First, the pressure spectrum is studied and
in particular its anisotropic part resulting from stratification, with a comparison to the pressure
spectrum in shear flows. Then the case of very large Schmidt numbers Sc � 1, corresponding, for
instance, to saltwater, is analyzed from a fundamental point of view, with the emphasis put on the
scaling of the cospectrum.

A. Pressure spectra in USHT and shear flows

In this section pressure spectra in USHT are addressed. First, the spectral evolution equations
of the pressure field are presented and then the anisotropic EDQNM modeling is used to evaluate
both the isotropic and anisotropic parts of the pressure spectrum EP (k,t). The latter was notably
investigated more than 30 years ago by George et al. [36] for shear flows. To do so, we additionally
present the analytical calculations yielding the pressure spectra in shear flows since it was not done
in Refs. [12,13].

1. Modeling of pressure spectra in USHT and shear flows

Here the equations leading to the pressure spectra in USHT are derived, i.e., the isotropic part
that is always present and the anisotropic part arising because of the stratification. The anisotropic
part of the pressure spectrum in shear flows is also presented.

The pressure fluctuations satisfy the Poisson equation obtained by taking the divergence of the
Navier-Stokes equation (4),

−�p = ∂2uiuj

∂xi∂xj

+ λi

∂c

∂xi

, (59)

where we keep λi = ∂C/∂xi for generality and C is the mean buoyant field. The spectral two-point
second-order pressure correlation is defined as

EP (k,t)δ(k − p) = 〈p̂(k,t)p̂∗( p,t)〉, (60)

so the pressure spectrum reads

EP (k,t) =
∫

Sk

EP (k,t)d2k. (61)

Then, after some algebra, one gets

EP (k,t) = 2αiαjαpαq

∫
k= p+q

R̂iq( p,t)R̂jp(q,t)d3 p + αiαj

k2
λiλjET (k,t), (62)

where αi = ki/k. The first contribution is purely isotropic and corresponds to the isotropic part of the
pressure spectrum E

(iso)
P , also called the turbulence-turbulence interaction. A quasinormal procedure

is used to compute this isotropic part of the pressure spectrum and the details of such calculations
can be found either in Refs. [10,36], or more recently in Ref. [37]. The spherical average of the
equation of EP (k,t) eventually gives

EP (k,t) = 16π2
∫

�k

kpq(1 − y2)(1 − z2)E ′
0E ′′

0 dpdq︸ ︷︷ ︸
E

(iso)
P

+ ET

k2
λiλj

(
δij

3
− 2H

(T )
ij

)
︸ ︷︷ ︸

E
(USHT)
P

, (63)
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where we call the second contribution E
(USHT)
P the turbulence–unstable-stratification interaction,

which involves the directional anisotropy of the scalar field H
(T )
ij . In addition, �k is the domain

where k, p, and q are the lengths of the sides of the triangle formed by the triad k + p + q = 0.
Further, x, y, and z are the cosines of the angles formed by p and q, q and k, and k and p,
respectively. The following compact notations are used: E ′

0 = E(p)/4πp2 and E ′′
0 = E(q)/4πq2.

The procedure for shear flows is very similar. The mean velocity gradient matrix is defined as
Aij = ∂Ui/∂xj , where Ui is the mean velocity field, with A13 = −S, where S is the shear intensity,
as defined in Ref. [13]. In shear flows, the Poisson equation reads

−�p = ∂2uiuj

∂xi∂xj

+ 2Aij

∂uj

∂xi

. (64)

The Fourier transform yields

p̂(k,t) = −αiαj ûiuj (k,t) + 2i

k
Aijαi ûj (k,t), (65)

which provides, after some algebra very similar to what was used for USHT,

EP (k,t) = 16π2
∫

�k

kpq(1 − y2)(1 − z2)E ′
0E ′′

0 dpdq

+ 4
E

k2

{
1

5
A+

ijA
+
ij + 1

3
A−

ijA
−
ij − H

(dir)
il

[
6

7
A+

ijA
+
j l + 2A−

ij (A−
lj + 2A+

lj )

]}
+ 8

E

k2
H

(pol)
il

[
3

7
A+

ijA
+
lj + A−

ij

(
A−

lj − 2

3
A+

lj

)]
, (66)

where A+
ij and A−

ij refer to the symmetric and antisymmetric parts of the mean velocity gradient

matrix Aij . The first contribution is E
(iso)
P as before, whereas the second contribution E

(S)
P , called the

turbulence–mean-shear interaction, arises from mean velocity gradients and involves the directional
and polarization anisotropies of the velocity field.

2. Numerical results for pressure spectra

In this section pressure spectra obtained in USHT and in sustained shear flows are presented.
For informative purposes, we begin with the pressure spectrum in shear flows, since it has been
thoroughly investigated in Ref. [36]. Simulations of a previous work [13] are used.

Whatever framework is chosen, it directly follows from dimensional analysis that the isotropic
part of the pressure spectrum, the turbulence-turbulence interaction, scales as

E
(iso)
P (k,t) = CP ε4/3k−7/3, (67)

where CP is a constant to be determined. The k−7/3 scaling is assessed numerically in Fig. 13(a) and
was previously verified in HIT [37,38] and shear flows [36]. Also, even if not presented, we recover
the fact that the infrared slope of the isotropic pressure spectra is always σ = 2, whatever the value
imposed initially is, in agreement with [38]: E

(iso)
P (k < kL) ∼ k2.

The compensated isotropic pressure spectra E
(iso)
P k7/3ε−4/3 for shear flows and USHT are

presented in Figs. 13(b) and 14(b). The plateau settles around 2.5 for shear and 2.3 for USHT,
which is quite close and proves some universality of the isotropic pressure spectrum between two
completely different flows. Furthermore, these values are in good agreement with the prediction [36],
where the constant would be CP = 1.32K2

0 = 2.27, close to our result for shear flows CP = 2.5.
The framework of a turbulent shear flow is now considered, where the turbulence–mean-shear

interaction spectrum E
(S)
P appears. Given its expression (66) with E ∼ k−5/3, it is straightforward
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FIG. 13. Pressure spectra in shear flows for σ = 2 at Reλ = 2 × 104: (a) isotropic and anisotropic
pressure spectra E

(iso)
P and E

(S)
P , along with the Kolmogorov wave number kη, at Reλ 	 104; (b) compensated

pressure spectra E
(iso)
P k7/3ε−4/3 and E

(S)
P k11/3ε−2/3/S2; and (c) isotropic and anisotropic parts K

(iso)
P and K

(S)
P

of the pressure variance KP , along with the kinetic energy K for comparison. Here γ is the exponential growth
rate of the kinetic energy. The gray lines indicate the curves exp(γ St) and exp(2γ St).

that it evolves in k−11/3 in the inertial range and dimensional analysis yields

E
(S)
P (k,t) = C

(S)
P S2ε2/3k−11/3, (68)

as given in Ref. [36]. The k−11/3 scaling is recovered in Fig. 13(a). The total pressure spectrum
EP (k,t) evolves in k−7/3 in the inertial range and is not presented since it cannot be distinguished
from E

(iso)
P . In Fig. 13(b) the compensated E

(S)
P indicates that C

(S)
P 	 1.44, which is close to the

Kolmogorov constant, and this is expected since E
(S)
P scales in E/k2 in Eq. (66). Furthermore,

the value C
(S)
P 	 1.44 is in good agreement with the prediction [36], where the constant would be

C
(S)
P = 16K0/15 = 1.40.

The pressure variance, which can be divided into isotropic and anisotropic parts

KP (t) =
∫ ∞

0
EP (k,t)dk = K

(iso)
P (t) + K

(S)
P (t), (69)
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FIG. 14. Pressure spectra in USHT for σ = 2 at Reλ = 2 × 104: (a) isotropic and anisotropic pressure
spectra E

(iso)
P and E

(USHT)
P , along with the pressure integral wave number kP and the Kolmogorov wave number

kη, at Reλ 	 3 × 104; (b) compensated pressure spectra E
(iso)
P k7/3ε−4/3 and E

(USHT)
P k11/3ε−2/3/N 2 in black and

E
(USHT)
P k11/3ε1/3/εT N 2 in gray; and (c) isotropic and anisotropic parts K

(iso)
P and K

(USHT)
P of the pressure variance,

along with the kinetic energy K . The gray lines indicate the curves exp(βNt) and exp(2βNt).

is investigated as well. Both are found to grow exponentially at a rate 2γ in Fig. 13(c), where γ is
the exponential growth rate of the kinetic energy K(t) in shear flows, in agreement with theoretical
predictions [36].

Now the framework of USHT is addressed. In Fig. 14(a) the scaling of the isotropic and anisotropic
parts of EP are presented. The turbulence-turbulence interaction spectrum scales in E

(iso)
P ∼ k−7/3:

The constant CP = 2.3 in Fig. 14(b) is close to the value obtained in shear flows, which indicates
some universality of the isotropic pressure spectrum. Then the anisotropic part resulting from
stratification is presented in Fig. 14(a) and scales in E

(USHT)
P ∼ k−11/3. The k−11/3, analogous to

the anisotropic part in shear flow, is expected from the expression (63), because ET ∼ k−5/3 in
the inertial range. Similarly to shear flows, the anisotropic part has a quadratic dependence on the
mean-field gradient, given its expression (63). Thus, only the dependence on the dissipation rates
remains to be determined. Since the scalar field is rescaled as a buoyant velocity, there are infinite
possibilities of the form εaεb

T , with a + b = 2/3, by dimensional analysis. One could choose the
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inertial scaling of ET , i.e., a = −1/3 and b = 1, but this yields in Fig. 14(b) (in gray) a constant
quite small of order 0.25; this is not satisfactory, since for shear flows the constant is very close to
Kolmogorov. Given the similarities pointed out so far, we choose a = 2/3 and b = 0, as for E

(S)
P ,

which provides in Fig. 14(b) (in black) a constant C
(USHT)
P 	 0.7. This seems more relevant because

it is close to the Corrsin-Obukhov constant (KCO = 0.76), consistently with E
(USHT)
P depending on

ET . In the end, the scaling of the anisotropic part of the pressure spectrum in USHT reads

E
(USHT)
P (k,t) = C

(USHT)
P N2ε2/3k−11/3, C

(USHT)
P 	 0.7. (70)

This scaling is a fundamental result, interesting for two reasons: First, it is strongly analogous to the
scaling of the anisotropic part of the pressure spectrum in shear flows (ε2/3k−11/3); second, C

(USHT)
P

is close to the Corrsin-Obukhov constant, similarly to C
(S)
P being close to the Kolmogorov one.

Finally, the time evolution of the isotropic and anisotropic parts K
(iso)
P and K

(USHT)
P of the pressure

variance are displayed in Fig. 14(c). It is found, similarly to shear flows, that the pressure variances
grow exponentially at a rate 2β, where β is the exponential growth rate of the kinetic energy.
Interestingly, the exponential growth rate of the pressure variance still depends on the infrared slope
σ of the kinetic energy spectrum, even though the infrared slope of the isotropic pressure spectrum
is E

(iso)
P ∼ k2.

In conclusion, there is a strong analogy between pressure spectra in shear flows and unstably
stratified turbulence.

B. Cospectrum at high Schmidt numbers

In this section the case of a weakly diffusive active scalar with Sc � 1 is addressed. This is
representative of the example described in the Introduction, i.e., unstably stratified water columns
in the ocean generated by double diffusion mechanisms. For HIT, it has been known since the
pioneering work of Batchelor [39] that beyond the Kolmogorov wave number kη, scalar fluctuations
are convected by the velocity field of the Kolmogorov scale up to the Batchelor wave number
kB = √

Sc kη, with a characteristic time scale
√

ν/ε, thus forming the so-called viscous-convective
range where the scalar variance spectrum scales as

ET (k,t) = KBεT

√
ν

ε
k−1, (71)

where KB is the Batchelor constant, found to be 	2.5 in the present simulations. Despite the
difficulty, especially in DNS, to solve the very small scales, the k−1 range was recovered several times
in HITSG where the passive scalar fluctuations are sustained by a mean scalar gradient [40,41]. In
purely isotropic turbulence, the k−1 range was also recovered recently by the EDQNM model [34,42]
at very large Reynolds numbers. It is worth noting that because of the logarithmic discretization,
nonlocal scalar transfers from large to very small scales, corresponding to elongated triads such that
q � k ∼ p, have to be added to the isotropic nonlinear transfer ST,NL(iso). Theoretical details and
validation of these nonlocal transfers in HIT can be found in Refs. [10,34,42]. Numerically, it is
found that one term of the expansion dominates the others, so the direct scalar nonlocal transfer
reads

T +
T (k,t) = − ∂

∂k

[
2

15
k

(
2ET (k) − k

∂ET

∂k

) ∫ ãk

0
θT
kkqq

2E(q)dq

]
, (72)

where the scalar eddy-damping term is recalled in the Appendix and ã is the nonlocal parameter,
which is here ã = 101/15 − 1 = 0.1659. The impact of this nonlocal transfer is illustrated in
Fig. 15(a), where the fluxes of ST,NL(iso) and T +

T are respectively denoted by �
(iso)
T and �+

T . It is
clear that the nonlocal transfer, which is conservative since �+

T (k = 0) = �+
T (k > kB) = 0, brings

energy beyond the Kolmogorov wave number in the viscous-convective range. Consequently, in this
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FIG. 15. Saffman USHT for Sc = 105 at Reλ = 104, along with the integral, Kolmogorov, and Batchelor
wave numbers kL, kη, and kB , respectively: (a) normalized fluxes �

(iso)
T and �+

T of ST,NL(iso) and T +
T ; (b) E,

ET , and F , along with the k−5/3 inertial scaling for E and ET , the k−7/3 inertial scaling for F , and the k−1

viscous-convective scaling for ET ; and (c) zoom in of the viscous-convective range for ET and F , with different
scalings explained in the text.

section, the nonlocal transfer T +
T is added to the nonlinear transfer ST,NL(iso) in the evolution equation

of ET .
The scalar flux F for Sc � 1 was investigated in HITSG in Ref. [19] and found to decrease

sharply after kη, similarly to the kinetic energy spectrum. This feature was recovered with the
present anisotropic EDQNM modeling in Ref. [43]. It appears that in USHT, the behavior of the
cospectrum beyond kη is completely different, as revealed in Fig. 15(b): Indeed, unlike passive scalar
dynamics, the scalar flux survives in the viscous-convective range. The buoyant spectrum ET still
scales in k−1 and there are also small-scale fluctuations for E beyond kη, but they are much less
intense than for ET and F , so they are neglected.

The scaling of F in the viscous-convective range is not clear, but it is close to k−1, slightly steeper,
as revealed in Fig. 15(c). Around kη, the cospectrum seems to scale in k−3 on a decade, but this is
very likely just a transition toward the viscous-convective scaling. Nevertheless, both the k−1 and
k−3 scalings can be briefly justified using classical arguments. The k−3 scaling can be obtained by
assuming that at small scales where ET ∼ k−1 there is a balance between viscous dissipation and
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FIG. 16. Saffman USHT for Sc = 1 and Sc = 104: (a) scalar anisotropy indicator bT
33 and (b) mixing

intensity �.

production of buoyant fluctuations in Eq. (33), so

(ν + a)k2F ∼ 2

3
NET ⇔ F(k,t) ∼ N

εT√
νε

k−3. (73)

In this expression, ET H
(T )
33 was neglected compared to ET . For reasons that are explained hereafter,

it is preferred to express this scaling as

F(k,t) ∼ N

√
ε

ν

εT

ε
k−3, (74)

where the inverse of the Kolmogorov time scale
√

ν/ε appears, consistently with the dynamics of
the viscous-convective range. Then, after kη, the scaling is slightly steeper than k−1, but nevertheless
the Batchelor scaling seems relevant if one assumes, as for ET , that the characteristic time scale of
F in the viscous-convective range is also independent of k. Since this range exists only due to the
small-scale coupling through N , it makes sense to assume that it depends linearly on N and also on ε

and ν; this provides Nν/ε as the characteristic time scale of the cospectrum in the viscous-convective
range. Further assuming that F depends only on this time scale, k, and εT yields

F(k,t) ∼ Nν

ε
εT k−1. (75)

It is worth noting that, unlike ET for which nonlocal transfers are at the origin of the viscous
convective range, the range for F beyond kη is created by local production of buoyant fluctuations
through the term NET . These scalings are original results for high-Schmidt-number USHT, which
could be of interest for turbulent models in oceanography, for instance, but would still deserve some
confirmation by DNS.

The change from the scaling in k−3, around kη, to k−1, just after kη, can be understood in terms of
characteristic time scales. For the scaling (74), the characteristic time is

√
ν/ε, which is the classical

characteristic time of the Kolmogorov scale. For smaller scales, viscous dissipation becomes more
and more important, so the characteristic time evolves from

√
ν/ε toward (νk2)−1, which directly

yields (75). Then the characteristic time scale saturates to Nν/ε. These two scalings and their
characteristic times are consistent with the Kolmogorov scale being the wave number around which
the cospectrum changes from k−3 to k−1. Indeed, equating (74) and (75) yields k = kη.

Regarding the one-point statistics, obviously, even with high Schmidt numbers, simulations show
that the asymptotic anisotropic state still depends on σ and not on N and the exponential growth rate
β is not modified with respect to the case Sc = 1. Nevertheless, illustrated in Fig. 16 is the impact
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of a large Sc on the early dynamics of the scalar anisotropy indicator bT
33 and the mixing parameter

� (the effects are negligible for Fr and b33). The main result is that a large Sc does not change
the asymptotic values with respect to the case Sc = 1. However, specifically for bT

33 and �, which
depend explicitly on the scalar field unlike b33 and Fr, a large Schmidt number strongly impacts the
transient regime as well: � initially increases much more with Sc = 104 than with Sc = 1, whereas
bT

33 is always smaller at Sc = 104.
At Sc = 104, even if there is no inertial range initially for ET , the viscous convective range spans

almost two decades. This is completely different from the case Sc = 1. This initial viscous-convective
range thus contributes greatly to � because it gives large initial values of KT , which explains the
strong increase at small Nt . Then, when the Reynolds number increases, the inertial ranges of E and
ET become dominant in the integrals for K and KT , so eventually the same asymptotic value as for
Sc = 1 is recovered. In contrast, for bT

33, the viscous-convective range adds isotropic small scales,
thus reducing initially the global anisotropy over the whole wave-number space.

In conclusion, unlike passive scalar dynamics, the cospectrum survives in the viscous-convective
range for USHT for large Schmidt numbers and scales in k−1, similarly to the scalar variance
spectrum, after a transient k−3 subrange around the Kolmogorov wave number. Finally, large
Schmidt numbers strongly affect the early dynamics of bT

33 and �, nevertheless without changing
the asymptotic state.

V. CONCLUSION

Unstably stratified homogeneous turbulence was investigated numerically at large Reynolds
numbers with an anisotropic EDQNM modeling, originally derived for passive scalar dynamics
[14] and consistently extended here to the framework of active scalar dynamics, which is the first
theoretical contribution of this work. In the part consisting of numerical results at large Reynolds
numbers, comparisons were made with the axisymmetric EDQNM model developed by Burlot and
co-workers [4–6], where the production terms were treated exactly with no modeling of anisotropy
and the nonlinear transfers were closed with a classical EDQNM procedure. Moreover, since our
modeling was applied in previous work for different configurations (notably, transport of passive
scalar dynamics in isotropic turbulence with a mean scalar gradient and shear flows [12–14])
qualitative comparisons were also made with these cases and some interesting differences and
similarities were found between shear-driven flows and unstably stratified turbulence.

The time evolution of the kinetic energy, scalar variance (or buoyancy), and scalar flux spectra
E(k,t), ET (k,t), and F(k,t) were addressed: The k−5/3 inertial scaling of E and ET was recovered,
along with the k−7/3 inertial scaling of the cospectrum F . For the latter compensated spectrum, a
plateau starts appearing at the highest Reynolds numbers reached here (Reλ ∼ 106). The k−3 time
evolution of the peak of the three previous spectra was also recovered and justified. For the infrared
dynamics, it was found that because of the strong coupling between E, ET , andF due to stratification,
the spectrum with initially the smallest infrared slope σ [where E(T )(k < kL,t) ∼ kσ(T ) ] imposes the
minimum energy on the others, which significantly differs from the passive scalar dynamics.

Then the effects of varying the stratification frequency N and the infrared slope σ on the
asymptotic anisotropic states of one-point statistics in USHT were studied, specifically the Froude
number Fr, the mixing intensity �, global anisotropy indicators for the velocity and scalar fields
b33 and bT

33, and the exponential growth rate β of the kinetic energy, scalar variance, and mixed
correlation. The conclusion is, in agreement with the axisymmetric EDQNM results, that the
asymptotic states of these quantities strongly depend on σ . This feature is completely different
from shear flows where one-point statistics no longer depend on σ asymptotically, at least within
the same modeling. However, for both shear flows and USHT, varying the mean gradient intensity
impacts only short times. In particular, it was found that the more energy there is initially in large
scales, i.e., the smaller σ is, the more anisotropic the flow is. Furthermore, at large Reynolds numbers,
anisotropy is gathered at large scales, whereas small scales return to isotropy for both the velocity
and buoyancy fields (at least at the level of second-order moments). Satisfactory agreement is found
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in the quantitative comparison with the axisymmetric EDQNM model; nevertheless, one can point
out some differences between the two approaches. (i) With our anisotropic EDQNM modeling, the
flow is less anisotropic than in Refs. [4–6], meaning, notably, that our anisotropy indicator b33 is
slightly smaller. (ii) A theoretical prediction for the exponential growth rate β of kinetic energy
was proposed, based on the linear operator of our evolutions equations, and assessed numerically.
Whatever the large-scale initial conditions σ are, our growth rate is 10% smaller than the one of
[4,5], consistently with our flow being less anisotropic. (iii) The Froude number is higher with
the anisotropic EDQNM modeling, but can be decreased to values very close to those of [4–6] by
changing the eddy-damping constants, as shown in the Appendix.

These discrepancies are probably due to the modeling of anisotropy in our approach. Indeed, we
use an expansion into spherical harmonics truncated at the second order of the spectral correlations.
This truncation and its possible consequences were discussed in detail in Refs. [12–14]. Even though
it seems that the truncation may be the reason for the flow to be less anisotropic here, it does not
prevent the present modeling from recovering all the important features of USHT recalled just
before: notably, the dependence of asymptotic states on large-scale initial conditions σ .

Finally, two applications of our anisotropic EDQNM modeling were proposed, which constitute
fundamental results. First, pressure spectra in USHT were investigated and it was found that the
anisotropic part, resulting from stratification, scales in k−11/3 in the inertial range, whereas the
isotropic part scales in k−7/3; these scalings are completely similar to pressure spectra in shear
flows. It was also shown that the pressure variance grows exponentially at a rate 2β, where β is the
growth rate of the kinetic energy. Then high Schmidt numbers were considered. The scalar variance
spectrum still scales in k−1 in the viscous-convective range beyond the Kolmogorov wave number,
as in HIT. The main result here is that the cospectrum, which was strongly decreasing in this region
for passive scalar dynamics, now also displays a viscous-convective range with a scaling close to
k−1, after a transient k−3 subrange around kη. It is worth noting that large Schmidt numbers do not
affect the asymptotic values of one-point statistics or the exponential growth rate β, but only the
transient regime of � and bT

33.
In conclusion, the present anisotropic EDQNM modeling permits one to investigate large-

Reynolds-number asymptotic anisotropic states of USHT, with small computational resources. The
main features of the dynamics studied by Burlot and co-workers were recovered and fundamental
results were derived for the case of large Schmidt numbers. Since the present modeling is quite
versatile, e.g., it can handle both passive and active scalar dynamics, shear flows, axisymmetric
contractions, distortion [12–14], it could be applied in future works, for instance, to unstably stratified
shear flows. Early simulations seem to indicate that the exponential growth β, with K ∼ eβNt , still
depends on σ with the presence of shear, but also on N and S, and more precisely that β decreases
toward the USHT predictions with higher N at fixed σ and S.
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APPENDIX: EFFECTS OF A DIFFERENT CHOICE OF EDDY-DAMPING CONSTANTS

In this Appendix we briefly discuss the impact of changing the eddy-damping constants on
the dynamics of USHT. First, we recall that for consistency with the development of the present
anisotropic EDQNM modeling in Ref. [14], the same eddy-damping constants are kept here for the
extension to the case of active scalar dynamics, i.e., A1 = 0.355, A2 = 0, and A3 = 1.3 (EDC1),
where A1 is for the velocity field and A2 and A3 are for the scalar field. The EDC1 setting was
consequently kept throughout the paper, except in Sec. III B 5, where a quantitative comparison was
performed against the axisymmetric EDQNM model of Burlot and co-workers [5]. Indeed, in the
latter work, a different choice of eddy-damping constants was made, i.e., A1 = A2 = A3 = 0.355
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FIG. 17. Comparisons of the eddy-damping constant settings in Saffman turbulence with A1 = 0.355,
A2 = 0, and A3 = 1.3 (EDC1) (black lines) and A1 = A2 = A3 = 0.355 (EDC2) (gray lines). (a) Kinetic
energy and scalar variance compensated spectra with Reλ(Nt = 20) = 3 × 104. The solid line is for Ek5/3ε−2/3

and the dashed line is for ET k5/3ε−1
T ε1/3. (b) Plot of Fr, �, and b33.

(EDC2). Furthermore, in Ref. [4], a correction to the eddy-damping term is added to match with
DNS; this is not considered here. Indeed, simulations not presented here have revealed that such an
isotropized correction has only a slight impact on the early dynamics, which is already satisfactorily
captured as shown in Fig. 10, and does not modify the exponential growth rate β.

For clarity, the expressions of the different eddy-damping terms θkpq , θT
kpq , and θF

kpq for the
velocity, scalar, and scalar flux are given by

θkpq = 1 − exp{−[ν(k2 + p2 + q2) + μ1(k,t) + μ1(p,t) + μ1(q,t)]t}
ν(k2 + p2 + q2) + μ1(k,t) + μ1(p,t) + μ1(q,t)

, (A1)

θT
kpq = 1 − exp{−[a(k2 + p2) + νq2 + μ2(k,t) + μ2(p,t) + μ3(q)]t}

a(k2 + p2) + νq2 + μ2(k,t) + μ2(p,t) + μ3(q,t)
, (A2)

θF
kpq = 1 − exp{−[ak2 + ν(p2 + q2) + μ2(k,t) + μ3(p,t) + μ3(q,t)]t}

ak2 + ν(p2 + q2) + μ2(k,t) + μ3(p,t) + μ3(q,t)
, (A3)

where

μi(k,t) = Ai

√∫ k

0
k′2E(k′,t)dk′, i = 1,2,3. (A4)

It is recalled that these eddy-damping terms can be seen as the characteristic time of their
corresponding triple correlations.

With the present setting EDC1, the Kolmogorov and Corrsin-Obukhov constants are consistent
with those obtained for passive scalar dynamics, K0 = 1.31 and KCO = 0.76, as presented in
Sec. III A. Choosing EDC2 as in Refs. [4,5] tends first to decrease KCO to values smaller than
usual ones (KCO = 0.6), as revealed in Fig. 17(a), whereas K0 remains unchanged. Furthermore,
with EDC2, the flow is slightly more anisotropic in Fig. 17(b). Indeed, b33 increases a bit from EDC1
to EDC2. The main difference is observed in Fr, which is reduced with EDC2. This means that the
latter choice of eddy-damping constants enhances the importance of stratification in the dynamics,
without increasing significantly the global anisotropy.

Hence, changing the eddy-damping constants from EDC1 to EDC2 slightly increases the global
anisotropy of the flow and reduces Fr, which makes our results closer to [4,5]. However, the
counterpart is a decrease of the Corrsin-Obukhov constant, which is another reason why EDC1 is
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preferred in this paper. Moreover, whether EDC1 or EDC2 is chosen, it does not improve the plateau
for the cospectrum F or change the exponential growth rate β of the kinetic energy.
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