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Abstract

A theory of two-phase eutectic growth for a multicomponent alloy is presented.

Using the same hypotheses as the Jackson-Hunt theory, we find that the growth

law of the microstructure given by Jackson and Hunt for binary alloys can be

generalized to systems with N elements. Thermodynamic parameters involved

in this theory are linked to the Gibbs free energies of the phases which makes

it possible to compute these parameters with CALPHAD tools. A model is

derived from this general theory for ternary alloys which does not contain any

assumptions on the alloy thermodynamic properties, contrary to previous mod-

els. We find that a small addition of a ternary alloying element with a small

diffusivity to a binary alloy can significantly alter the spacing of the eutectic.

Keywords: Eutectic solidification ; Multicomponent ; Ternary alloys ;

CALPHAD ; Diffusion

1. Introduction

Eutectic alloys possess many advantages compared to single-phase systems.

Indeed, they have a low melting point compared to pure components and their

composite microstructure gives them superior mechanical properties.
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For binary eutectics, Hillert [1] and later Jackson and Hunt [2] analytically5

determined a scaling law for the microstructure developed by regular eutectics

during directional steady state solidification. Moreover, they have established

a link between the microstructure developed and the thermodynamic and ther-

mophysical properties of alloys. This scaling parameter has been proved to be

very useful in characterizing the eutectic microstructure of many regular binary10

alloys [3].

However, a analogous theory for alloys with many components and growing

as a two-phase eutectic does not exist. Such multicomponent two-phase eutec-

tics are common and have been studied in, Al-Cu-Ag [4], Fe-Si-Mn, Fe-Si-Co

[5], Al-Cu-Ni [6] and Ni-Al-Cr-Mo [7]. Moreover, most commercially relevant15

materials contain still more alloying elements. Unfortunately, a comprehensive

model for the growth of these multicomponent two-phase eutectics does not ex-

ist. However, there has been progress towards a general theory. Catalina et al.

[8] proposed a model for eutectic growth of two-phase eutectics containing N

elements, but restricted the treatment to the case where one of the phases has20

no solid solubility for the solute elements. Fridberg and Hillert [9] published a

model for the growth process of a binary alloy containing a small amount of an

additional element. Later, Plapp and Karma [10] analyzed the effect of a small

addition of a third element on the morphology of a symetrical binary eutec-

tic. In ternary alloys, McCartney et al. [11] and DeWilde et al. [12] gave two25

different models. In the McCartney-Hunt model, simplifying approximations

were employed on the alloy phase diagram and the diffusion process. DeWilde

et al. employed an approximation for the manner in which the long-range dif-

fusion field decays and for concentration profiles in the liquid phase. While

all of these treatments provide important insights into eutectic solidification of30

multicomponent alloys, they lack the generality needed for many applications.
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In this paper, we present a method to compute the mean undercooling of a

two-phase eutectic as a function of the eutectic spacing and the velocity for any

alloy containing N elements in the spirit of the Jackson Hunt model (Section

II). This general method removes the approximations introduced in the models35

[8, 11, 12] mentioned above. It is then applied to binary alloys and compared

to the Jackson-Hunt theory in section III. The model derived from this general

method for ternary alloys is given in section IV. This model is then used to

analyze the influence of the addition of a low concentration of a third element

on the microstructure of a binary alloy. We finally discuss in section VI the use40

of this model as a way to predict of the eutectic microstructure evolution of an

alloy with the addition of a new element. We conclude this paper by a summary

of results presented and possible future continuation of this work.

2. Two-phase eutectic growth of alloys with N elements

In this section, we present our general methodology to compute the mean45

undercooling of any two-phase eutectic alloy with N elements.

We study the directional solidification at steady state of a two-phase eu-

tectic with an initial concentration (C∞2 , . . . , C∞N ). In this work, the choice of

the element 1, which concentration depends on independent concentrations of

elements 2 to N is arbitrary. We assume that this eutectic develops a lamellar50

morphology such as the one presented in Fig 1.

By definition, the two-phase eutectic temperature (TE) is the temperature

at which three phases, α, β and liquid are in equilibrium. For systems with more

than three elements, this temperature depends on the alloy composition. All

quantities referring to the eutectic temperature will be identified with a super-

script ’E’. We assume that for any position x at the interface, the solid/liquid

interface is at thermodynamic equilibrium at a temperature Tu(x). So for any
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position x of the interface, the chemical potentials of any specie i = 1..N in the

liquid phase and in the solid phase φ are equal:

µφi (Cφ2 , .., C
φ
N , Tu, p

φ) = µli(C
l
2, .., C

l
N , Tu, p

l) i = 1, 2 . . . N (1)

where Ci is the mole fraction of component i, p is the pressure, and φ can be

either one of the two solid phases. For a given phase, assuming that Cl2.., C
l
N , p

l

and pφ are known, this gives N equations and N unknowns. Thus once the

composition of the liquid at the interface and the pressure in the solid phase are55

known, and by assuming that pl does not change from that at the equilibrium

state, the composition of the solid phase is known and the undercooling is fixed.

The variations in the rejection of solutes in front of solid phases, α and β, in-

duce changes in the concentrations in the liquid phase at the interface compared

with the equilibrium state, (ClE2 , .., ClEN ). In addition, the interface curvature60

due to the surface energies equilibrium at the trijunctions (points where the

two solid phases are in contact with the liquid phase) induces a variation of the

internal pressure in solid phases. Since local equilibrium is assumed to hold,

these variations in the liquid composition induce changes in concentrations in

solid phases from their equilibrium values, and a change in the interface tem-65

perature from TE . The compositions of the solid, liquid and the temperature

are related by N chemical potential equations for each solid phase. Unfortu-

nately, these equations are nonlinear, and thus we assume small deviations from

the equilibrium temperature, and phase compositions to relate the solid phase

compositions and undercooling temperature to the liquid composition. The de-70

velopment of these N equalities (Eq. (1)) for each phase is given in the appendix

A. This development leads to a matrix expressing the change in the concentra-

tion in solid phases from equilibrium, ∆Cφi = CφEi − Cφi (i = 2 . . . N) and the

undercooling ∆T = TE − Tu as a function of the concentration in the liquid
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phase ∆Cli = ClEi − Cli and of pressure in the solid phase ∆pφ.75

At a given point x along the interface, the undercooling ∆T is thus expressed

as a sum of a solutal (∆TC) and a curvature (∆TR) undercooling (see appendix

A) :

∆T (x) = ∆TC(x) + ∆TR(x) (2)

where

∆TC(x) =

N∑
i=2

mφ
i (ClEi − Cli(x)) (3)

∆TR(x) = − V φm
∆Sφl

∆pφ(x) (4)

where mφ
i is a slope of a liquidus surface, V φm is a molar volume, and ∆Sφl are

defined in appendix A as functions of derivatives of molar Gibbs free energies

of the solid and liquid phases. As ∆pφ = −σφlκ(x) where σφl is the φ/l surface

energy and κ(x) is the interface curvature at x, Eq. (4) can be re-written:

∆TR(x) = Γφ/lκ(x) (5)

where Γφ/l =
V φm

∆Sφl
σφl is the φ/l Gibbs Thomson coefficient.

As stated by Jackson and Hunt [2], the mean undercooling at the interface

can be computed on half of a eutectic period :

∆T =
2

λ

∫ λ/2

0

∆T (x)dx (6)

From Eq. (2), this mean eutectic undercooling can be separated as a mean

solutal undercooling ∆TC and a mean curvature undercooling ∆TR. Hillert [1],

and Jackson and Hunt [2] have shown that for microstructures similar to Fig.
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1, the mean curvature undercooling has the expression:

∆TR =
KR

λ
(7)

with

KR = 2
(
Γα/l sin(| θα |) + Γβ/l sin(| θβ |)

)
(8)

where angles θα and θβ are defined in the Figure 1.

To define the mean solutal undercooling given in Equation (3) requires an

expression for the liquid concentration of the different elements at the interface.

This necessitates a solution to the diffusion equation in the liquid phase for all

independent elements i:

Di∇2Cli + ~V · ~∇Cli = 0 i = 2, 3 . . . N (9)

where Di = D̃ii are the diagonal terms of the interdiffusion coefficient matrix

for element i. Here we neglect off-diagonal terms since there is very little in-80

formation on the magnitude or even the sign of these coefficients. Solutions of

these equations should satisfy the boundary conditions:

Ci = C∞i z →∞ (10)

∂Ci
∂x

= 0 x = 0, λ/2 (11)

Therefore, the liquid concentration of any element i can be expressed as:

Cli(x, z) = C∞i + E0
i exp(− V

Di
z) +

∞∑
n=1

Eni exp(−2πn

λ
z) cos(

2πn

λ
x) (12)

for small Peclet numbers, Pei = V λ
2Di
� 1.

Assuming that all phases have the same molar volume, the conservation of
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matter at the interface gives for any element i:

Di
∂Cli
∂z

∣∣∣∣
z=0

= V (Cφi − C
l
i) i = 1 . . . N (13)

2.1. Binary alloys: Jackson-Hunt-Hillert

For binary alloys, Hillert [1] and Jackson and Hunt [2] used Eq. (13) and

the hypothesis of a constant concentration in the liquid phase at the interface

to compute Eni coefficients for n > 0. In addition, for a microstructure similar

to the one of Fig. 1, the solid/liquid interface could be reasonably supposed to

be isothermal. Using this hypotheses, Jackson and Hunt observed that the E0
i

term of Eq. (12) could be eliminated from the mean undercooling expression

by using the relation:

∆T
iso

=
mβ

2 ∆T
α −mα

2 ∆T
β

mβ
2 −mα

2

(14)

This approach masks the fact that the hypothesis of an isothermal interface85

gives a condition on the average liquid composition at the interface and so on

the E0
i coefficients. Indeed, this growth condition requires in general a variation

of the average liquid composition compared to the eutectic composition that

equalizes the average undercooling of the two solid phases. As the interface is

supposed to be at the thermodynamic equilibrium, this variation of composition90

in the liquid phase induces variations of compositions in solid phases and so an

evolution of the solid fraction of phases compared to the one corresponding to

phases composition at the eutectic temperature. One can note that inversely, a

variation of phases solid fractions would induce variations of compositions in the

solid phases and so a variation of the average liquid composition at the interface.95

The relation used by Jackson and Hunt accounts these variations in the mean

undercooling expression in an implicit way and avoids the computation of these
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variations.

Jackson and Hunt finally obtain an expression for the mean undercooling

of an isothermal interface as a function of the growth velocity and the eutectic

spacing:

∆T
iso

= K1V λ+
K2

λ
(15)

In addition, Jackson and Hunt observed that the eutectic spacing corresponding

to the minimum undercooling (λm) satisfies the relation:

λ2
mV =

K2

K1
(16)

This λm is a scaling parameter of the microstructure developed at a given ve-

locity. Although it has been shown that eutectics do not grow with a unique100

eutectic spacing at a given velocity, the microstructure developed is usually close

to the one at λm. This is why Eq. (16) is frequently used to characterize the

microstructure developed by 2-phase eutectics. Moreover, the stability of this

theory according to perturbations of the position of the trijunction has been

analyzed by Datye and Langer [13]. It was shown that for a given concentration105

and growth velocity, the Jackson Hunt law is only stable over a range of eutectic

spacings close the λm.

Unfortunately, Eq. (14) cannot be used for the N-component eutectic growth

problem. We thus explicitly determine the general expression of the average con-

centration at the interface as a function of the volume fraction of the solid phases110

without any hypotheses on the undercooling and then compute the variation of

the phase fractions corresponding to a shift of the average liquid concentration

to make the interface isothermal. We finally determine the expression of the

mean undercooling corresponding to the isothermal growth.
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2.2. Approach115

We first determine the expression for the liquid concentration of all indepen-

dent elements i, the coefficients E0
i and Eni (for n > 0), assuming that the Peclet

number of any element i (Pei = V λ
2Di

) is small compared to 1. We then use the

isothermal hypotheses to obtain an expression for the solid fraction variation

with the undercooling, and finally express the mean undercooling of an isother-120

mal interface as a function of the growth velocity and eutectic spacing. All of

these steps imply a development of expressions at first order in Peclet num-

bers. For consistency, we therefore suppose that max((Pe2)2, . . . , (PeN )2) <

min(Pe2, . . . , P eN ) which implies that max(Pe2, . . . , P eN ) < min(D2,...,DN )
max(D2,...,DN ) .

2.2.1. Liquid concentration field125

In this section we determine the coefficients E0
i and Eni , that are needed in

the general expression of the liquid concentration of element i (Eq. 12). This

entire analysis is performed at the solid-liquid interface, which corresponds to

z = 0. Therefore, the z-dependence of Cli (see Eq. (12)) does not appear in

this section. Introducing Eq. (12) in Eq. (13) and expressing the function

Cli(x)− Cφi (x) as a Fourier series we obtain for i = 2 . . . N :

Eni =
Pei
πn

4

λ

∫ λ/2

0

(Cli(x)− Cφi (x)) cos(
2πn

λ
x)dx forn > 0 (17)

So Eni coefficients are at least first order in the Peclet numbers. To proceed

with the calculation of Eni coefficients, a relationship between Cli(x) and Cφi (x)

is needed. For this, we use the relation obtained in Appendix A,

∆Cφi (x) =

N∑
j=2

Λφij∆C
l
j(x) (18)
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where Λφij are certain solute distribution coefficients associated with the phase

φ and assuming the effect of curvature on solid phase concentration can be

neglected, see appendix A. The Λφij coefficients are functions of derivatives of

chemical potentials that are function of concentration of elments and temper-

ature. The full expression of Λφij coefficients is presented in appendix A for130

ternary alloys. This link between phase compositions is represented by a tie

line in binary phase diagrams and by a tie triangle in isothermal cross section of

a ternary phase diagram. The tie triangle at equilibrium and that at an under-

cooling are shown in Figure 2. So as the liquid composition along the interface

deviates from its equilibrium value, the tie triangle changes in shape, as given by135

the red dot-dash lines. This change in shape is thus given by (∆C2
φ
, ..,∆CN

φ
)

for a certain (∆C2
l
, ..,∆CN

l
)

The approximation of Eni to first order in Peclet number implies that in

Eq. (17), Cli(x)−Cφi (x) needs only to be approximated at zero order in Peclet

number. Eqs (12) evaluated at z = 0 and Eq. (18) give for any position x at140

the interface:

Cli(x)
∣∣
Pe0i

= C∞i + E0
i

∣∣
Pe0i

(19)

Cφi (x)
∣∣
Pe0i
− CφEi =

N∑
j=2

Λφij(C
l
j(x)

∣∣
Pe0i
− ClEi ) (20)

where the index Pe0
i indicates that the expression is truncated at the zero order

in Peclet numbers. Introducing Eq. (19) in Eq. (20) we thus obtain for both

solid phases φ:

(Cli(x)−Cφi (x))
∣∣
Pe0i

= C∞i +E0
i

∣∣
Pe0i
−

N∑
j=2

Λφij(C
∞
j +E0

j

∣∣
Pe0j
−ClEj )−CφEi (21)
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By introducing Eq. (21) in Eq. (17) we get for n > 0:

Eni =
V λ

Di

sin(nπfα)

(nπ)2
Ei (22)

where

Ei = ∆Ci +

N∑
j=2

∆Λij(C
∞
j + E0

j

∣∣
Pe0j
− ClEj ) (23)

with ∆Ci = CβEi − CαEi and ∆Λij = Λβij − Λαij . .

It remains to determine the coefficient E0
i . For this, we use the conservation

of matter between the solid phases and the liquid phase which implies that for

each element i:

fαCαi + fβC
β
i = C∞i (24)

and at the eutectic temperature:

fEα C
αE
i + fEβ C

βE
i = C∞i (25)

where Cαi (resp Cβi ) is the average concentration of element i in the solid phase

α (resp β). These two equalities imply that for each element i = 2 . . . N :

−∆fα∆Ci = fα(Cαi − C
αE
i ) + fβ(Cβi − C

βE
i ) (26)

where ∆fα = fEα − fα. This system of equalities can be linked to variations of

composition in the liquid phase using Eq. (18) averaged on the length of solid

phases α and β.145

The integration of Eq. (12) on each solid phase and using Eq. (22) gives
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that for i = 2 . . . N :

Cli
α

= C∞i + E0
i +

V λ

Di

1

fα
EiQ (27)

Cli
β

= C∞i + E0
i −

V λ

Di

1

fβ
EiQ (28)

with Q =

∞∑
n=1

sin2(nπfα)

(nπ)3
. Introducing (18) and (27-28) into (26) for each

element i leads to the system of equations for E0
i :

[
Λ̄

]
×


C∞2 + E0

2 − ClE2
...

C∞N + E0
N − ClEN

 =


−∆fα∆C2

...

−∆fα∆CN

+Q

[
∆Λ

]
×


V λ
D2
E2

...

V λ
DN

EN

 (29)

where

[
Λ̄

]
is the matrix of coefficients Λij = fαΛαij + fβΛβij and

[
∆Λ

]
is the

matrix of coefficients ∆Λij . Solving Eq (29) for E0
i

∣∣
Pe0i

along with Eq (23)

yields Ei as a function of ∆fα,∆Ci and Λij coefficients. We note that the Ei150

coefficient is different from ∆Ci only if the phase fractions evolve compared

to those at the eutectic temperature. Using Eq. (29) enables us to obtain a

full expression for the composition field for all i independent concentrations in

the liquid phase. We observe that the expression for the liquid phase concentra-

tion depends on the volume fraction of solid phases, as was discussed in part 2.1.155

Integrating Eqs (3) and (4) on both solid phase interfaces, we obtain the

mean undercooling of the α phase and of the β phase:

∆T
α

=

N∑
i=2

mα
i (ClEi − Cli

α
) +

2Γα/l sin(| θα |)
fαλ

(30)

∆T
β

=

N∑
i=2

mβ
i (ClEi − Cli

β
) +

Γβ/l sin(| θβ |)
fβλ

(31)
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where expressions of Cli
α

and Cli
β

are given in Eqs (27) and (28). We thus

observe that, for a given growth velocity V and eutectic spacing λ, ∆T
α

and160

∆T
β

are two different functions of the phase fraction fα. This phase fraction

is unknown at that point. The simple approximation of setting fα = fEα yields,

in general, to very different average temperatures at the two solid-phase in-

terfaces. The hypotheses that the system grows with an iosthermal interface

implies therefore an evolution of solid fractions from (fEα , f
E
β ). In the follow-165

ing, we compute the change in the phase fraction from that at equilibrium that

is necessary to make the interface isothermal for a given growth velocity and

eutectic spacing, which yields the mean undercooling of the interface.

2.2.2. Isothermal Interfaces

In this section, we determine the phase fraction variation induced by requir-

ing an isothermal interface for a given growth velocity and eutectic spacing. For

this, the interface is considered isothermal if the mean undercoolings of the α

phase and the β phase are equal:

∆T
α

(fα) = ∆T
β
(fα) (32)

A Taylor expansion of this equality to first order in the variation of fα gives:

∆f iso
α

(
∂∆T

β

∂fα

∣∣∣∣
fEα

− ∂∆T
α

∂fα

∣∣∣∣
fEα

)
= ∆T

β
(fEα )−∆T

α
(fEα ) (33)

with ∆f iso
α = fEα − f iso

α where f iso
α is the solid fraction corresponding to the170

undercooling of an isothermal interface.

Using the expressions for the undercoolings of each phase (Eqs. (30) and

(31)), and the expressions for the mean liquid concentrations at each phase
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interface (Eqs. (27) and (28)) we obtain:

∆T
β
(fEα )−∆T

α
(fEα ) = V λαC +

αR
λ

(34)

where

αR = 2

[
Γβ/l sin(| θβ |)

fEβ
−

Γα/l sin(| θα |)
fEα

]
(35)

and αC will be given for binary (section 3) and ternary (section 4) eutectics.

We rename for simplicity

−∆′ =
∂∆T

β

∂fα

∣∣∣∣
fEα

− ∂∆T
α

∂fα

∣∣∣∣
fEα

(36)

We assume for the following that ∆′ ≈ ∆′0 where ∆′0 is independent of velocity

and the eutectic spacing. The validity of this hypotheses is discussed in appendix

B. This neglects the influence of the variation of fα on ∆T
α

R and ∆T
β

R and on

terms proportional to Pei in ∆T
α

C and ∆T
β

C , which is small in most cases.175

Using (34) and (36) in (33) we thus get the expression of the variation of fα

necessary to yield an isothermal interface:

∆f iso
α = −

(
V λ

αC
∆′0

+
1

λ

αR
∆′0

)
(37)

The general expression of ∆′0 for a given phase diagram is given in appendix

B. For binary alloys, this expression gives ∆′0 = ∆m2∆C2/Λ22
E

where ∆m2 =

mβ
2 −mα

2 . We show in appendix A that this coefficient is always positive for bi-

nary alloys. This means that if ∆T
β
(fEα ) > ∆T

α
(fEα ) the fraction of α phase has

to be increased to make the interface isothermal and if ∆T
β
(fEα ) < ∆T

α
(fEα )180

the fraction of β phase has to be increased to make the interface isothermal,

which makes sense intuitively, as already discussed by Magnin and Trivedi [3].
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2.2.3. Undercooling of isothermal interface

We now determine the expression for the mean undercooling of the isother-

mal interface. The mean undercooling defined in Eq. (6) can be computed185

using Eqs. (7) and (3), as a function of the volume fraction of phases using the

liquid concentrations obtained in section 2.2.1. For small changes of the volume

fractions of the solid phases compared to their equilibrium values, (fEα , f
E
β ), the

mean undercooling can be approximated by a Taylor expansion to first order in

the change of fα from fEα . Moreover, we have seen in section 2.2.2 that for a190

given growth velocity and eutectic spacing, the system enforces an isothermal

condition by changing the average concentration at the interface which corre-

sponds to a variation of phases fractions ∆f iso
α .

We can thus express the mean undercooling of an isothermal interface as:

∆T
iso

(fα) = ∆TC(fEα )−∆f iso
α

∂∆TC
∂fα

∣∣∣∣
fEα

+ ∆TR (38)

In order to use the expression of ∆T
iso

given in (38), we need an expression

for ∆TC(fEα ) and ∂∆TC
∂fα

∣∣∣∣
fEα

. Using the expression of the liquid concentration

developed in section 2.2.1 we obtain :

∆TC(fEα ) =

N∑
i=2

(ClEi − C∞i − E0
i

∣∣
fEα

)mi
E +

N∑
i=2

V λ

Di
(EiQ)

∣∣
fEα

∆mi (39)

with mi
E = fEαm

α
i + fEβ m

β
i . The system of equations for E0

i (Eq. 29) shows

that for i = 2 . . . N , ClEi −C∞i −E0
i

∣∣
fEα

is proportional to Pei, so we can write:

∆TC(fEα ) = V λKC (40)

The expression of KC will be given for binary and ternary alloys in sections 3

and 4 respectively. For the term involving ∂∆TC
∂fα

∣∣∣∣
fEα

in Eq. (38), it is unclear
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if this quantity has to be evaluated at first order in Peclet numbers or at zero

order, as the order of ∆f iso
α in Peclet has not been determined. For simplicity,

we approximate ∂∆TC
∂fα

∣∣∣∣
fEα

at zero order in Peclet number. This hypothesis is

discussed in appendix B by analyzing the order of ∆f iso
α . Introducing Eq. (40)

and (37) in (38) we thus obtain the undercooling of the isothermal interface:

∆T
iso

= V λK1 +
K2

λ
(41)

where K1 and K2 coefficients are:195

K1 = KC + lNαC (42)

K2 = KR + lNαR (43)

and

lN =
1

∆′0

∂∆TC
∂fα

∣∣∣∣
fEα ,Pe

0
i

(44)

For a given growth velocity, we thus have now established the link between the

mean temperature at the isothermal interface and the eutectic spacing for any

2-phase eutectic with N elements.

From Eq. (41) we obtain the eutectic spacing corresponding to the minimum

undercooling :

λ2
mV =

K2

K1
(45)

This expression shows that the growth law (Eq. 15) determined by Jackson

and Hunt [2] for binary alloys can be generalized to two-phase eutectics with N-200

elements. However, the analytical expressions for KC , lN and αC can be quite

complicated for N large. The thermodynamic parameters needed to evaluate

these coefficients (CφEi ,mφ
i ,Λ

φ
ij) can be found using CALPHAD descriptions of

the free energies. These coefficients are therefore only given here for binary
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alloys (in section 3) and for ternary alloys (in section 4). In a similar way as205

the Jackson-Hunt theory, this general model takes into account interfacial en-

ergies of the two solid phases through the expression of the undercooling of the

isothermal interface through Gibbs-Thomson coefficients (Γαl, Γβl) and trijunc-

tion angles (θα, θβ). The diffusion properties of the alloy are also introduced in

the theory through the interdiffusion coefficients of each independent element210

{D2, . . . , DN}. As in the Jackson-Hunt model, this theory includes thermody-

namic properties of the alloy which correspond to the equilibrium concentration

of elements in solid phases (CαEi , CβEi ), the liquidus slopes corresponding to

each phase (mα
i and mβ

i ) and certain solute distribution coefficients ([Λα] and[
Λβ
]
) defined in Appendix A. The expressions of liquidus slopes and solute215

distribution coefficients as functions of derivatives of chemical potentials for a

given temperature and concentration are given in Appendix A. These deriva-

tives can be computed from the expression of the Gibbs free energy of phases

using CALPHAD descriptions of the free energies.

Catalina et al. [8] have recently proposed a model for the growth of two-220

phase eutectics with N elements in the limit that the composition of the β phase

is a constant [Λβ ] = 0. Moreover, this model only takes into account diagonal

terms of the [Λα] matrix. Our model is thus a generalization of this approach.

To illustrate the predictions of the model, we examine the coefficients K1 and

K2 for binary and ternary alloys.225

3. Binary alloys

In this section, we illustrate how the general theory can be used to describe

the well-known results in a binary alloy. From the development of the solute

concentration expression at the interface given in section 2.2.1, we obtain the

17



concentration at the interface:

Cl2(x) = C∞2 + E0
2 +

V λ

D2
E2

∞∑
n=1

sin(nπfα)

(nπ)2
cos(

2π

λ
x) (46)

with

E0
2 = ClE2 − C∞2 −

∆C2

Λ22

∆fα +Q
∆Λ22

Λ22

V λ

D2
E2 (47)

E2 = ∆C2

(
1− ∆Λ22

Λ22

∆fα

)
(48)

Donaghey and Tiller [14] give a detailed development at first order in Peclet

number of the concentration in the liquid phase for binary alloys. Our expres-

sions for the parameters E0
2 and E2 defined in Eqs (47) and (48) are identical230

the one obtained by Donaghey and Tiller [14].

The solutal undercooling at any position x of the interface is determined by

introducing this expression of the solute concentration at the interface in Eq.

(3). The integration of ∆TC(x) on half of the eutectic spacing gives coefficients

KC and the ∂∆TC
∂fα

∣∣∣∣
fEα ,Pe

0
2

term in l2 (see Eq. (44)) and its integration on each235

solid phase interface gives the coefficient αC (see Eq. (34)) and the ∆′0 term in

l2 (see Eq. (44)) and obtains:

l2 = − mE
2

∆m2
(49)

KC = QE
∆C2

D2

[
∆m2 −

∆Λ22

Λ22
E
mE

2

]
(50)

αC = QE
∆C2

D2

[
−∆Λ22

Λ22
E

∆m2 +

(
mβ

2

fEβ
+
mα

2

fEα

)]
(51)

where m2 = fαm
α
2 + fβm

β
2 . The coefficients mφ

i are signed and so, for binary

alloys, the mα
2 coefficient is negative and the solute distribution coefficients Λα22

and Λβ22 are usually noted kα and kβ for binary alloys. In arriving at these
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results, we employ the result that follows from Eqs. (85) in Appendix A that

relates the second derivates of the free energy to the slope of the liquidus:

mφ
2 = −

(
ClE2 − C

φE
2

)
∂2Glm
∂(Cl2)2

∆Sφl
(52)

where Glm is the molar Gibbs free energy of the liquid phase. This expression

for the slope of the phase φ liquidus curve is the well-known Gibbs-Konovalov

relation [15].240

By introducing Eqs. (49), (50) and (51) in expressions of coefficients K1 and

K2 (eqs. (42) and (43)) we obtain that :

K1 =

(
−mα

2m
β
2

∆m2fEα f
E
β

)
QE

∆C2

D2
(53)

K2 =
−2mα

2 Γβ/l sin(| θβ |)
fEβ ∆m2

+
2mβ

2 Γα/l sin(| θα |)
fEα ∆m2

(54)

The K1 and K2 coefficients are identical to those obtained by Jackson and Hunt

[2]. The coefficients that set the λ2
mV relationship should indeed be the same as

those of Jackson and Hunt, since the same hypotheses and approximations are245

used in our approach and were also used by Jackson and Hunt. However, our

treatment yields the expression for the E0
2 coefficient, and thus we can determine

the effects of the asymmetry of the phase diagram on the volume fraction of the

phases.

Magnin and Trivedi [3] published a eutectic growth model similar to ours250

for binary alloys. In their study, they determined the expression of the liquid

concentration at the interface by using the conservation of matter at the interface

(Eq. (13)) and taking into account the density differences between phases. They

obtain the same expression for the mean undercooling as Jackson and Hunt,

and K1 and K2 coefficients are identical with ours (Eqs (42) and (43)), in the255
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limit where the density of the phases are identical. However, our KC and αC

coefficients are different, as Magnin and Trivedi did not take into account the

terms at first order in Peclet number in their E0
2 parameter (the last term in

the expression of E0
2 in Eq. (47)).

We showed above that if the interface is isothermal and undercooled then the

fraction of the phases can change from their equilibrium values. To illustrate this

for a binary alloy, we examine the difference of undercooling between the two

solid phases if the phase fractions do not change with the growth conditions and

thus the interface is nonisothermal. From eq. (34) we observe that |∆T β(fEα )−

∆T
α

(fEα )| is a function of λ at a given velocity. If αR and αC have the same

sign, then |∆T β(fEα )−∆T
α

(fEα )| has a minimum with the expression:

|∆T β(fEα )−∆T
α

(fEα )|
∣∣
min

= 2
√
αCαRV (55)

From Eq. (35) and (51) we observe that the coefficients αR and αC are large260

if the two solid phases have asymetrical properties and a low diffusion coef-

ficient. For example, if we take, for a model binary alloy: ∆C2 = 90% and

D2 = 5 × 10−10 m2/s, fα = 0.2, Γα/l sin(| θα |) = 1 × 10−7 K.m, Γβ/l sin(| θβ |

) = 1 × 10−8 K.m, mα
2 = −50 K.at%, mβ

2 = 5 K.at%, Λα22 = 0.1, Λβ22 = 0.2

we find that for V = 100µm/s |∆T β(fEα ) − ∆T
α

(fEα )|
∣∣
min

= 17.7K. For a265

standard thermal gradient G = 9 K/mm, this difference of undercooling would

induce a difference of position of 2 mm between the α/l and the β/l interfaces

which would be observable if the eutectic was not growing with an isothermal in-

terface. From these properties and using the expression of ∆′0 given in Appendix

B, we compute the change in the α phase fraction needed to insure an isother-270

mal interface is ∆f iso
α = −1.3 × 10−3. Such a small variation of solid fraction

would certainly be difficult to observe in experiments. However, other choices

of materials parameters may yield larger changes. If αC and αR do not have
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the same sign then, at a given velocity, the function |∆T β(fEα )−∆T
α

(fEα )| has

a zero value for a certain λ0. For this λ0 the interface is isothermal at fα = fEα .275

However, for eutectic spacings far from this λ0 the difference of undercooling in

front of the two solid phases can be very different for fα = fEα .

4. Ternary alloys

We now apply the general method to ternary two-phase eutectics. The

coefficients used in the theory are given and compared to those in binary alloys.280

The ternary model is compared to previous models available in the literature.

Finally, we evaluate the evolution of the λ2
mV law for a binary alloy with the

addition of a small amount of element 3, when the system stays in a two-phase

eutectic microstructure.

4.1. General model in ternary alloys285

Using the same process as described in section 3, we obtain that the coeffi-

cients l3, KC and αC defined in section 2 for a ternary alloy are:

l3 = −
∆C2

(
m2

EΛ33
E −m3

EΛ32
E
)

+ ∆C3

(
−m2

EΛ23
E

+m3
EΛ22

E
)

∆C2

(
∆m2Λ33

E −∆m3Λ32
E
)

+ ∆C3

(
−∆m2Λ23

E
+ ∆m3Λ22

E
)
(56)

KC = QE
3∑
i=2

∆Ci
Di

[
∆mi −m2

E

(
∆Λ

Λ

)E
2i

−m3
E

(
∆Λ

Λ

)E
3i

]
(57)

αC = QE
3∑
i=2

∆Ci
Di

[
−∆m2

(
∆Λ

Λ

)E
2i

−∆m3

(
∆Λ

Λ

)E
3i

+

(
mβ
i

fEβ
+
mα
i

fEα

)]
(58)
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where

(
∆Λ

Λ

)E
2i

=
Λ
E

33∆Λ2i − Λ
E

23∆Λ3i

Λ
E

22Λ
E

33 − Λ
E

32Λ
E

23

(59)

(
∆Λ

Λ

)E
3i

=
Λ
E

22∆Λ3i − Λ
E

32∆Λ2i

Λ
E

22Λ
E

33 − Λ
E

32Λ
E

23

(60)

We observe that coefficients l3, KC and αC obtained for ternary alloys have

a similar form as coefficients obtained for binary alloys presented in Eq. (49-

51). However, whereas l2 only depends on liquidus slopes mα
2 and mβ

2 and on

the phase fractions, coefficient l3 also depends on differences of concentration in290

solid phases ∆C2 and ∆C3 and on the Λij coefficients.

McCartney and Hunt [11] assume that the ratio (E0
3 +C∞3 −CE3 )/(E0

2 +C∞2 −

CE2 ) is independent of the conditions for eutectic growth. In addition, they as-

sume that the non-diagonal terms in the
[
Λ̄
]

matrix are negligible compared to

diagonal terms and that Λ
E

22 ' Λ
E

33, which limits this model to systems with spe-295

cific thermodynamic properties. To illustrate this statement, we have computed

the
[
Λ̄
]

matrix in the ternary eutectic Al-Cu-Ag with an alloy composition of:

14.8at%Cu− 5at%Ag. For this, we have used the expression of the Gibbs free

energies for the liquid phase, the α phase and the θ − Al2Cu phase given in

Ref. [16, 17] and computed the equilibrium composition of each phase at the300

eutectic temperature using ThermoCalc. We have obtain
[
Λ̄
]

=

0.46 0.20

0.48 0.94

.

Therefore, in this case, non-diagonal terms are of similar order to diagonal terms

and Λ
E

22 6= Λ
E

33. In a future paper, the calculations of the thermodynamic prop-

erties of Al-Cu-Ag will be given in detail. Finally, McCartney et al. have used

the assumption that D2 = D3 to obtain their final expression of the interface305

undercooling. Recently, DeWilde et al. [12] proposed a new model for the di-

rectional growth of ternary two-phase eutectics. In this model, the mean solutal
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undercooling of each solid phase is expressed as a sum of absolute values of un-

dercoolings corresponding to each element. In addition, this model neglects the

dependence of E0
i on the change of the phase fractions with the undercooling.310

This approximation eliminates the ∆′0 term in the expression of ∆′ given Eq.

(90) but keeps the V λξC + ξR
λ term (see Appendix B). We note that none of

these assumptions made by McCartney et al. or DeWilde et al. are used in our

theory.

Some binary eutectics stay in a two-phase microstructure with the addition315

of a ternary element. In this case, if all parameters involved in coefficients

K1 and K2 are known for the ternary alloy, one could predict the evolution of

the microstructure with the addition of the element 3 at a given velocity by

comparing K2/K1 for the binary and the ternary alloys using Eq. (16). In the

general case, this comparison is difficult due to the large number of parameters320

involved in these ratios. In particular, the eutectic temperature of the ternary

eutectic might be different than the one of the binary system which would affect

all parameters involved in the growth law that depend on temperature such as

the interfacial energies, and diffusion coefficients. From Eqs. (57) and (58), we

see that if element 3 is a slow diffuser compared to element 2, the coefficients KC325

and αC are particularly sensitive to the thermodynamic parameters associated

with element 3 and so the eutectic microstructure might change drastically

compared to the binary alloy. We also note that if the solubility of element 3

is the same in the 2 phases and if the cross coefficients of the [Λφ] matrices are

negligible, the coefficients K1 and K2 of the ternary alloy have the same form330

as the one of the binary alloy. Therefore, if the addition of component 3 does

not affect element 2 thermodynamics (Λφ22 and mφ
2 with φ = α, β) and diffusion

(D2) coefficients, then element 3 has no effect on the eutectic spacing.
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4.2. Limit of small additions of a third element

To illustrate the effects of component 3 on the growth law λ2
mV = K2

K1
of335

a binary alloy, we consider the limit of a ternary alloy with a dilute amount

of component 3. To perform such a study, we have to limit the number of

parameters evolving with the addition of element 3. Therefore, we assume that

the capillary lengths, and the phases fractions do not change significantly with

the addition of component 3. Coefficients KR and αR are therefore identical to340

those of a binary alloy. Moreover, the variation of the thermodynamic properties

of element 2 (Λφ22 and mφ
2 with φ = α, β) with the addition of element 3 is

neglected. We recall in this part that, according to our notations, for an element

i, ∆Ci = Cβi − Cαi . In addition, for a small addition of element 3, we should

have |∆C3| � |∆C2|. To simplify the problem, we also assume that the Λφ23 and345

Λφ32 coefficients for the α and β phases are negligible. In this case, coefficients

K1 and K2 of the ternary alloy growth law can be expressed as:

Kt
1 = Kb

1 + ∆C3q1 (61)

Kt
2 = Kb

2 + ∆C3q2 (62)

where the ’b’ superscript refers to the binary alloy and the ’t’ superscript refers

to the ternary alloy and

q1 = QE
{

Ω

D2
+

Π

D3

}
(63)

q2 =
1

∆C2

Λ22
E

Λ33
E

(
mα

2m
β
3 −mα

3m
β
2

(∆m2)2

)
αR (64)
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with350

Ω = −Λ22
E

Λ33
E

1

∆m2

(
m3

E −∆m3
m2

E

∆m2

)[
−∆m2

∆Λ22

Λ22
E

+
mβ

2

fβ
+
mα

2

fα

]
(65)

Π = ∆m3 −
m2

E

∆m2

(
mβ

3

fβ
+
mα

3

fα

)
+

∆Λ33

Λ33
E

(
m2

E ∆m3

∆m2
−m3

E

)
(66)

and so

λ2
mtV =

Kb
2

Kb
1

+
∆C3

Kb
1

(
q2 −

Kb
2

Kb
1

q1

)
(67)

In these expressions, the thermodynamic coefficients Λ33
E

, mα
3 and mβ

3 can be

determined from the Gibbs free energies of the phases as shown in appendix A.

If mα
3 and/or mβ

3 is small compared to other slopes, then the q1 coefficient will

be insensitive to D3. So changes on liquidus curves of both solid phases with

the addition of element 3 are necessary conditions for D3 to have an effect on355

the eutectic spacing.

In the general case, there are many factors that lead to a change in λ2
mV with

the addition of a third element as shown in Eqs (63-64). However, if fα = 0.5 and

the phase diagram of the binary alloy is symmetric (mβ
2 = −mα

2 and Λβ22 = Λα22),

then the term depending on D2 in eq. (63) disappears. According to Eq. (18),

and assuming that Λα33 and Λβ33 are independent of the temperature, we obtain

that the difference of concentration of element 3 between the β phase and the

α phase can be replaced by ∆C3 = ∆Λ33C
E
3 . In addition, by introducing Eq.

(18) in Eq. (25) we obtain that Λ33
E
CE3 = C∞3 . Moreover, if the binary alloy

has equal solid/liquid surface energies for the α and the β phase, then q2 can

be neglected and eq. (67) becomes:

λ2
mtV

∣∣
symmetrical

=
Kb

2

Kb
1

[
1− C∞3

∆C2

D2

D3

1

2mβ
2

∆Λ33

Λ33
E

(
∆m3 −m3

E ∆Λ33

Λ33
E

)]
(68)

For this particular case, the evolution of λ2
mV with the addition of element
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3 can be analyzed according to element 3 parameters. In fig. 3, we present

the variation of the λ2
mV according to C∞3 for 3 different sets of (mα

3 ,mβ
3 ,∆Λ33)

coefficients and for different diffusion coefficients D3 in a model ternary eutectic.360

In this figure, parameters used for element 2 are: D2 = 1× 10−9 m2/s, ∆C2 =

80 (at%) and mβ
2 = 10K/(at%) and mα

3 = −10K/(at%).

We note from Eq. (68) that whatever the (mα
3 ,mβ

3 ,∆Λ33) coefficients, the

change in λ2
mV with C∞3 diminishes in magnitude with the increase of D3. So

λ2
mtV will be particularly sensitive to the addition of element 3 if the element365

3 is a slow diffuser, as can be observed in fig. 3 in all cases displayed. We also

remark that the solid-liquid equilibrium implies that CE3 > (Cα3 , C
β
3 ). Therefore,

Λ33
E
< 1 and | ∆Λ33/Λ33

E |< 2. We note from Eq. (68) that the more similar

the Λα33 and Λβ33 distribution coefficients, the less λ2
mV varies with the addition

of element 3. In addition, for small values of ∆Λ33/Λ33
E

, the variation of370

λ2
mV is proportional to ∆m3. In Fig. 3, we have represented ywo cases for

∆Λ33/Λ33
E

= 0.1. We can see that the variation of λ2
mV is negligible when

∆m3 = 1K/(at%) and non-negligible when ∆m3 = 20K/(at%). In addition,

it is clear from Fig. 3 that the third alloying element can affect the eutectic

spacing even is D2 = D3. This is due to the asymmetry of the phase diagram.375

In the opposite limit, if element 3 is almost not soluble in one phase, for

example Λα33 ' 0, then ∆Λ33/Λ33
E ' Λβ33/(2 × Λβ33) ' 2. In this case, ∆m3 −

m3
E ∆Λ33

Λ33
E ' 2mβ

3 . Conversely, if Λβ33 ' 0, then ∆Λ33/Λ33
E ' (−Λα33/(2×Λα33) '

−2 and ∆m3 −m3
E ∆Λ33

Λ33
E ' −2mα

3 . In Fig. 3 we represent ∆Λ33/Λ33
E

= 1.9

and mα
3 = −10K/(at%) and mβ

3 = −9K/(at%). We can see that this last case380

is the most favorable the change the microstructure of the eutectic with the

addition of element 3.

It has however to be noted that the addition of a third element to a binary

eutectic may induce an instability of the eutectic front. Indeed, Plapp and
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Karma [10] have shown that for a given system, there exists a critical velocity385

vc such that the eutectic front becomes unstable for solidification speeds higher

than vc. This critical velocity is proportional to D3. Therefore, the slower the

diffusion of element 3, the smaller the critical velocity. For the model system

studied previously and taking C∞3 = 1 at%, mα
3 = mβ

3 = −10K/(at%), D3 =

0.5 × 10−9 m2/s and ∆Λ33/Λ33
E

= 1.9 we obtain vc of the order of 0.1µm/s390

which is relatively small. Therefore, for velocities higher than vc, the evolution

of the microstructure induced by the addition of 3 predicted by our theory might

not been observed.

This symmetrical study is restrictive but only limits the complexity of the

microstructure evolution related to properties inherent to the binary alloy. We395

note indeed that tendencies highlighted in this symmetrical case can be gener-

alized to non-symmetrical binary eutectics.

5. Discussion

The eutectic growth model developed in this paper is equivalent to the

Jackson-Hunt theory for binary alloys. It is well-known that the Jackson-Hunt400

theory is a satisfactory model of eutectic growth of regular binary alloys. This

theory can therefore be used to analyze regular eutectics containing any number

of elements and their growth properties in a similar way as the Jackson-Hunt

model. However, it has been shown for binary systems that rather than growing

only with the eutectic spacing λm predicted by the Jackson-Hunt theory, eutec-405

tics can grow with a range of eutectic spacing around λm at a given velocity.

Indeed, Karma and Sarkissian [18] have revealed that the regular microstruc-

ture drawn on Fig. 1 is stable up to a critical spacing which can be as high as

2λm. Akamatsu et al. [19] have shown experimentally and theoretically that the

lower stability bound of this range of eutectic spacings can be as low as 0.7λm.410
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They have also observed that the eutectic spacing developed is dependent on

the history of the solidification process. So even if all parameters involved in

the theory are known perfectly, the theory will only give an approximate value

of the eutectic spacing developed experimentally for a given velocity.

However, the model presented will provide guidance on how the eutectic415

spacing in an alloy changes with the addition of a new element through a change

in the λ2
mV law for the multicomponent system. To determine the change it is

necessary to know thermodynamic, diffusion and curvature parameters involved

in the λ2
mV result given above. Among these parameters, thermodynamic co-

efficients (liquidus slopes and distribution coefficients) can be obtained as soon420

as the expression of the Gibbs free energies of the solid and liquid phases are

known. Such expressions are generally gathered in thermodynamic databases

such as Pandat [20] or ThermoCalc [21]. Nowadays, we are still far from know-

ing the thermodynamic properties of any multicomponent alloy. Nevertheless,

the development of computational tools offers promising ways to accelerate our425

knowledge on thermodynamic properties of multicomponent systems [22]. Ex-

perimental values of diffusion coefficients in liquids with more than 2 elements

are rare [23]. For metals, this lack of experimental studies is partly due to the

fact that diffusion coefficients are particularly sensitive to fluid flow [24]. For

binary and ternary mixtures, some methods are nevertheless available to com-430

pute interdiffusion coefficients from ab initio Molecular Dynamics simulations

[25]. Finally, solid/liquid surface energies appear in the expression of Gibbs-

Thomson coefficients and angles of curvature at the trijunction. Angles of cur-

vature depend also on the different interphase surface energies [3]. A review of

the current knowledge on interface properties in multicomponent systems has435

been published by Hecht et al. [23]. They find that very little is known about the

interfacial properties in multicomponent systems, especially with more than two
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components. However, some experimental and numerical methods are available

to obtain information on how the interfacial properties change with the addition

of an element, at least in dilute ternary alloys [26, 27, 28]. Therefore, determin-440

ing the evolution of interfacial properties with the addition of an element seems

to be the the largest challenge in using this model. Computations and exper-

iments that give these interface properties as a function of alloy composition

would be very helpful. For now, we can nevertheless consider that solid/liquid

surface energies are expected to decrease with the absorption of a third element445

[29] which would lower Gibbs-Thomson coefficients.

This work can be continued by developing the theory for 3D rod-like mi-

crostructures in a similar way as in the Jackson-Hunt theory [2]. Moreover,

it was assumed in the theory presented that all phases have the same density,

which is not the case in most alloys. It would thus be important to add the450

effect of these differences of density in the theory in the future. Finally, this

theory is accurate to only first order in Peclet numbers, which is not true during

rapid solidification. This approximation may be removed by using an algorithm

similar to the one of Ludwig et al. [30] which enables the growth law of the

eutectic to be determined for any Peclet number value in binary alloys.455

In section 4.2, we have seen that, according to the model of Plapp and

Karma [10], the eutectic front of a binary eutectic containing a small amount of

a slow diffuser can become morphologically unstable and form eutectic colonies.

We note that this theory is based on a ternary eutectic model containing more

approximations than the one presented in this paper. It would therefore be inter-460

esting to integrate the approach used here to model the morphological instability

of the eutectic interface model in a N component alloy with no assumptions on

the symmetry of the phase diagram.
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6. Conclusion

We examine the steady state growth of multicomponent 2-phase eutectics.465

Using the same hypotheses as the Jackson-Hunt theory [2], we show that the

growth law relating the mean undercooling of the interface (∆T ), the eutectic

spacing (λ), and the growth velocity (V ): ∆T = K1V λ +
K2

λ
determined by

Jackson and Hunt for binary alloys can be generalized to all regular 2-phase

eutectics, whatever the number of elements. A method is given to express the470

K1 and K2 coefficients in terms of the alloy thermodynamic and thermophysical

properties. Thermodynamic parameters involved in this general theory have

been linked to Gibbs free energy functions of the phases and can therefore be

computed for any alloy with CALPHAD free energies.

A model has been derived from this theory for ternary 2-phase eutectics.475

It was shown that non-diagonal terms of the matrix of coupling between vari-

ations of concentrations in solid phases and variations of concentration in the

liquid phase can be non-negligible, contrary to what was assumed in previous

models [11, 8, 4]. From the ternary model, we have analyzed the influence of

a small addition of a third element to a binary alloy on the scaling law for the480

microstructure. We have shown, in particular, that slow diffusers can have a

large influence on the microstructure. However, this effect can be limited by the

thermodynamic properties of the alloy as described in section 4.2.
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Appendices

A. Equilibrium at the interface575

Linearisation of equations

We analyze here the thermodynamic equilibrium between the solid phase

φ and the liquid phase l at the interface. We suppose that this interface is

curved. We note T the temperature of the interface at this position, (Cl2, .., C
l
N )

the composition of the liquid phase at the interface (resp (Cφ2 , .., C
φ
N ) in the

solid phase φ), and pl the internal pressure in the liquid phase (resp pφ). The

interface thermodynamic equilibrium implies that for every element i = 1..N ,
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the chemical potential of the phase φ (µφi ) and of the liquid phase (µli) are equal:

µφi (Cφ2 , .., C
φ
N , T, p

φ) = µli(C
l
2, .., C

l
N , T, p

l) (69)

If the temperature T of the interface is close to the equilibrium eutectic tem-

perature TE , the equality (69) can be linearly expanded about the equilibrium

state of a flat interface at the eutectic temperature:

N∑
j=2

∂µφi

∂Cφj

∣∣∣∣
CφEk 6=C

φE
j ,TE

∆Cφj +
∂µφi
∂T

∣∣∣∣
CφEj

∆T +
∂µφi
∂p

∣∣∣∣
CφEj ,TE

∆pφ =

N∑
j=2

∂µli
∂Clj

∣∣∣∣
ClEj 6=ClEi ,TE

∆Clj +
∂µli
∂T

∣∣∣∣
ClEj

∆T (70)

where all ∆X quantities correspond to the difference between the value of X

at the eutectic temperature and the value of X at T : ∆X = XE −X. In this

development, we supposed that the pressure of the liquid does not change from

the equilibrium state.580

For the following we use the notation: ∆Sφi =
∂µφi
∂T

∣∣∣∣
CφEj

− ∂µli
∂T

∣∣∣∣
ClEj

and

µφij =
∂µφi
∂Cφj

∣∣∣∣
CφEk 6=C

φE
j ,TE

(we use the same notation for the liquid phase). Also

∂µφi
∂p

∣∣∣∣
CφEj ,T

= V φm,i where V φm,i is the partial molar volume of element i in

the solid phase φ. We note that for all i, ∆Sφi is positive. Indeed, at T >

TE the liquid phase is more stable than the phase φ and at T < TE the585

solid phase φ is more stable than the liquid phase. Therefore, the function

µφi (CφE2 , . . . , CφEN )− µli(ClE2 , . . . , ClEN ) is an increasing function of the tempera-

ture.

Using these notations, we can transform the system of N equations (70) to
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the following matrix system:


µφ12 . . . µφ1N ∆Sφ1

...

µφN2 . . . µφNN ∆SφN

×


∆Cφ2
...

∆CφN

∆T


=


µl12 . . . µl1N V φm,1

...

µlN2 . . . µlNN V φm,N

×


∆Cl2
...

∆ClN

−∆pφ


(71)

Defining [A] as the (N × N) matrix on left hand side of the matrix equation

(71), the multiplication of this equality by the inverse of matrix [A] gives a

matrix equation expressing variations of concentration in the solid phase ∆Cφi

and the variation of temperature ∆T according to variations of concentration

in the liquid phase ∆Clj and the variation of pressure in the solid phase ∆pφ:



∆Cφ2
...

∆CφN

∆T


=



Λφ22 . . . Λφ2N Θφ
2

. . .
...

ΛφN2 . . . ΛφNN Θφ
N

mφ
2 . . . mφ

N Ωφ


×



∆Cl2
...

∆ClN

−∆pφ


(72)

In this (N ×N) matrix, coefficients Λφij are called distribution coefficients and

mφ
i coefficients are the slopes of the phase φ liquidus surface corresponding to

variations of concentration of elements i. Coefficients of this matrix depend on

partial derivatives of chemical potentials µψi (where ψ can be the solid phase

φ or the liquid phase) according to independent elements concentration and

temperature. These derivatives can be computed from the expressions of phases

molar Gibbs free energies Gψm as for each element i = 1 . . . N [29]:

µψi = Gψm +

N∑
j=2

(δij − Cψj )
∂Gψm
∂Cj

∣∣∣∣
Cψk 6=C

ψ
j ,T

(73)

where Gψm depends on independent elements concentrations (Cψ2 , .., C
ψ
N ) and on
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temperature.590

In Calphad, the molar Gibbs free energy of a phase ψ is expressed according

to the concentration of all elements (Cψ1 , . . . , C
ψ
N ) and according to temperature.

We call this function Gψm,1N . To change this function to a one independent on

Cψ1 (Gψm,2N ), we replace Cψ1 by 1−
N∑
i=2

Cψi in the expression of Gψm,1N . In that

way, for all element i = 2 . . . N :

∂Gψm,2N

∂Cψi
=
∂Gψm,1N

∂Cψi
−
∂Gψm,1N

∂Cψ1
(74)

Curvature parameters

In this section we analyze terms linking the variations of temperature ∆T

and of elements concentration in the solid phase ∆Cφi to the variation of pressure

induced by the interface curvature.

In eq. (72), the coefficient Ωφ is defined as:

Ωφ =

N∑
k=1

A−1
NkV

φ
m,k (75)

where coefficients A−1
ij are coefficients of the inverse matrix of [A]. By definition

A−1
Nk coefficients can be written:

A−1
Nk =

1

det(A)
(−1)N+kBkN (76)

where coefficient Bij is the determinant of the (N − 1) × (N − 1) matrix cor-

responding to [A] withour row i and column j. We note that BkN can be

written: BkN = det([Ck][Gφcc]) where Gφcc is the Hessian of phase φ Gibbs free

energy (according to independent concentrations (Cφ2 , .., C
φ
N )) and [Ck] is a ma-

trix which only depends on independent elements concentration and such that

det(Ck) = Cφk (−1)k+1. In addition, det(A) =
N∑
k=1

(−1)N+kBkN∆Sk. We thus

37



get that:

Ωφ =
V φm

∆Sφl
(77)

where V φm =

N∑
k=1

Cφk V
φ
m,k is the molar volume of phase φ and ∆Sφl =

N∑
k=1

Cφk∆Sφk595

is the molar entropy of fusion of an infinitesimal amount of phase φ in the liquid

phase [15].

For k = 1 . . . (N − 1), coefficient Θk+1 introduced in eq. (72) is defined as:

Θk+1 =

N∑
j=1

A−1
kj V

φ
m,j (78)

which can be re-written Θk+1 =

N∑
j=1

(−1)k+jBjkV
φ
m,j

N∑
j=1

Ajk(−1)k+jBjk

. If we suppose that terms

of the same type (Ajk, Bjk, V φm,k) are of the same order, we obtain that Θk+1 ∼
V φm,j
Ajk

=
V φm,j

µφ
j(k+1)

. If, in addition, we assume that all terms of [Gcc] and all elements

concentration have respectively the same order we obtain that:

Θk+1 ∼
V φm
∂2Gφm

∂Ck+1∂Ci

(79)

The pressure variation induced by the interface curvature is defined as: ∆pφ =

σφlκ(x), where σφl is the solid phase φ/liquid interface energy and κ(x) is the

interface curvature in position x. Therefore, the effect of curvature variation on600

∆Cφi (for i = 2 . . . N) is of the same order as
V φm
∂2G

φ
m

∂Ci∂Cj

σφlκ(x).

From the data given in Kurz and Fisher [31] of pure materials, we find

V φm ∼ 10−5m3/mol and σφl ∼ 10−2 − 10−1 J/m2. By only taking into account

the entropy of mixing term of solid phase φ solidifying at T ∼ 102K we get that

∂2Gφm
∂Ci∂Cj

∼ 104K/mol. For alloys with a eutectic spacing around λ ∼ 10−6m we605
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have κ(x) ∼ 106m−1. Based on these ranges, we find that the effect of curvature

alone on ∆Cφi (for i = 2 . . . N) is of the order of 10−17 − 10−16, so this effect is

negligible.

Coefficients of binary alloys

In this section, we develop the expression of Λφ22 and mφ
2 coefficients for610

binary alloys. In this particular case, Eq. (72) gives that:

Λφ22 =
µl12∆Sφ2 − µl22∆Sφ1

µφ12∆Sφ2 − µ
φ
22∆Sφ1

(80)

mφ
2 =

µφ12µ
l
22 − µ

φ
22µ

l
12

µφ12∆Sφ2 − µ
φ
22∆Sφ1

(81)

In binary alloys, Eq. (73) induces that

µφ12 = −Cφ2
∂2Gφm
∂C2

2

(82)

µφ22 = (1− Cφ2 )
∂2Gφm
∂C2

2

(83)

(these expressions are also valid for the liquid phase). Eqs.(80) and (81) can

therefore be re-written:

Λφ22 =
Cl1∆Sφ1 + Cl2∆Sφ2

Cφ1 ∆Sφ1 + Cφ2 ∆Sφ2

∂2Glm
∂(Cl2)2

∂2Gφm
∂(Cl2)2

(84)

mφ
2 = −

(
ClE2 − C

φE
2

)
∂2Glm
∂(Cl2)2

∆Sφl
(85)

We note that as ∆Sφ1 , ∆Sφ2 ,
∂2Glm
∂(Cl2)2

and
∂2Gφm
∂(Cl2)2

are all positive, the coefficient615

Λφ22 is always positive.
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Coefficients of ternary alloys

In this section, we develop the expression of Λφij and mφ
i coefficients for

ternary alloys. In this particular case, the (N ×N) matrix defined in Eq. (72)

can be expressed as:


Λφ22 Λφ23 Θφ

2

Λφ32 Λφ33 Θφ
N

mφ
2 mφ

3 Ωφ

 = [A]−1 ×


µl12 µl13 V φm,1

µl22 µl23 V φm,2

µl32 µl33 V φm,3

 (86)

where [A]−1 is the inverse matrix of [A] defined in Eq. (71). For ternary alloys,

[A]−1 can be expressed as:

[A]−1 =
1

det(A)


B11 −B21 B31

−B12 B22 −B32

B13 −B23 B33

 (87)

where620

B11 =

∣∣∣∣∣∣∣
µφ2,3 ∆Sφ2

µφ3,3 ∆Sφ3

∣∣∣∣∣∣∣ B21 =

∣∣∣∣∣∣∣
µφ1,3 ∆Sφ1

µφ3,3 ∆Sφ3

∣∣∣∣∣∣∣ B31 =

∣∣∣∣∣∣∣
µφ1,3 ∆Sφ1

µφ2,3 ∆Sφ2

∣∣∣∣∣∣∣
B12 =

∣∣∣∣∣∣∣
µφ22 ∆Sφ2

µφ32 ∆Sφ3

∣∣∣∣∣∣∣ B22 =

∣∣∣∣∣∣∣
µφ12 ∆Sφ1

µφ32 ∆Sφ3

∣∣∣∣∣∣∣ B32 =

∣∣∣∣∣∣∣
µφ12 ∆Sφ1

µφ22 ∆Sφ2

∣∣∣∣∣∣∣
B13 =

∣∣∣∣∣∣∣
µφ22 µφ23

µφ32 µφ33

∣∣∣∣∣∣∣ B23 =

∣∣∣∣∣∣∣
µφ33 µφ32

µφ13 µφ12

∣∣∣∣∣∣∣ B33 =

∣∣∣∣∣∣∣
µφ12 µφ13

µφ22 µφ23

∣∣∣∣∣∣∣
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We thus obtain that

Λφij =

3∑
k=1

(−1)k+i−1Bk(i−1)µ
l
kj

3∑
k=1

(−1)k+i−1Bk(i−1)µ
φ
ki

(88)

mφ
i =

3∑
k=1

(−1)k+3Bk3µ
l
ki

3∑
k=1

(−1)k+3Bk3∆Sφk

(89)

B. Approximations of the model

Approximation of ∆′ as independent of growth conditions

In this appendix, we analyze the hypotheses that −∆′ = ∂∆T
β

∂fα

∣∣∣∣
fEα

− ∂∆T
α

∂fα

∣∣∣∣
fEα

can be approximated to −∆′0 where ∆′0 is independent of λ and V . The ex-

pression of ∆′ is obtained from expressions of ∆T
α

(Eq. (30)) and ∆T
β

(Eq.

(31)) and from mean liquid concentration of independent elements on each solid

phase interface (Eq. (27) and (28)). From these expressions, the derivation of

∆T
α

and ∆T
β

according to fα induce that ∆′ can be written:

∆′ = ∆′0 + V λξC +
ξR
λ

(90)

where ∆′0, ξC and ξR are coefficients independent on λ and V .

As ∆′0 is a zero order term in Peclet numbers and V λξC is at first order term

in Peclet numbers, if the interface grows at low Peclet numbers, then we can

assume that V λξC � ∆′0. Moreover, by analyzing the expressions of ∆T
β

and

∆T
α

we find:

∆′0 =

N∑
i=2

∆mi

N∑
j=2

[
Λ
]−1

ij
∆Cj (91)
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In the general case, the order of parameters involved in this expression are:

∆mi ∼ (10 − 103)K/(at%), ∆Cj ∼ 10 at% and [Λ]
−1
ij ∼ 0.1 − 10, so ∆′0 ∼

10− 105K. We also get that

ξR
λ

=
2

λ

[
Γβ/l sin(| θβ |)

f2
β

+
Γα/l sin(| θα |)

f2
α

]
(92)

The order of parameters involved in this expression are: Γ(α/β)/l ∼ 10−7K.m,625

sin(| θ(α/β) |) ∼ 10−1, f(α/β) ∼ 10−1 and λ ∼ 10−6m. So ξR
λ ∼ 1K and so, in

the general case, ξRλ � ∆′0.

We verify now that (ξCV λm, ξR/λm)� ∆′0 (where λm is the eutectic spacing

of minimum undercooling for a given velocity) on 4 binary alloys: Fe− Fe3C,

Al− Si, Al−Al2Cu and Sn− Pb. Parameters used for this study are taken630

from Ref [3]. For V = 100 × 10−6 m/s we obtain that for all systems, V λmξC

and ξR
λm

are three orders of magnitude smaller than ∆′0. So the approximation

∆′ ≈ ∆′0 is relevant for all these systems.

Is ∆f isoα a first order term in Pei?

We supposed in section 2.2.3 that the term ∂∆TC
∂fα

∣∣∣∣
fEα

could be approximated635

at zero order in Peclet number in the expression of the mean undercooling of

an isothermal interface (see Eq. 41). This assumption is justified if ∆f isoα is a

term at first order in Peclet numbers and so if the αR/λm term in Eq (34) is

in the order of αCV λm. We analyze this hypotheses on the 4 binary systems

used in the first part of appendix B. We observe that αR/λm is of the same640

range as αCV λm for all systems except for Sn− Pb where αCV λm = −0.17αRλm .

This induces that, for Sn− Pb, ∆f iso
α is a variation at a lower order than Pei

and that, for this system, ∂∆TC
∂fα

∣∣∣∣
fEα

could be developed at first order in Peclet

number in eq. (38).
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Figure 1: Schematic representation of steady state directional growth with a lamellar mor-
phology. Quantities reported on the figure are: eutectic spacing λ, solid fraction of α phase
(fα) and β phase (fβ), angles of curvature of α phase (θα) and β phase (θβ) at the tri-junction.
(After Ludwig et al. [30])

Figure 2: Sketch of the evolution of equilibrium tie lines with temperature in a ternary
two-phase eutectic. The arrows represent the concentration of elements 2 and 3 evolution in
the different phases with the temperature evolution from TE to Tu
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Figure 3: Variation of the λ2mV law with the addition of element 3 compared to the λ2mV
law of the symmetrical binary alloy (in %) according to C∞3 . Lines (a) correspond to:

∆Λ33/Λ33
E

= 1.9 and mβ3 = −9K/(at%), lines (b) correspond to ∆Λ33/Λ33
E

= 0.1 and

mβ3 = 10K/(at%), and lines (c) correspond to: ∆Λ33/Λ33
E

= 0.1 and mβ3 = −9K/(at%)
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