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Abstract: We describe the infinitesimal moduli space of pairs (Y, V ) where Y is a manifold

with G2 holonomy, and V is a vector bundle on Y with an instanton connection. These

structures arise in connection to the moduli space of heterotic string compactifications on

compact and non-compact seven dimensional spaces, e.g. domain walls. Employing the

canonical G2 cohomology developed by Reyes-Carrión and Fernández and Ugarte, we show

that the moduli space decomposes into the sum of the bundle moduli H1
ďA

(Y,End(V ))

plus the moduli of the G2 structure preserving the instanton condition. The latter piece

is contained in H1
ďθ

(Y, TY ), and is given by the kernel of a map F̌ which generalises the

concept of the Atiyah map for holomorphic bundles on complex manifolds to the case at

hand. In fact, the map F̌ is given in terms of the curvature of the bundle and maps

H1
ďθ

(Y, TY ) into H2
ďA

(Y,End(V )), and moreover can be used to define a cohomology on

an extension bundle of TY by End(V ). We comment further on the resemblance with the

holomorphic Atiyah algebroid and connect the story to physics, in particular to heterotic

compactifications on (Y, V ) when α′ = 0.

Keywords: Superstrings and Heterotic Strings, Differential and Algebraic Geometry,

Superstring Vacua

ArXiv ePrint: 1607.03473

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2016)016

mailto:delaossa@maths.ox.ac.uk
mailto:magdalena.larfors@physics.uu.se
mailto:esvanes@lpthe.jussieu.fr
https://arxiv.org/abs/1607.03473
http://dx.doi.org/10.1007/JHEP11(2016)016


J
H
E
P
1
1
(
2
0
1
6
)
0
1
6

Contents

1 Introduction 2

2 Manifolds with G2 structure 3

2.1 Decomposition of forms 4

2.2 Torsion classes 5

2.3 Cohomologies on G2 structure manifolds 5

2.3.1 De Rham cohomology 5

2.3.2 The canonical G2 cohomology 6

2.3.3 A canonical G2 cohomology for TY 7

3 Instanton bundles on manifolds with integrable G2 structure 9

3.1 Instantons and Yang-Mills equations 9

3.2 A canonical G2 cohomology for instanton bundles 10

3.2.1 Hodge theory 13

4 Infinitesimal moduli space of G2 manifolds 15

4.1 Form perspective 16

4.2 Spinor perspective 20

5 Infinitesimal moduli space of G2 instanton bundles 23

5.1 Form perspective 23

5.2 Spinor perspective 28

5.3 The infinitesimal moduli space 29

5.4 Higher order obstructions and integrability 32

6 Conclusions and outlook 34

A Formulas 35

A.1 Identities involving Hodge duals 37

A.2 Identities for derivatives of ϕ and ψ 38

B Elliptic complex 39

B.1 Examples of elliptic complexes 40

– 1 –



J
H
E
P
1
1
(
2
0
1
6
)
0
1
6

1 Introduction

Manifolds with special holonomy have, since long, been used to construct supersymmetric

lower-dimensional vacuum solutions of string and M theory. Seven-dimensional manifolds

with G2 holonomy are of interest for two types of vacua: firstly, compact G2 holonomy

manifolds may be used as the internal space in M theory constructions of four-dimensional

vacua preserving N = 1 supersymmetry. Secondly, non-compact G2 holonomy manifolds

have been used to construct four-dimensional N = 1/2 BPS domain wall solutions of the

heterotic string. In both types of configurations, the moduli space of the compactification

is of fundamental importance for the lower dimensional model.

In the mathematical literature, G2 manifolds were first discussed by Berger [1], and

the first examples of G2 metrics were constructed by Bryant [2], Bryant-Salamon [3] and

Joyce [4, 5]. Deformations of G2 holonomy manifolds, and their associated moduli space,

have been thoroughly studied, both by mathematicians and theoretical physicists [4–10]

(see [11] for a recent review). It has been shown, by Joyce [4, 5], that, for compact spaces,

the third Betti number sets the dimension of the infinitesimal moduli space.1 This space

may be endowed by a metric [14–16], that shares certain properties with the Kähler metric

on a Calabi-Yau moduli space [8, 9]. In particular, when used in M theory compacti-

fications, Grigorian and Yau [17] have proposed a local Kähler metric for the combined

deformation space of the geometry and M theory flux potential.

However, to the best of our knowledge, the moduli space of the G2 structure manifolds

needed for heterotic BPS domain walls of [18–26] remains largely to be explored.2 In this

paper, we will focus on this topic. Our study follows up on our recent paper [33], where the

moduli space of certain six-dimensional SU(3) structure manifolds was explored using an

embedding manifold with G2 structure. Here, we take a different perspective and study the

moduli space of G2 holonomy manifolds together with that of a vector bundle that encodes

the heterotic gauge field. As we will discuss in section 3, supersymmetry translates into

an instanton condition on the vector bundle. Deformations of instanton bundles over G2

manifolds have been studied before, see e.g. [34–38], and deformation studies of G structures

with instantons also appeared recently in [39–41].

In this article, we will construct the infinitesimal moduli space of the system (Y, V ),

where Y is a manifold with G2 holonomy and V is a vector bundle on Y with an instanton

connection. This is a well-defined mathematical problem, and provides a first approxima-

tion of the geometry and bundle relevant for heterotic N = 1/2 BPS solutions. Our main

result is that the infinitesimal moduli space of this system is restricted to lie in the kernel

of a map F̌ in the canonical G2 cohomology of [34, 35, 42]. We thus show that the so-called

Atiyah map stabilisation mechanism for Calabi-Yau moduli in N = 1 heterotic string vacua,

which was first discussed by Anderson et al. [43–45], may be extended to less supersymme-

tric configurations. We term this map the G2 Atiyah map, in analogy with the correspon-

ding map in Dolbeault cohomology on complex manifolds with holomorphic vector bundles.

1See [12] for a recent discussion of deformations of non-compact G2 holonomy manifolds. The study

of large deformations of G2 holonomy manifolds is complicated by the fact that the deformation may lead

to a torsionful G2 structure [6]. In this paper, we restrict to infinitesimal deformations of G2 holonomy

manifolds, and will return to the topic of deformations of torsionful G2 structures in a companion paper [13].
2See [27–32] for discussions on the classification of this type of heterotic and M theory vacua.
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Recently, a sequence of papers [46–49] , two of which written by two of the present

authors, have shed new light on the Atiyah stabilisation mechanism in N = 1 heterotic

string vacua. Due to the heterotic anomaly condition, which relates the gauge field strength,

tangent bundle curvature to the H-flux of the Kalb-Ramond B-field, the infinitesimal

moduli space is restricted to a more intricate nested kernel in Dolbeault cohomology, which

is most conveniently encoded as a holomorphic structure on an extension bundle. This N =

1 result is also of importance for the development of a generalised geometry for the heterotic

string [49–56]. We expect to obtain similar result for the N = 1/2 compactifications, once

we allow H flux. We will return to a study of this system, which corresponds to instanton

bundles on manifolds with so-called integrable G2 structure, in the companion paper [13].

Let us remark already now that, to a large degree, the new results of this paper carry

through to this general case.

We also mention that when finalising the current paper, an article appeared on

ArXiv [57], wherein the authors compute the infinitesimal moduli space of seven-

dimensional heterotic compactifications and show by means of elliptic operator theory that

the resulting space is finite dimensional. They also relate the resulting geometric structures

to generalised geometry in a similar fashion to the six-dimensional Strominger system [49].

Our approach to the problem resembles more that of [46–48], and it would be very inter-

esting to compare with the findings of [57], as can be done in the six-dimensional case.

The structure of this paper is as follows. In section 2 we recall the basic properties

of manifolds with G2 structure, and review the cohomologies that may be defined on such

spaces. In particular, we introduce the canonical G2 cohomologies H∗
ď
(Y ) and H∗

ďθ
(Y, TY )

for differential forms with values in the reals and the tangent bundle TY , respectively.

Section 3 contains a review of instanton bundles on manifolds with integrable G2 structure.

We also prove, following [34, 35], that a canonical G2 cohomology can be constructed for

any system (Y, V ), where Y is a manifold with integrable G2 structure, and V and instanton

bundle. To achieve this, we define a new operator ďA, and show that this gives rise to an

elliptic complex. In section 4 we reproduce known results for the infinitesimal moduli

space of G2 manifolds, and in particular how the moduli are mapped to the canonical

G2 cohomology group H1
ďθ

(Y, TY ). Finally, in section 5, we study the variations of the

instanton bundle V , and the combined system (Y, V ). We show that the moduli space

corresponds to

H1
ďA

(Y,End(V ))⊕ ker(F̌) ⊂ H1
ďA

(Y,End(V ))⊕H1
ďθ

(Y, TY ) ,

where elements in H1
ďA

(Y,End(V )) correspond to bundle moduli and the geometric moduli

are restricted to lie in the kernel of the G2 Atiyah map F̌ . This result is also discussed

from the perspective of extension bundles.

2 Manifolds with G2 structure

In this section, we recall relevant facts about manifolds with G2 holonomy. Our discussion is

brief, and the reader is referred to [2, 14, 58–61] for further details. Let Y be a 7-dimensional

manifold. A G2 structure on Y exists when the first and second Stiefel-Whitney classes are

– 3 –
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trivial, that is when Y is orientable and spin. When this is the case, Y admits a nowhere-

vanishing Majorana spinor η. Equivalently, Y has a non-degenerate, associative 3-form ϕ,

constructed as a spinor bilinear:

ϕabc = −iη†γabcη .

Here γabc is an antisymmetric product of three 7-dimensional γ matrices, that we take

to be Hermitian and purely imaginary. We note that the three-form ϕ is positive, as is

required to define a G2 structure [60]. We will often refer to ϕ as a G2 structure. Y has

G2 holonomy when η is covariantly constant with respect to the Levi-Civita connection:

∇η = 0 (2.1)

or equivalently when ϕ is closed and co-closed.

The form ϕ determines a Riemannian metric gϕ on Y by

6gϕ(x, y) dvolϕ = (xyϕ) ∧ (yyϕ) ∧ ϕ , (2.2)

for all vectors x and y in Γ(TY ). In components this means

gϕab =

√
det gϕ

3! 4!
ϕac1c2 ϕbc3c4 ϕc5c6c7 ε

c1···c7 =
1

4!
ϕac1c2 ϕbc3c4 ψ

c1c2c3c4 , (2.3)

where

ψ = ∗ϕ ,

which in terms of spinors corresponds to ψabcd = η†γabcdη, and

dxa1···a7 =
√

det gϕ ε
a1···a7 dvolϕ .

With respect to this metric, the 3-form ϕ, and hence its Hodge dual ψ, are normalised

so that

ϕ ∧ ∗ϕ = ||ϕ||2 dvolϕ , ||ϕ||2 = 7 ,

that is

ϕyϕ = ψyψ = 7 .

2.1 Decomposition of forms

The existence of a G2 structure ϕ on Y determines a decomposition of differential forms on

Y into irreducible representations of G2. This decomposition changes when one deforms

the G2 structure.

Let Λk(Y ) be the space of k-forms on Y and Λkp(Y ) be the subspace of Λk(Y ) of k-

forms which transform in the p-dimensional irreducible representation of G2. We have the

following decomposition for each k = 0, 1, 2, 3:3

Λ0 = Λ0
1 ,

Λ1 = Λ1
7 = T ∗Y ∼= TY ,

Λ2 = Λ2
7 ⊕ Λ2

14 ,

Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27 .

3Note that T ∗Y ∼= TY only as vector spaces.
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The decomposition for k = 4, 5, 6, 7 follows from the Hodge dual for k = 3, 2, 1, 0 respec-

tively. For a form of a given degree, the decomposition into G2 representations is obtained

using contractions and wedge products with ϕ, see [2]. A comprehensive discussion will

also appear in [13].

2.2 Torsion classes

Decomposing into representations of G2 the exterior derivatives of ϕ and ψ we have

d7ϕ = τ0ψ + 3 τ1 ∧ ϕ+ ∗7τ3 , (2.4)

d7ψ = 4 τ1 ∧ ψ + ∗τ2 , (2.5)

where the τi ∈ Λi(Y ) are the torsion classes, which are uniquely determined by the G2-

structure ϕ on Y [59]. We note that τ2 ∈ Λ2
14 and that τ3 ∈ Λ3

27. A G2 structure for which

τ2 = 0 ,

will be called an integrable G2 structure, using the parlance of Fernández-Ugarte [42]. The

manifold Y has G2 holonomy if and only if all torsion classes vanish.

2.3 Cohomologies on G2 structure manifolds

In this section, we recall different cohomologies that are of relevance for G2 holonomy

manifolds. In fact, a large part of our discussion is valid for a larger class of G2 structure

manifolds, namely the integrable ones. When we can, we will state our results for this

larger class of manifolds, of which the G2 holonomy manifolds form a subclass.

2.3.1 De Rham cohomology

For completeness, and to state our notation, let us first discuss the de Rham complex. As

above, Λp(Y ) denotes the bundle of p-forms on Y . The exterior derivative

d : Λp(Y )→ Λp+1(Y ) (2.6)

maps p-forms to p+ 1 forms:

dω =
∑
j,I

∂ωI
∂xj

dxj ∧ dxI . (2.7)

Since d2 = 0, the sequence

0
d−→ Λ0(Y )

d−→ Λ1(Y ) . . .
d−→ Λd(Y )

d−→ 0 , (2.8)

forms a complex. We show in detail in appendix B that this de Rham complex is elliptic.

As a consequence, the de Rham cohomology groups

Hp(Y ) = ker(dp)/im(dp−1) (2.9)

are finite-dimensional for compact Y . Finally, using the wedge product, we see that H∗(Y )

is endowed with a natural ring structure, cf. Theorem 2 below.
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2.3.2 The canonical G2 cohomology

We now turn to the Dolbeault complex for manifolds with an integrable G2 structure which

was first constructed in [34] and [42]. In these references, a differential operator ď acting

on a sub-complex of the de Rham complex of Y , is defined in analogy with a Dolbeault

operator on a complex manifold.

Definition 1. The differential operator ď is defined by the maps

ď0 : Λ0(Y )→ Λ1(Y ) , ď0f = df , f ∈ Λ0(Y ) ,

ď1 : Λ1(Y )→ Λ2
7(Y ) , ď1α = π7(dα) , α ∈ Λ1(Y ) ,

ď2 : Λ2
7(Y )→ Λ3

1(Y ) , ď2β = π1(dβ) , β ∈ Λ2
7(Y ) .

That is,

ď0 = d , ď1 = π7 ◦ d , ď2 = π1 ◦ d .

Consider the following lemma

Lemma 1. Let Y be an integrable G2 holonomy manifold and β ∈ Λ2
14(Y ). Then

dβ ∈ Λ3
7(Y )⊕ Λ3

27(Y ) .

Proof. Consider

0 = d(β ∧ ψ) = dβ ∧ ψ + β ∧ dψ

Hence

dβ ∧ ψ = −β ∧ dψ = −4β ∧ τ1 ∧ ψ = 0 .

Therefore the result follows.

We then have the following theorem:

Theorem 1. Let Y be a manifold with a G2 structure. Then

0→ Λ0(Y )
ď−→ Λ1(Y )

ď−→ Λ2
7(Y )

ď−→ Λ3
1(Y )→ 0 (2.10)

is a differential complex, i.e. ď2 = 0 if and only if the G2 structure is integrable, that is,

τ2 = 0.

Proof. Let f ∈ Λ0(Y ). Then

ď2f = π1d(df) = 0 .

Consider α ∈ Λ1(Y ). In this case

ď2α = π1

(
d(π7(dα))

)
= π1

(
d(dα− π14(dα))

)
= −π1

(
d(π14(dα))

)
.

Hence

ď2α = 0 iff d(π14(dα)) ∈ Λ3
7 ⊕ Λ3

14 iff d(π14(dα)) ∧ ψ = 0 ,

– 6 –
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for all α ∈ Λ1(Y ). We have

d(π14(dα)) ∧ ψ = d(π14(dα) ∧ ψ)− (π14(dα)) ∧ dψ = −(π14(dα)) ∧ ∗τ2 .

Therefore

ď2α = 0 iff (π14(dα)) ∧ ∗τ2 = 0 ,

for all α ∈ Λ1(Y ). This can only hold true iff τ2 = 0.

We denote the complex (2.10) by Λ̌∗(Y ). It should be mentioned that the com-

plex (2.10) is actually an elliptic complex [34]. We give a proof of this in appendix B.

We denote by H∗
ď
(Y ) the corresponding cohomology ring, which is often referred to as the

canonical G2-cohomology of Y [42].

One curiosity to note about ď is that in contrast to the familiar differentials like the

de Rham operator d or the Dolbeault operators ∂̄ and ∂, ď does not generically satisfy a

Poincare lemma. To see why, consider α ∈ Λ̌1(Y ) = Λ1(Y ). If there was a Poincare lemma,

then ďα = 0 would imply that α = ďf = df for some locally defined function f . But then

we would have dα = 0, which is not true in general. In other words the complex (2.10) is

not locally trivial. Hence, it becomes harder to define a notion of sheaf cohomology for ď.

Note that we can endow H∗
ď
(Y ) with a natural ring structure. Indeed, we have the

following theorem

Theorem 2. The wedge product induces a well-defined ring structure on the cohomology

H∗
ď
(Y ). The corresponding symmetric product is denoted by

( , ) : Hp

ď
(Y )×Hq

ď
(Y )→ Hp+q

ď
(Y ) ,

and is given by, for α ∈ Hp

ď
(Y ) and β ∈ Hq

ď
(Y ),

(α, β) = πi(α ∧ β) .

where πi denotes the appropriate projection onto the correct subspace Λp+qi (Y ) of Λp+q(Y ).

Proof. The proof of this theorem is very similar in spirit to the proof of Theorem 5 below.

One needs to show that if α and β are ď-closed, then (α, β) is ď-closed. Also, in order to

be a well-defined product, if either α or β are ď-exact, then the product should also be

exact. We leave this as an exercise for the reader.

2.3.3 A canonical G2 cohomology for TY

In the following, and in the accompanying paper [13], we will discover that deformations

of G2 holonomy manifolds can be understood by means of a connection dθ on the tangent

bundle TY . In anticipation of these results, in this subsection we define this connection

and include a number of properties.

– 7 –
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Let ∆a be a p-form with values in TY , that is ∆ ∈ Λp(TY ). Let dθ be a connection

on TY defined by

dθ∆
a = d∆a + θb

a ∧∆b ,

where the connection one form θb
a is given by

θb
a = Γbc

adxc ,

and Γ are the connection symbols of a metric connection ∇ on Y which is compatible with

the G2 structure, that is

∇ϕ = 0 , ∇ψ = 0 .

On G2 holonomy manifolds, this connection is unique, and corresponds to the Levi-Civita

connection. Thus, we have

dθ∆
a = d∆a + θb

a ∧∆b = ∇LCb ∆c
a dxbc . (2.11)

Note that this implies that the connection dθ is metric.

Given the connection dθ on TY defined in this subsection, one can define the operator

ďθ as will be done in definition 2, and a complex Λ̌∗(Y, TY ) as in equation (2.10). We

then have:

Theorem 3. Let Y be a manifold with integrable G2 structure. Then

0→ Λ0(TY )
ďθ−→ Λ1(TY )

ďθ−→ Λ2
7(TY )

ďθ−→ Λ3
1(TY )→ 0 (2.12)

is a differential complex, i.e. ďθ
2

= 0 if and only if Ř(θ) is an instanton, i.e. Ř(θ)a
b∧ψ = 0.

Proof. We omit this proof, since it is similar to the proofs of Theorems 1 and 4.

On a G2 holonomy manifold, Theorem 3 always holds, since the curvature

R(θ)a
b = dθa

b + θc
b ∧ θac ,

equals the curvature of the Levi-Civita connection ∇:

(R(θ)a
b)cd = ∂cΓad

b + Γec
b ∧ Γad

e = ∂cΓda
b + Γce

b ∧ Γda
e = (R(∇)a

b)cd .

Consequently, we may denote the curvature for both connections by R. Moreover, integra-

bility of the spinorial constraint (2.1) for G2 holonomy implies that ∇ is an instanton

[∇n,∇p]η = 0 ⇐⇒ Rnp abγ
abη = 0 ⇐⇒ Ra

b ∧ ψ = 0 .

It thus follows that G2 holonomy implies that θ is an instanton. As a consequence, TY

is an instanton bundle with connection θ. We will discuss instanton bundles in complete

generality in next section, and will prove that the complex (2.12) is elliptic and that the

associated cohomology groups Hp

ďθ
(Y, TY ) are finite-dimensional (if Y is compact).

– 8 –
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3 Instanton bundles on manifolds with integrable G2 structure

In this section, we discuss vector bundles with an instanton connection over manifolds

with G2 structure. Higher-dimensional instanton equations generalise the self-dual Yang-

Mills equations in four dimensions, and were first constructed in [62–64]. The instanton

condition can be reformulated as a G2 invariant constraint [36, 37, 65–73], and explicit

solutions to the instanton condition on certain G2 manifolds are also known [74, 75]. Here,

we show that the G2 instanton condition is implied by a supersymmetry constraint in string

compactifications, and that it, in turn, implies the Yang-Mills equations as an equation of

motion of the theory. In the second part of this section, we define an elliptic Dolbeault

cohomology on G2 instanton bundles, which we will use in the subsequent discussion of the

infinitesimal moduli space of G2 manifolds with instanton bundles.

3.1 Instantons and Yang-Mills equations

Let Y be a d-dimensional real Riemannian manifold and let V be a vector bundle on Y

with connection A. Suppose Y has a G-structure and that Q is a G-invariant four-form on

Y . The connection A on V is an instanton if for some real number ν (typically ν = ±1),

the curvature F = dA+A ∧A satisfies (see e.g. [68])

F ∧ ∗Q = ν ∗ F . (3.1)

In fact, taking the Hodge dual, equation (3.1) is

FyQ = ν F . (3.2)

In the case when G = G2 and d = 7, the G2-invariant four-form is Q = ψ = ∗ϕ, so

F ∧ ϕ = − ∗ F ⇐⇒ Fyψ = −F ,

where we have taken the Hodge dual in the second equality. This is the condition that

F ∈ Λ2
14(Y,End(V )) and it is equivalent to

F ∧ ψ = 0 . (3.3)

An instanton is supposed to satisfy the Yang-Mills equation, which in our case, appears

as an equation of motion of the superstring theory. We will review how this works for the

general d-dimensional case with non-zero torsion, specialising at the end of this section

to d = 7 and G2 holonomy. Note also that the instanton equation is implied from the

vanishing of the supersymmetric variation of the gaugino

Fmn γ
mn η = 0 ,

whenever we are considering compactifications which preserve some supersymmetry (here

η is a nowhere vanishing globally well defined spinor which defines the G-structure on Y,

cf. section 2). Hence the Yang-Mills equation (as an equation of motion) is satisfied if this

supersymmetry condition (as an instanton) is satisfied.

– 9 –
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To see that equation (3.1) satisfies the Yang-Mills equation, we begin by taking the

exterior derivative of equation (3.1)

dF ∧ ∗Q+ F ∧ d ∗Q = ν d ∗ F . (3.4)

Using the Bianchi identity for F

dAF = dF +A ∧ F − F ∧A = 0 ,

on the first term of the left hand side of equation (3.4) we have

dF ∧ ∗Q = (−A ∧ F + F ∧A) ∧ ∗Q = ν (−A ∧ ∗F + (−1)d ∗ F ∧A) .

Plugging this back into equation (3.4) and rearranging we find

ν dA ∗ F = F ∧ d ∗Q , (3.5)

where

dAβ = dβ +A ∧ β − (−1)k β ∧A ,

for any k-form β with values in End(V ).

Recall that in d-dimensions, for any k-form with values in End(V )

d†Aβ = (−1)dk+d+1 ∗ dA ∗ β

= d†β + (−1)dk+d+1 ∗ (A ∧ ∗β + (−1)d+k+1 ∗ β ∧A) .

Therefore, taking the Hodge dual of (3.5) we find

ν d†AF = Fyd†Q , (3.6)

which should then be the Yang-Mills equation when there is non-vanishing torsion. In the

G2 holonomy case, we have that Q = ψ is coclosed, by which we conclude that

d†AF = 0 (G2 holonomy) . (3.7)

This is in fact the equation of motion for the gauge field in fluxless N = 1 supersymmetric

compactifications of the heterotic string, as can be seen using the identity (A.22) and

comparing with equation (A.4d) in [76]. In a similar fashion, one may show that (3.6)

is indeed the equation of motion for the dilaton when there is non-vanishing torsion (as

discussed in [76] this is requires that Y permits generalised calibrations, which relate the

H-flux to d†Q).

3.2 A canonical G2 cohomology for instanton bundles

Let us now construct a Dolbeault-type cohomology that generalizes the canonical G2 co-

homology of Y to a vector bundle V over Y , as was first done in [34, 35]. We assume that

the connection A on V is an instanton, so that its curvature satisfies

ψ ∧ F = 0 , (3.8)

– 10 –



J
H
E
P
1
1
(
2
0
1
6
)
0
1
6

or, equivalently, F ∈ Λ2
14(Y,End(V )). We will state all results of this section in the most

general terms, namely for integrable G2 structures and for forms with values in a vector

bundle E, where the bundle E can be V , V ∗, End(V ) = V ⊗ V ∗, or any other sum or

product of these bundles. We note first that Lemma 1 readily generalises to the exterior

derivative dA.

Lemma 2. Let β be a two form with values in a vector bundle E defined above. Let A be

any connection on V . If β ∧ ψ = 0, that is if β ∈ Λ2
14(Y,E), then

dAβ ∈ Λ3
7(Y,E)⊕ Λ3

27(Y,E) .

Proof. Consider

0 = dA(β ∧ ψ) = dAβ ∧ ψ + β ∧ dψ

Hence

dAβ ∧ ψ = −β ∧ dψ = −4β ∧ τ1 ∧ ψ = 0 .

The result follows.

We now define the following differential operator

Definition 2. The maps ďiA, i = 0, 1, 2 are given by

ď0A : Λ0(Y,E)→ Λ1(Y,E) , ď0Af = dAf , f ∈ Λ0(Y,E) ,

ď1A : Λ1(Y,E)→ Λ2
7(Y,E) , ď1Aα = π7(dAα) , α ∈ Λ1(Y,E) ,

ď2A : Λ2(Y,E)→ Λ3
1(Y,E) , ď2Aβ = π1(dAβ) , β ∈ Λ2

7(Y,E) .

where the πi’s denote projections onto the corresponding subspace.

It is easy to see that these operators are well-defined under gauge transformations. We

then have:

Theorem 4. Let Y be a seven dimensional manifold with a G2 structure. The complex

0→ Λ0(Y,E)
ďA−−→ Λ1(Y,E)

ďA−−→ Λ2
7(Y,E)

ďA−−→ Λ3
1(Y,E)→ 0 (3.9)

is a differential complex, i.e. ď2
A = 0, if and only if the connection A on V is an instan-

ton and the manifold has an integrable G2 structure. We shall denote the complex (3.9)

Λ̌∗(Y,E), where E is one of the bundles discussed above.

Proof. Let f ∈ Λ0(Y,E). Then

ď2
Af = π7(d2

Af) = (π7F ) f .

Hence

ď2
Af = 0 ∀ f ∈ Λ0(Y, V ) iff F ∧ ψ = 0 ,
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i.e. the connection A on the bundle V is an instanton. Now, consider α ∈ Λ1(Y,E). In

this case

ď2
Aα = π1

(
dA(π7(dAα))

)
= π1

(
dA(dAα− π14(dAα))

)
= π1

(
F ∧ α− dA(π14(dAα))

)
,

where we recall that we find the singlet representation of a three-form by contracting with

ϕ, or wedging with ψ. Thus, the first term vanishes, since F is an instanton. Hence

ď2
Aα = 0 iff dA(π14(dAα)) ∧ ψ = 0 ,

for all α ∈ Λ1(Y ). We have

dA(π14(dAα)) ∧ ψ = dA(π14(dAα) ∧ ψ)− (π14(dα)) ∧ dψ = −(π14(dAα)) ∧ ∗τ2 .

Therefore

ď2α = 0 iff (π14(dAα)) ∧ ∗τ2 = 0 ,

for all α ∈ Λ1(Y,E). This holds true iff τ2 = 0.

Note that by a similar argument as given for the complex (2.10) in appendix B, it

follows that the complex (3.9) is elliptic, as was also shown in [35]. As a consequence, the

corresponding cohomology groups are of finite dimension, provided that Y is compact.

Finally, we prove the following theorem, which generalises Theorem 2:

Theorem 5. We have a ring structure on the cohomology H∗
ďA

(Y,End(V )),

πi[ , ] : Hp

ďA
(Y,End(V )))×Hq

ďA
(Y,End(V )))→ Hp+q

ďA
(Y,End(V )) ,

where πi denotes the appropriate projection.

Proof. The cases {p = 0, q = n} for n = {0, 1, 2, 3} are easily proven. For the case

p = q = 1, note that if α1,2 ∈ Λ1(Y,End(V )) are are ďA-closed, then

ďAπ7([α1, α2]) = 0 .

Indeed, we have

dA([α1, α2]) = dAπ7([α1, α2]) + dAπ14([α1, α2]) .

Wedging this with ψ, using that α1,2 are ďA-closed, and applying Lemma 2 on the last

term after the last equality, the result follows. Note also that if e.g. α2 is trivial, that is

α2 = dAεa, we get

[α1, α2] ∧ ψ = [α1, dAεa] ∧ ψ = −dA([α1, εa]) ∧ ψ ,

and so π7[α1, α2] = −π7(dA[α1, εa]) = −ďA[α1, εa]. We thus find a well-defined product

on the level of one-forms. By symmetry of the product, the only case left to consider is

{p = 1, q = 2}. We let α ∈ Λ1(Y,End(V )) and β ∈ Λ2
7(Y,End(V )). Clearly

ďA[α, β] = 0 .
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We only need to show that the product is well-defined. That is, let α = ďAε = dAε. We

then have

π1[α, β] = π1[dAε, β] = ďA[ε, β]− π1[ε, dAβ] = ďA[ε, β] ,

as ďAβ = 0. Similarly, let β = ďAγ = π7dAγ for γ ∈ Λ1(Y,End(V )). Then β = dAγ + κ,

where κ ∈ Λ2
14(Y,End(V )). We then have

ψ ∧ [α, β] = ψ ∧ [α, dAγ + κ] = ψ ∧ [α, dAγ] = −ψ ∧ dA[α, γ] ,

where we have used that ψ ∧ dAα = 0. Hence

π1[α, β] = −ďA[α, γ] .

It follows that the product is well defined. This concludes the proof.

We will drop the projection πi from the bracket when this is clear from the context.

As a corollary of Theorem 5 it is easy to see that the complex Λ̌∗(Y,End(V )) forms a

differentially graded Lie algebra. That is, there is a bracket

[·, ·] : Λ̌p(Y,End(V ))⊗ Λ̌q(Y,End(V )) → Λ̌p+q(Y,End(V )) ,

which is simply inherited from the Lie-bracket of End(V ). As a result, this bracket also

satisfies the Jacobi identity. Moreover, following similar arguments to that of the proof of

Theorem 5, it is easy to check that for x ∈ Λp(Y,End(V )) and y ∈ Λq(Y,End(V )) we have

ďA[x, y] = [ďAx, y] + (−1)p[x, ďAy] . (3.10)

It follows that Λ̌∗(Y,End(V )) forms a differentially graded Lie algebra. We will return to

this in section 5.4 when discussing higher order deformations of the bundle.

3.2.1 Hodge theory

We now want to consider the Hodge-theory of the complex (3.9). To do so, we need to

define an adjoint operator of ďA. We have the usual inner product on forms on Y ,

(α, β) =

∫
Y
α ∧ ∗β

for {α, β} ∈ Λ∗(Y ). Note that forms in different G2 representations are orthogonal with

respect to the inner product. We want to extend this to include an inner product on

forms valued in V and End(V ). In the case of endomorphism bundles, we can make use of

the trace

(α, β) =

∫
Y

tr α ∧ ∗β ,

for {α, β} ∈ Λ∗(Y,End(V )). For a generic vector bundle E, we must specify a metric

Gxy ∈ Λ0 (Sym(E∗ ⊗ E∗)), in order to define the inner product

(α, β) =

∫
Y
αx ∧ ∗βy Gxy , (3.11)
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for {αx, βy} ∈ Λ∗(Y,E). As in the case of endomorphism bundles, we may choose a trivial

metric δxy, but other choices may be more natural. In order to simplify our analysis, we

will keep the metric Gxy arbitrary, but require it to be parallel to ďA:

ďAGxy = dAGxy = 0 .

In the case of complex structures, this would be a Hermiticity condition that uniquely

specifies the Chern-connection. For G2 structures, things are a bit more subtle, and we will

return to this discussion in the companion paper [13]. Note however that when E = TY ,

we can use the canonical metric gϕ in the inner product (3.11). In the case when Y has G2

holonomy, the connection on TY will simply be the Levi-Civita connection, which is metric.

Having specified an inner product on E, we would now like to construct the ad-

joint operators of ďA and also use these to construct elliptic Laplacians. We have the

following proposition

Proposition 1. With respect to the above inner-product, and with Gxy is parallel to ďA,

the adjoint of ďA is given by

ď†A = π ◦ d†A , where d†A = − ∗ dA∗ ,

Here π denotes the appropriate projection for the degree of the forms involved.

Proof. Consider α ∈ Λ2
7(Y,E) and γ ∈ Λ3

1(Y,E). Using definition 2, the inner prod-

uct (3.11), and the orthogonality of forms in different G2 representations, we then compute

(α, ď†Aγ) = (α, π7 ◦ d†Aγ) = (α, d†Aγ) = (dAα, γ) = (ďAα, γ) .

The cases for forms of other degrees are similar.

Using a parallel metric Gxy, we can then construct the Laplacian

∆̌A = ďAď†A + ď†AďA .

With this Laplacian, we now prove a Hodge-theorem of the following form

Theorem 6. The forms in the differential complex (3.9) have an orthogonal decomposition

Λ̌∗(Y,E) = Im(ďA)⊕ Im(ď†A)⊕ ker(∆̌A) .

Proof. Note first that as ∆̌A is self-adjoint, the orthogonal complement of Im(∆̌A) is its

kernel. Hence

Λ̌∗(Y,E) = Im(∆̌A)⊕ ker(∆̌A)

Moreover, it is easy to see that Im(ďA) and Im(ď†A) are orthogonal vector spaces, hence

contained in Im(∆̌A), and that they are both orthogonal to ker(∆̌A). Indeed, consider e.g.

ďAβ = α+ γ ,
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where α ∈ Im(ďA) and γ ∈ ker(ďA). It follows that

(γ, γ) = (γ, ďAβ − α) = 0 ,

and so γ = 0. Similarly, one can show that Im(ď†A) ⊆ Im(∆̌A). We can then write a generic

∆̌A ρ ∈ Im(∆̌A) as

∆̌A ρ = ďAβ + ď†Aγ + κ ,

where κ ∈ Im(∆̌A) is orthogonal to Im(ďA) and Im(ď†A). However, as Im(∆̌A) is made up

of sums of ďA-exact and ď†A-exact forms by construction of ∆̌A, it follows that κ = 0. This

concludes the proof.

The Laplacian ∆̌A is elliptic by construction (see Lemma 9 in appendix B), and hence

for compact Y has a finite dimensional kernel. We refer to the kernel of ∆̌A as harmonic

forms and write

ker
(
∆̌A

)
= Ȟ∗(Y,E) .

Moreover, it is easy to prove that Ȟ∗(Y,E) are in one to one correspondence with the

cohomology classes of H∗
ďA

(Y,E) as usual. Indeed if α1 and α2 are harmonic representatives

for the same cohomology class, then

α1 − α2 = ďAβ ,

for some β. Applying ď†A to this equation gives

ď†AďAβ = 0 ,

which implies ďAβ = 0. Hence there is at most one harmonic representative per cohomology

class. Moreover, if the class is to be non-trivial, by the Hodge-decomposition there must be

at least one harmonic representative as well. Also, recall that by ellipticity of the complex,

the cohomology groups H∗
ďA

(Y,E) are finite dimensional for compact Y .

4 Infinitesimal moduli space of G2 manifolds

We now discuss variations of Y preserving the G2 holonomy condition, a subject that

has been discussed from different perspectives before. Firstly, Joyce has shown that, for

compact G2 manifolds, the infinitesimal moduli space maps to the space of harmonic three-

forms, and thus has dimension b3 [4, 5]. Secondly, it has been shown by Dai et al. that this

moduli space maps to the first ď-cohomology group [7]. This second result has also been

found using a string theory analysis by de Boer et al. [8]. In this section, we reproduce

these results, using both the form and spinor description of the G2 structure.

Let Y be a compact manifold with G2 holonomy. In this case the three-form ϕ is a

harmonic three-form. Consider a one parameter family Yt of manifolds with a G2 structure

given by the associative three-form ϕt with Y0 = Y and ϕ0 = ϕ. Below, we analyse

the variations that preserve G2 holonomy. For ease of presentation we relegate some of

the details of the computation to [13], where variations of integrable G2 structures will

be discussed.
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4.1 Form perspective

Let us start by discussing the variation of ψ. Since the space of G2 structures is an

open orbit in the space of three-forms, this variation is a general four-form, which can be

decomposed into G2 representations as

∂tψ = ct ψ + αt ∧ ϕ+ γt , (4.1)

where ct is a function, αt is a one-form, and γt ∈ Λ4
27. Equivalently, we may write the

variation of ψ (or any four form) in terms of a one form Mt with values in TY :

∂tψ =
1

3!
Ma
t ∧ ψbcda dxbcd , Ma

t = Mt b
a dxb . (4.2)

We can think of Mt as a matrix, where its trace corresponds to forms in Λ4
1 (i.e. ct), its

antisymmetric part (βt ab) to Λ4
7, and its traceless symmetric part (ht ab) to Λ4

27. In parti-

cular,

ct =
1

7
ψy∂tψ = −4

7
trMt , (4.3)

∆t b
a = Mt b

a − 1

7
(trMt) δa

b , (4.4)

γt =
1

3!
ht
a ∧ ψbcda dxbcd ∈ Λ4

27 , ht ab = ∆t (ab) , (4.5)

αt = βtyϕ , βt =
1

2
∆t [ab] dxab ∈ Λ2

7(Y ) . (4.6)

The deformation of ϕ can be decomposed in an analogous manner. Moreover, using

that ψ = ∗ϕ one finds relations between the two variations, that give

∂tϕ = ĉt ϕ− αtyψ − χt = −1

2
Mt

a ∧ ϕbca dxbc , (4.7)

where ĉt = 3 ct/4 and γt = ∗χt. Finally, using (2.2), we may compute the variation of the

G2 metric:

∂t gϕab =
ct
2
gϕab − 2ht ab . (4.8)

Note that the variation of the metric is only sensitive to the symmetric part of ∆a.

We now turn to trivial deformations which correspond to diffeomorphisms. Again, we

focus on ψ (using the results above, we can compute the trivial variations of ϕ):

LV ψ = d(vyψ) + vy(dψ) = ctriv ψ + αtriv ∧ ϕ+ γtriv , (4.9)

where LV denotes a Lie derivative along vectors V ∈ TY , v ∈ T ∗Y is the one-form dual

to V using the metric, and we have included the decomposition of the Lie derivatives in

representations of G2. The second term can be rewritten in terms of a two-form βtriv ∈ Λ2
7

which is related to the one form αtriv by

βtriv =
1

3
αtrivyϕ .

We then have
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Theorem 7. On a G2 manifold Y , deformations of the co-associative form ψ due to

diffeomorphisms of Y are given by

LV ψ = − 1

3!
(dθV

a) ∧ ψbcda dxbcd , V ∈ TY (4.10)

where

dθV
a = dV a + θb

a V b , θb
a = Γbc

a dxc , (4.11)

is a connection on TY , and Γbc
a are the connection symbols of the Levi-Civita connection

∇ compatible with the G2 structure on Y determined by ϕ. In fact, this is the connection

dθ defined in section 2.3.3.

The correspondence with

LV ψ = ctriv ψ + αtriv ∧ ϕ+ γtriv ,

is given by

ctriv =
4

7
∇a V a = −4

7
d†v , (4.12)

βtriv = −ďv , (4.13)

(htriv)ab = −
(
∇(avb) +

1

7
gϕab d†v

)
, (4.14)

Proof. This is proven by direct computation of the Lie derivatives. We relegate this proof

to [13], where variations of integrable G2 structures will be discussed.

Note that if Y is compact, by the Hodge decomposition of the function ct appearing

in equation (4.1), equation (4.12) means that one can take ct to be a constant. More-

over, (4.13), uses the ď differential operator defined in subsection 2.3.2. By the ď-Hodge

decomposition, we can write βt as

βt = ďBt + ď†λt + βhar
t ,

for some one form Bt, three form λt, and ď-harmonic two form βhar
t . This means we can

choose βt to be ď-coclosed, which implies that αt may be taken to be ď-closed:

ďα = 0 . (4.15)

By the ď-Hodge decomposition we can write αt as

αt = ďAt + αhar
t = dA+ αhar

t ,

for some function At, and ď-harmonic one form αhar
t . Note however that there are no

ď-harmonic one forms on a compact manifold with G2 holonomy [42], therefore αt can be

chosen to be d-exact

αt = dAt .

We now require that the variations preserve the G2 holonomy, that is,

d∂tψ = 0 , d∂tϕ = 0 . (4.16)

– 17 –



J
H
E
P
1
1
(
2
0
1
6
)
0
1
6

The first equation, together with equation (4.1) gives

dγt = 0 ⇐⇒ d†χt = 0 .

The second, together with (4.7), gives

d(χt + αtyψ) = 0 .

However

αtyψ = (dA)yψ = − ∗ ((dA) ∧ ϕ) = − ∗ d(Aϕ) = −d†(Aψ) ,

which implies

d(χt − d†(Aψ)) = 0 .

We conclude then that the three form

χt + αtyψ = χt − d†(Aψ) ,

is harmonic, and therefore the infinitesimal moduli space of manifolds with G2 holonomy

has dimension b3, including the scale factor ct.

We would like to compare this result with Joyce’s proof [4, 5] that the dimension of

the infinitesimal moduli space of manifolds with G2 holonomy has dimension b3. Without

entering into the details of the proof, Joyce finds the dimension of the moduli space by

imposing conditions (4.16) together with

π7(d†∂tϕ) = 0 . (4.17)

This constraint comes from requiring that the variations ∂tϕ are orthogonal to the trivial

deformations given by LV ϕ

(∂tϕ,LV ϕ) = 0 , ∀ V ∈ Γ(TY ).

In fact,

(∂tϕ,LV ϕ) = (∂tϕ, d(vyϕ)) = (d†(∂tϕ), vyϕ) ,

which vanishes for all V ∈ Γ(TY ) if and only if (4.17) is satisfied, or equivalently, when

d†(∂tϕ) ∈ Λ2
14. Now,

d†(∂tϕ) = −d†(χt + αtyψ) = −d†(αtyψ) ,

as χt is co-closed. Taking the Hodge-dual of the constraint (4.17) we find

0 = ∗
(
d†(∂tϕ) ∧ ψ

)
= ∗
(
ψ ∧ ∗d ∗ (αtyψ)

)
= − ∗

(
ψ ∧ ∗d(αt ∧ ϕ)

)
= −ψy(dαt ∧ ϕ) = dαtyϕ = ďαt,

which is the same as (4.15).
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Finally, we would like to discuss the map between ∆ and γ̃, in particular we would

like to describe the moduli space of compact manifolds with G2 holonomy in terms of ∆.

We begin with the moduli equations which for this case are

dθ∆
a
t ∧ ψbcda dxbcd = 0 , (4.18)

dθ∆
a
t ∧ ϕbca dxbc = 0 . (4.19)

The second equation is equivalent to

((ďθ∆t
a)yϕ)a = 0 , (4.20)

(π14(dθ∆
a
t ))ba = 0 , (4.21)

(dθ∆
c)d(aϕb)c

d − gϕ c(a (ďθ∆
cyϕ)b) = 0 . (4.22)

Note that equation (4.20) is just the trace of equation (4.22). Equation (4.18) can be better

understood by contracting with ϕ (the contraction with ψ just gives back equation (4.21)).

We find

2 (ďθ∆t
a)d[b ϕc]a

d = −(ďθ∆t
a)ad ϕbc

d . (4.23)

Then, applying equation (A.20) to ďθ∆
e, and contracting indices, we find

(ďθ∆
a)da ϕbc

d = (ďθ∆
a)d[b ϕc]a

d + gϕa[b ((ďθ∆
a)yϕ)c] .

With this identity at hand, we can write the equation for moduli (4.23) as

(ďθ∆t
a)d[b ϕc]a

d = gϕa[b (ďθ∆
ayϕ)c] . (4.24)

Adding up this equation and equation (4.22) we find

(ďθ∆t
a)db ϕca

d +
(
π14(dθ∆t

a)
)
d(b
ϕc)a

d = gϕab (ďθ∆
ayϕ)c . (4.25)

Using identity (A.17) in the second term(
π14(dθ∆t

a)
)
d(b
ϕc)a

d =
1

2

(
2π14

(
(dθ∆t

a)
)
db
ϕca

d − π14

(
(dθ∆t

a)
)
da
ϕcb

d
)

= π14

(
(dθ∆t

a)
)
db
ϕca

d ,

where we have used equation (4.21). Hence equation (4.25) becomes

(dθ∆t
a)db ϕca

d = gϕab (ďθ∆
ayϕ)c . (4.26)

The derivative dθ acts on ∆a
t as the Levi-Civita connection when Y has G2 holonomy

dθ∆
a
t = d∆a

t + θb
a ∧∆b

t = ∇b ∆t c
a dxbc ,

where ∇ is the Levi-Civita connetion. Then

dθ∆
a
t yϕ = ϕbcd∇b∆t c

a dxd ,

– 19 –



J
H
E
P
1
1
(
2
0
1
6
)
0
1
6

and equation (4.26) is equivalent to

∇c ht da ϕcdb = ∇a(βtyϕ)b . (4.27)

Taking the trace and using (A.13) we find that

0 = d†(βtyϕ) = d†α .

However, recall that by using diffeomorphisms we may choose αt to be closed. It then

follows that αt is an harmonic one-form, and then has to vanish on compact manifolds

with G2 holonomy. We conclude that αt and hence βt vanish, and so (4.27) implies that

(dθ∆t
a)yϕ = ∇c ht da ϕcdbdxb = 0 , (4.28)

where we have used that βt = 0. Using Theorem 7, which states that diffeomorphisms

correspond to changing ∆a by ďθ-exact forms, we see that ∆a remains ďθ-closed under

diffeomorphisms. We can then conclude that the infinitesimal moduli space of compact G2

manifolds maps to the canonical G2 cohomology group H1
ďθ

(Y, TY ).

4.2 Spinor perspective

We now derive again the results obtained in previous section from another perspective. As

the G2 holonomy on the manifold Y is determined by a well defined nowhere vanishing

spinor η which is covariantly constant, we study in this section the moduli of Y by deforming

the spinor and the G2 holonomy condition.

Let us first recall the definition of the fundamental three-form ϕ and four form ψ in

terms of the Majorana spinor η,

ϕabc = −i η†γabcη , (4.29)

ψabcd = −η†γabcdη . (4.30)

The gamma-matrices satisfy the usual Clifford algebra

{γα, γβ} = 2δαβ , (4.31)

where γa = ea
αγα, and ea

α denote the vielbein corresponding to the metric

gab = ea
α eb

β δαβ . (4.32)

We use labels {α, β, . . .} to denote tangent space flat indices. We take the γ matrices to be

hermitian and imaginary. We will need below some γ matrix identities which can be found

in e.g. [77]. The G2 holonomy condition on Y can be expressed in terms of the spinor η by

the fact that it is covariantly constant with respect to the Levi-Civita connection

∇aηi = ∂aηi +
1

4
Ωaαβ(γαβ)i

j ηj = 0 , (4.33)

where {i, j, . . .} are spinor indices. Here Ωaαβ is the spin connection defined by ∇a ebα = 0,

that is

Ωaαβ = −ebβ (∂a ebα − Γab
c ecα) . (4.34)
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Note that the γ matrices are covariantly constant.4 In, fact

∇a (γb) = ∂a (γb) + Γac
b (γc)− 1

4
Ωaαβ eγ

b [γγ , γαβ ] ,

and therefore

∇a γb =
(
∂aeα

b + Γac
b eα

c + Ωaα
β eβ

b
)
γα = (∇a eαb) γα = 0 ,

where we have used the γ matrix identity

[γγ , γαβ ] = 4 δγ [α γβ] . (4.35)

The moduli problem is discussed in this section in terms of those variations of η and

the vielbein ea
α which preserve the G2 holonomy condition (4.33). On manifold with a G2

structure, a general variation of η is given by

∂tη = dt η + i btaγ
aη ,

where dt is a real function and bt a real one form. Any other terms would be of the form

γabη or γabcη, however one can use the identities in equation (3.8) in [78] to show that this

is in fact the general form of an eight dimensional Majorana spinor on a manifold with a

G2 structure. Note moreover that η† η is a constant, hence dt = 0, and we are left with

∂tη = i btaγ
aη . (4.36)

The computation of the deformations of the G2 holonomy condition (4.33) requires

that we first compute the variations of the Christoffel connection, the spin connection and

the vielbein.5 The variations of the Christoffel connection are easily computed in terms of

the variations of the metric

∂t Γab
c =

1

2
gcd
(
∇a ∂tgbc +∇b ∂tgac −∇d ∂tgab

)
. (4.37)

The variations of the vielbein can be obtained from equation (4.32)

∂tgab = 2
(
∂te(a

α
)
eb)α = 2

((
∂tea

α
)
ebα − Λt ab

)
,

where we have defined

Λt ab =
(
∂te[a

α
)
eb]α . (4.38)

Hence

∂tea
α = ebα

(
1

2
∂tgab + Λt ab

)
. (4.39)

4Indeed, the γ matrices with flat tangent space indices are covariantly constant with respect to any con-

nection.
5These quantities can be found in the literature (see for example [79]), however we briefly sketch here

the computations in order to make this section self contained.
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Note that Λt corresponds to deformations of the vielbein which do not change the metric.

For the inverse of the vielbein we find

∂te
a
α = gab ecα

(
−1

2
∂tgbc + Λt bc

)
. (4.40)

The variations of the spin connection are computed using equations (4.37), (4.39) and (4.40)

and is left as an exercise for the reader

∂tΩaαβ = ebα e
c
β

(
∇aΛt bc −∇[b ∂tgc]a

)
. (4.41)

Next, we consider the deformations of the G2 holonomy condition (4.33). Varying

equation (4.33), and using equations (4.41) and the identity (see [78])

γab η = i ϕabc γ
c η , (4.42)

we have

∂t∇aη = ∂a∂tη +
1

4
Ωaαβγ

αβ∂tη +
1

4
(∂tΩaαβ)γαβη = ∇a∂tη +

1

4
(∂tΩaαβ)γαβη

= ∇a∂tη +
i

4

(
∇aΛt bc −∇[b ∂tgc]a

)
ϕbcd γ

d η

= ∇a
(
∂tη +

i

2
(Λtyϕ)b γ

bη

)
− i

4
∇[b ∂tgc]a ϕ

bc
d γ

d η

= i∇a
(
bt c +

1

2
(Λtyϕ)c

)
γc η − i

4
∇[b ∂tgc]a ϕ

bc
d γ

d η = 0 ,

where in the last equality we have used equation (4.36) and the fact that the γ matrices

are covariantly constant. Therefore

∇a
(
bt d +

1

2
(Λtyϕ)d

)
=

1

4
∇[b ∂tgc]a ϕ

bc
d . (4.43)

This equation is precisely equation (4.27) as we discuss below.

To compare this analysis with our previous discussion in section 4.1, and in particular,

to see how the moduli of the spinor and the vielbein are related to the moduli of ϕ, we

consider an infinitesimal variation of ϕ in equation (4.29)

∂tϕabc = −i
(
∂tη
† γabc η + η† γabc ∂tη + 3 (∂te[a

α) edαη
† γbc]d η

)
= −bt d η† [γd, γabc] η + 3 edα (∂te[a

α)ϕbc]d .

Using the γ matrix identity

[γαβγ , γδ] = 2 γαβγδ ,

and equation (4.30), we find

∂tϕ = 2 btyψ +
1

2
edα (∂te[a

α)ϕbc]d dxabc . (4.44)
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Comparing (4.44) with (4.7)

Ma
α = −2

3
(btyϕ)ab e

bα − ∂teaα . (4.45)

Moreover,

ct =
4

7
(∂tea

α) eaα ,

M(ab) = −1

2
∂tgab = −1

7
(∂tea

α) eaα gab + ht ab ,

βtyϕ = −2 bt − Λtyϕ ,

where βt is defined in equation (4.6). Note that βt is a combination of the deformation of

the spinor and π7(Λt), the latter corresponding to deformations of the vielbein which do

not change the metric. This was to be expected as these parameters are not independent:

indeed the deformations of the spinor can be considered as variations of the vielbein in

SO(7) which are not in G2.6 The equation for moduli (4.43) then becomes

∇a(βtyϕ)d) = −1

2
∇[b ∂tgc]a ϕ

bc
d , (4.46)

and hence, we obtain the same conclusions as in subsection 4.1, as it should be. It is worth

noting that the parameters bt and Λt do not contribute to deformations of the metric. As

we can choose βt = 0 using diffeomorphisms, these two are related by

2 bt = −Λtyϕ .

Moreover π14(Λt) corresponds to deformations of the vielbein which do not change the

G2 structure.

5 Infinitesimal moduli space of G2 instanton bundles

Consider a one parameter family of pairs (Yt, Vt) with (Y0, V0) = (Y, V ), where the cur-

vature F on the bundle V satisfies the instanton equation F ∧ ψ = 0. We want to study

simultaneous deformations of the G2 structure on Y together with those of the bundle

which preserve both the G2 holonomy of Y and the instanton equation. To achieve this,

we deform the system to first order which gives the infinitesimal moduli space. We will

then discuss how this result relates to an extension bundle, and finally give a few remarks

on higher order obstructions.

5.1 Form perspective

We start by varying the instanton equation:

0 = ∂t(F ∧ ψ) = ∂tF ∧ ψ + F ∧ ∂tψ .
6We thank the referee for indicating this fact to us.
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Note that in the first term, the wedge product of ∂tF with ψ picks out the part of ∂tF

which is in Λ2
7. Noting that

∂tF = dA∂tA ,

and contracting with ψ we obtain

π7(dA∂tA) = ďA∂tA = −1

3
ψy(F ∧ ∂tψ) , (5.1)

where we have used equation (A.16).

Keeping the G2 structure fixed (∂tψ = 0) on the base manifold gives the equation for

the bundle moduli, that is, let t be a bundle parameter, then

ďA∂tA = 0 . (5.2)

Moreover, it is clear that ďA-exact one-forms correspond to gauge transformations, so the

bundle moduli are in correspondence with the cohomology group H1
ďA

(Y,End(V)).7

Suppose now that t is a deformation of the G2 structure. Then equation (5.1) is a

constraint on the geometric moduli ∆t, that is required if the deformed bundle connection

shall be an instanton. Recall that we may decompose the variations of ψ as

∂tψ = ct ψ + γ̃t ,

where ct is a constant, and γ̃t ∈ Λ4
7 + Λ4

27 is related to the traceless matrix ∆t ab:

γ̃t =
1

3!
∆t a

e ψbcde dxabcd .

To understand the right hand side of equation (5.1) we define the map

F : Λp(Y, TY ) −→ Λp+1(Y,End(V ))

∆ 7→ F(∆) = −Fab dxb ∧∆a .

We also define the map

F̌ : Λpr(Y, TY ) −→ Λp+1
r′ (Y,End(V )) ,

where Λpr(Y,End(V )) ⊆ Λp(Y,End(V )), Λp+1
r′ (Y,End(V )) ⊆ Λp+1(Y,End(V )), and r and

r′ are appropriate irreducible G2 representations as follows:

F̌(∆) = F(∆) = −Fab dxb ∆a , for ∆ ∈ Λ0(TY ) ,

F̌(∆) = π7(F(∆)) = −π7(Fab dxb ∧∆a) , for ∆ ∈ Λ1(TY ) ,

F̌(∆) = π1(F(∆)) = −π1(Fab dxb ∧∆a) , for ∆ ∈ Λ2
7(TY ) .

Note that the projections that define F̌ are completely analogous to those that define the

derivatives ďA. It will become clear why we need this map shortly.

7Recall that under an infinitesimal gauge transformation ε ∈ Ω0(End(V )), the connection transforms as

A→ A+ dAε = A+ ďAε.
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Proposition 2. The equation for the moduli of instantons, (5.1), is equivalent to

ďA(∂tA) = −F̌(∆t) , (5.3)

where ∆t ∈ Λ1(Y, TY ).

Proof. The proof is a straightforward computation.

ψy(F ∧ γ̃) =
6 · 5
4 · 4!

ψc1c2c3c4 F[c1c2 γ̃c3c4ab] dxab

=
1

2 · 4!
ψc1c2c3c4 (6Fc1c2 γ̃c3c4ab + 8Fc1a γ̃bc2c3c4 + Fab γ̃c1c2c3c4) dxab

=
1

4!
ψc1c2c3c4 (3Fc1c2 γ̃c3c4ab + 4Fc1a γ̃bc2c3c4) dxab + (ψyγ̃)F .

The last term vanishes because γ̃ ∈ Λ4
7 + Λ4

27, and using F = −Fyψ (as F ∈ Λ2
14) in the

first term we have

ψy(F ∧ γ̃) =

(
−1

4
F c1c2 γ̃c1c2ab +

1

3!
ψc1c2c3c4 Fc1a γ̃bc2c3c4

)
dxab . (5.4)

By equations (4.3), (4.5) and (4.6), it is easy to check that

1

3!
ψac1c2c3 γ̃bc1c2c3 = −2 ∆t b

a −∆t d
c ψadbc .

Therefore, (5.4) becomes

ψy(F ∧ γ̃) =
(
−F c1c2 ∆t [c1

d ψc2ab]d + (−2 ∆t b
c −∆t d

e ψcdbe)Fca

)
dxab

= −1

2

(
F c1c2 (∆t c1

d ψc2abd + ∆t a
d ψbc1c2d) + 2 (2 ∆t b

c + ∆t d
e ψcdbe)Fca

)
dxab

= −1

2

(
2Fca ∆t b

c − F c1c2 ψc1abd ∆t c2
d + 2Fca ψ

cd
be ∆t d

e
)

dxab ,

where in the last step we have used again −F = Fyψ. We now use the identity (see

equation (A.18) proven in appendix A)

F ae ψebcd = 3Fe[b ψcd]
ae ,

in the second term, and we obtain

ψy(F ∧ γ̃) = −1

2

(
2Fca ∆t b

c − 3Fc[a ψbe]
cd ∆t d

e + 2Fca ψbe
cd ∆t d

e
)

dxab

= −1

2

(
2Fca ∆t b

c − Fce ψabcd ∆t d
e
)

dxab

= −1

2
Fcd ∆t e

c (2 δda δ
e
b + ψab

de) dxab

=
1

4
F(∆t)cd (2 δca δ

d
b + ψab

cd) dxab =
1

4
F(∆t)cd ϕ

cd
e ϕab

e dxab

= (F(∆t)yϕ)yϕ = 3π7(F(∆t)) = 3 F̌(∆t) .

This result, together with equation (5.1), gives equation (5.3).
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The map F̌ is actually a map between cohomologies, moreover, it maps the metric

moduli space of G2 manifolds into the ďA-cohomology. As we will see below this is a

consequence of the Bianchi identity dAF = 0. We begin with a useful lemma.

Lemma 3. The exterior covariant derivative dA of F is given by

dA(F(∆)) + F(d∆) = −dA(Fab dxb) ∧∆a , (5.5)

for any p-form ∆ with values in TY . Moreover, due to the Bianchi identity

dAF = 0 ,

the right hand side of equation (5.5) becomes

dA(F(∆)) + F(d∆) = −(∂aF +Aa F − F Aa) ∧∆a . (5.6)

Proof.

dA(F(∆)) = −dA(Fab dxb ∧∆a)

= −d(Fab dxb ∧∆a)−A ∧ Fab dxb ∧∆a + Fab dxb ∧∆a ∧A
= −dA(Fab dxb) ∧∆a −F(d∆) ,

where

F(d∆) = −Fab dxb ∧ d∆a .

To obtain equation (5.6), we re-write the Bianchi identity

0 = dAF = dF +A ∧ F − F ∧A ,

in a form that will prove very useful.

0 = (dAF )abc dxbc = 3
(
∂[aFbc] +A[a Fbc] − F[abAc]

)
dxbc

= 2 (∂aF +Aa F − F Aa)− 2 dA(Fab dxb) .

Hence

dA(Fab dxb) = ∂aF +Aa F − F Aa . (5.7)

Using this equation into (5.5) we obtain (5.6). Note that this proof makes it clear that this

equation is covariant. In fact, one can make this explicit by writing it as

dA(F(∆)) + F(dθ∆) = −(dA(Fab dxb)− θab ∧ Fbc dxc) ∧∆a .

See theorem below for details.

Theorem 8. Let ∆ be a p-form with values in TY . The Bianchi identity dAF = 0 implies

that the map F̌ satisfies

F̌(ďθ(∆)) + ďA(F̌(∆)) = 0 . (5.8)

This implies that forms ∆ ∈ Λp(Y, TY ) which are ďθ-exact are mapped into ďA-exact forms

in Λp+1(Y,End(V )). Therefore, F̌ maps the infinitesimal moduli space of Y , given by ele-

ments of H1
ďθ

(Y, TY ), into elements of the cohomology H2
ďA

(Y,End(V )).
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Proof. To compute ďA(F̌(∆)), we need to consider the map acting on ∆ ∈ Λp(Y, TY ) for

each p. For p = 0,

ďA(F̌(∆)) = ďA(F(∆)) = π7(dA(F(∆))) =
1

3

(
dA(F(∆))yϕ

)
yϕ . (5.9)

For p = 1, we have

ďA(F̌(∆)) = ďA(π7(F(∆))) = π1(dA(π7(F(∆)))) = ďA(F(∆)) ,

because, ďA(π14(F(∆))) = 0 automatically. In fact, by Lemma 2, for any β ∈ Λ2
14,

ďA(β) ∈ Λ3
7 ⊕ Λ3

14 .

Hence

ďA(F̌(∆)) = ďA(F(∆)) = π1(dA(F(∆))) =
1

7

(
ϕydA(F(∆))

)
ϕ . (5.10)

Finally, when p = 2, we have

ďA(F̌(∆)) = ďA(π1(F(∆))) = 0 .

Next, we need to consider the projections onto Λ2
7 and Λ3

1, for p = 0, 1, respectively,

as shown in equations (5.9) and (5.10). Note that in both cases we need to compute the

contraction of d.A(F(∆)) with ϕ. Recall equation (5.6)

dA(F(∆)) + F(d∆) = −(∂aF +Aa F − F Aa) ∧∆a .

Contracting with ϕ and using ϕyF = 0, we have(
dA(F(∆)) + F(d∆)

)
yϕ = −

(
∂aF ∧∆a

)
yϕ = − ∗

(
∂aF ∧∆a ∧ ψ

)
= ∗
(
F ∧ (∂aψ) ∧∆a

)
=

1

3!
∗
(
F ∧ ψcdeb dxcde ∧ θab ∧∆a

)
, (5.11)

where in the last step we have used Lemma 7, and where

θa
b = Γac

b dxc ,

with Γ being the connection symbols for a metric connection ∇ which is compatible with

the integrable G2 structure ϕ on Y . By Lemma 5, equation (5.11) gives(
dA(F(∆)) + F(d∆)

)
yϕ = ∗

(
Fbc dxc ∧ ψ ∧ θab ∧∆a

)
= − ∗

(
F(θa

b ∧∆a) ∧ ψ
)

= −
(
F(θa

b ∧∆a)
)
yϕ .

Recall that we have defined the connection dθ as

dθ∆
a = d∆a + Γbc

a dxc ∧∆b = d∆a + θb
a ∧∆b , ∆ ∈ Λp(Y, TY ) .

Therefore (
dA(F(∆)) + F(dθ∆)

)
yϕ = 0 . (5.12)
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Returning to equations (5.9) and (5.10) we find

ďA(F̌(∆)) = −1

3

(
F(dθ∆)yϕ

)
yϕ = −π7(F(dθ∆)) = −F̌(dθ∆) ,

ďA(F̌(∆)) = −1

7

(
F(dθ∆)yϕ

)
ϕ = −π1(F(dθ∆)) = −F̌(dθ∆) = −F̌(ďθ∆) .

where in the last step in the second equation we have used the fact that for any two form

β ∈ Λ2
14(Y, TY ),

F(β) ∧ ψ = −Fab dxb ∧ βa ∧ ψ = 0 ,

implying that F(β) ∈ Λ3
7 ⊕ Λ3

14. Therefore

F̌(dθ∆) = F̌
(
ďθ∆ + π14(dθ∆)

)
= F̌(ďθ∆) .

5.2 Spinor perspective

It can be useful to understand the infinitesimal deformations of the instanton condition

from more perspectives. Let us therefore describe the infinitesimal deformations in terms

of the spinorial perspective of section 4.2.

Recall that the gaugino supersymmetry condition reads

Fabγ
abη = 0 . (5.13)

On a manifold with a G2-structure, this is equivalent to (3.3). A generic variation

of (5.13) gives

∂t(Fabγ
ab)η + Fabγ

ab∂tη = 0 (5.14)

where in the second term we can use (4.36):

Fabγ
ab∂tη = Fabγ

ab(dtη + ibtcγ
cη) = iFabbtc([γ

ab, γc] + {γab, γc})η
= iFabbtc(−4gcaγb + 2γabc)η .

The second equality is a consequence of the gaugino supersymmetry condition, and in the

last step we use (4.35) and the identity

{γab, γc} = 2γabc . (5.15)

We then use the identities in equation (3.8) in [78], and that F ∈ Λ2
14(Y,End(V)), which

implies that Fyϕ = 0 and −F = Fyψ:

Fabγ
abcη = Fab

(
iϕabc + ψabcdγd

)
η = −2F cdγ

dη . (5.16)

Consequently,

Fabγ
ab∂tη = −8iF abbtaγ

bη = −4

3
((btyF )yϕ)abγ

abη ,
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where we have used (4.42). The remaining terms in (5.14) are given by[
∂t(Fab)γ

ab + Fabec
α∂te

a
αγ

bc
]
η =

[
dA[a∂tAb] + Fcaeb

α∂te
c
α

]
γabη

=

[
dA[a∂tAb] + Fcag

cd

(
−1

2
∂tgbd − Λt bd

)]
γabη

=
[
dA[a∂tAb] +

(
ht a

c − Λt a
c
)
Fbc
]
γabη

where we have used (4.40) and (5.13). We conclude

∂t(Fabγ
abη) =

[
dA[a∂tAb] +

(
ht a

c − Λt a
c
)
Fbc −

4

3
((btyF )yϕ)ab

]
γabη .

We then note that[
Λt a

cFbc +
4

3
((btyF )yϕ)ab

]
γabη = i

[
Λt a

cFbc +
4

3
((btyF )yϕ)ab

]
ϕabdγdη

= i
[
− (Λtyϕ)yF + 2(btyF )

]
d
γdη

= −i[(βtyϕ)yF ]dγ
dη = −βt acFbcγabη .

Here we have used F ∈ Λ2
14(Y,End(V)), which ensures that

F(Λt)yϕ = Λt a
cFbcϕ

ab
ddx

d = Λact (3Fb[cϕda]
b − Fbdϕacb − Fbaϕcdb)dxd

=⇒ F̌(Λt) = F(Λt)yϕ = −(Λtyϕ)yF = F(Λtyϕ) ,
(5.17)

where the maps F̌ ,F were introduced in section 5.1.

Variations that preserve the gaugino supersymmetry equation must thus satisfy(
dA[a∂tAc] + ∆t a

d Fdc

)
γacη = 0 , (5.18)

which is equivalent to (5.3), upon using (4.42). We hence arrive at the same condition

from the spinorial perspective as well. This was of course expected, as the two descriptions

should be equivalent.

5.3 The infinitesimal moduli space

The constraint (5.3) (or equivalently (5.18)) on the variations ∆t ∈ TM of the G2-

holonomy metric of Y , means that F̌(∆t) must be ďA-exact, that is

∆t ∈ ker(F̌) ⊆ TM .

Therefore, the tangent space of the moduli space of the combined deformations of G2-

holonomy metrics and bundle deformations is given by

TM = H1
ďA

(Y,End(V ))⊕ ker(F̌) ,

where elements in H1
ďA

(Y,End(V )) correspond to bundle moduli. Recall however that the

infinitesimal moduli space of G2-holonomy metrics does not span the cohomology group

H1
ďθ

(Y, TY )). Let us take a closer look at this.
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We first recall the isomorphism between the cohomology H1
ďθ

(Y, TY )) and the harmonic

one-forms,

H1
ďθ

(Y, TY )) ∼= Ȟ1(Y, TY ) ,

where the harmonic forms are in the kernel of the laplacian

∆̌θ : Ω∗(Y, TY )→ Ω∗(Y, TY ) ,

which is constructed using the Levi-Civita connection and the G2-holonomy metric. It

is easy to check that the diffeomorphism gauge which sets αt = 0 in (4.27) ensuring the

ďθ-closure of ht, also makes ht harmonic with respect to the Laplacian ∆̌θ as an element

of Ω1(Y, TY ). Indeed, recall that in this gauge we have that the three-form

χt =
1

2
ht a

dϕbcd dxabc

is harmonic. Applying d† to χt we find(
∇aht ad

)
ϕbcd + 2

(
∇aht [b

d
)
ϕc]ad = 0 .

The last term vanishes by the symmetry property of ht ab and the ďθ-closure of ht as an

element of Ω1(Y, TY ). From this it follows that

∇aht ad = 0 ,

establishing the co-closure of ht. Now, the harmonic forms further decompose as

Ȟ1(Y, TY ) = Š1(Y, TY )⊕ Ǎ1(Y, TY ) ,

where Š1(Y, TY ) denote the symmetric elements of Ȟ1(Y, TY ), viewed as a (7×7)-matrix.

These are precisely the traceless symmetric deformations ht, plus the singlet deformation

corresponding to a re-scaling of ϕ. Together, these span all the non-trivial deformations of

the three-form ϕ. We must therefore have

Š1(Y, TY ) ∼= H3(Y ) .

Ǎ1(Y, TY ) denote the anti-symmetric elements of Ȟ1(Y, TY ), viewed as a (7× 7)-matrix.

There is a further decomposition of Ǎ1(Y, TY ) into the 7 and 14 representations

Ǎ1(Y, TY ) = Ǎ1
7(Y, TY )⊕ Ǎ1

14(Y, TY ) .

However, on a compact manifold of G2-holonomy it can be shown that

Ǎ1
7(Y, TY ) = 0 .

The proof of this follows a similar procedure to the argument of section 4, where it was

shown that the one-form αt could be set to zero by an appropriate diffeomorphism. Ba-

sically, one can use an element of Ǎ1
7(Y, TY ) to construct a ď-harmonic one-form. This

contradicts the fact that there are no such one forms on a compact G2-holonomy manifold.
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The redundant 14-representation, which does not contribute to the variation of the G2

structure, has an interpretation as B-field deformations [8]. We will come back to these in

more detail in a future publication [13], but we note that by a similar computation as that

of (5.17), we can easily show that

Ǎ1
14(Y, TY ) ⊆ ker(F̌) .

We can hence extend the notion of TM to include both the metric deformations and the

B-field deformations, with the further requirement from the instanton condition that we

need to restrict to elements ∆t ∈ H1
ďθ

(Y, TY )) in the kernel of F̌ . Note that ∆t can in

principle include the B-field deformations in the 14-representation as well.

We can rephrase this result in terms of a cohomology group defined on an extension

bundle E. Define the bundle E which is the extension of TY by the bundle End(V ), given

by the short exact sequence

0 −→ End(V ) −→ E −→ TY −→ 0 , (5.19)

with extension class F̌ , and a connection DE on the bundle E

DE =

(
ďA F̌
0 ďθ

)
.

It is not too difficult to show that this connection satisfies D2
E = 0 by equation (5.8). The

resemblance of the above sequence with that of the Atiyah algebroid [80] is clear, and it

tempting to suggest that the infinitesimal moduli space is counted by the first cohomology

as in that case. Let us see if this is correct.

Consider the cohomology group H1
DE (Y,E) and let

x =

(
α

∆

)
∈ H1

DE (Y,E) .

where α is a one form with values in End(V ) and ∆ is a one form with values in TY . Then

a DE-closed one form x is equivalent to

DE x =

(
ďA F̌
0 ďθ

) (
α

∆

)
=

(
ďAα+ F̌(∆)

ďθ∆

)
= 0 .

That is

ďAα+ F̌(∆) = 0 , ďθ∆ = 0 .

These are just the equations which must be satisfied by the moduli of the instanton con-

nection on the bundle V over Y , together with the variations of the B-field and variations

of the G2 holonomy structure on Y which preserve the instanton conditions. Consider now

one forms x which are DE-exact

x = DEλ ,
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for some section λ of E. Let

λ =

(
ε

δ

)
.

Then

ďAε+ F̌(δ) = α , ďθδ = ∆ .

Modulo such DE-exact terms, the second equation then tells us that

∆ ∈ H1
ďθ

(Y, TY )) ,

which are precisely the metric deformations preserving G2-holonomy and B-field defor-

mations inclusive as described above. Fixing the gauge of these deformations by e.g.

considering harmonic forms, we are free to set ďθδ = 0. However, as there are no globally

covariantly constant vector fields on a manifold of G2-holonomy, we have

H0
ďθ

(Y, TY ) = 0 .

It follows that δ = 0. The first equation then says that the bundle moduli should be

modded out by the remaining gauge symmetries, which are given by exact forms ďAε. In

summary, we can claim that the infinitesimal moduli space is given by

TM = H1
ďA

(Y,End(V ))⊕ ker(F̌) = H1
DE (Y,E) . (5.20)

Indeed, this can be seen by computing the long exact sequence in cohomology associated

to the short exact sequence E

0→ H1
ďA

(Y,End(V ))
i−→ H1

DE (E)
p−→ H1

ďθ
(Y, TY ))

F̌−→ H2
ďA

(Y,End(V ))→ . . . .

We can the compute H1
DE (E) using exactness of the sequence. That is, we have

H1
DE (Y,E) ∼= Im(i)⊕ Im(p)

Indeed by injectivity of the first map we see that Im(i) ∼= H1
ďA

(Y,End(V )), while Im(p) =

ker(F̌). The result (5.20) follows.

It is interesting to see that the infinitesimal deformations of the extension bundle E,

defined by the differential DE , are computed exactly as in the even-dimensional holomor-

phic case [80] by the first cohomology H1
DE (Y,E). Indeed, the bundle valued cohomologies

we have defined in this paper have many similarities with their holomorphic cousins. We

will study many of these similarities further in [13].

5.4 Higher order obstructions and integrability

Let us now go a step further and consider obstructions to higher order deformations of

the instanton bundles. To do so, we will keep the G2 geometry fixed for now. We will

return to higher order deformations of the instanton condition together with the base, or

equivalently the above defined extension E in a future publication. In this section, we will
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also return to setups where the base geometry is some integrable G2-structure manifold,

generalising the G2-holonomy condition.

We Let {A,B,C, . . .} denote an infinitesimal direction in the vector space spanned

by H1
ďA

(Y,End(V )). As we saw in section 3.2, the triple (Λ̌∗(End(V )), ďA, [·, ·]) forms a

differentially graded Lie algebra. Furthermore, inserting a finite change of the connection

A→ A+ ∆A

into the instanton condition produces the following condition on ∆A

ďA∆A+
1

2
[∆A,∆A] = 0 . (5.21)

That is, ∆A should be a Maurer-Cartan element of the differentially graded Lie algebra,

as is usual when one studies these kinds of deformation problem. Let XA correspond to

the bundle moduli. We now assume that ∆A can be expanded in moduli fields as

∆A = XA∂AA+
1

2
XAXB ∂A∂BA+ . . . .

Since the XA are arbitrary, if we plug this expansion back into (5.21) we must have

ďA∂BA = 0

ďA∂B∂CA+ [∂BA, ∂CA] = 0 ,

and so on. The first equation is just the statement that the infinitesimal deformations take

values in H1
ďA

(Y,End(V )). The second equation gives the first obstruction to these defor-

mation. Indeed, recall from Theorem 5, that [·, ·] is a well-defined product in cohomology.

Thus, this product of infinitesimal variations of A is required to vanish in cohomology,

otherwise we have an obstruction to the infinitesimal deformations of A at second order in

perturbation theory. Note that higher order deformations give higher order obstructions

in a similar fashion. In string compactifications, is expected that these obstructions corre-

spond to Yukawa couplings in the lower-dimensional effective theory, a question we hope

to return to in future publications.

Let us also take a moment to speculate about the behaviour of the higher order de-

formations when we also include deformations of the base. In this case, it is perhaps

instructive to restrict to bundles over a base with G2-holonomy, whose moduli space is

unobstructed [4, 5, 60]. We expect the full deformation problem to give rise to a similar

Maurer-Cartan equation, but now with a ∆ ∈ Λ1(E), so that

DE∆ +
1

2
[∆,∆] = 0 , (5.22)

where [·, ·] is an appropriate bracket on Ω∗(E) to be discerned. Should this happen, one

would get that obstruction classes counted by H2
DE (Y,E), just like for the Atiyah algebroids

in complex geometry. We hope to return to this question in the future.
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6 Conclusions and outlook

In this paper, we have studied the infinitesimal deformations of a pair (Y, V ), where Y

is a manifold of G2 holonomy, and V is a vector bundle with a connection satisfying the

G2 instanton condition. We found that the structure of the infinitesimal moduli space

very much resembles that of the Atiyah algebroid in the case of holomorphic bundles over

complex manifolds [80]. Indeed, we found that the infinitesimal geometric deformations of

the base, corresponding to elements of H1
ďθ

(Y, TY ), must be in the kernel of an appropriate

G2 generalisation of the Atiyah map,

F̌ : H1
ďθ

(Y, TY )→ H2
ďA

(Y,End(V )) ,

just like in the holomorphic case. The map F̌ is given in terms of the curvature of

the bundle.

This structure is very interesting and prompts further investigation. In particular,

just as the Kähler condition on the base is not necessary in the holomorphic case, the

G2 holonomy condition can also be relaxed in the seven-dimensional case. Indeed, as we

have seen we only need the base to have an integrable G2 structure in order to define the

ďA-cohomologies which are used in computing the infinitesimal deformations. We have

taken some steps in this direction in the current paper, and will investigate this further in

an upcoming publication [13]. Furthermore, in order to make more contact with physics

and the heterotic string, one also needs to consider the heterotic Bianchi Identity. We will

investigate this further in [13], but give a brief prelude here. There is evidence that the

combined structure fits neatly into a double extension of the form

0→ T ∗Y → Q→ E → 0 ,

where E is the G2 Atiyah algebroid of section 5.3, just as in the holomorpic case

of [46, 48, 49]. The corresponding extension map is defined by the Bianchi Identity. Equiv-

alently, as in the holomorphic case we hope to show that the system of heterotic BPS-

equations together with the Bianchi Identity can be used to construct a differential Ď on

Q, and that the infinitesimal moduli are counted by H1
Ď(Q) with respect to this differential.

Having discussed the infinitesimal moduli space, we hope to also address the issue of

higher order and integrable deformations. There is a lot of mathematical literature on the

deformations of the holomorphic Atiyah algebroid, see e.g. [44, 80–82]. Since the structure

of the corresponding differential complexes and extensions are so similar in the G2 case,

there is hope that many of the results of the Atiyah algebroid can be carried over to the G2

setting without too much effort. We hope to investigate some of these aspects in the future.

One other interesting application of the results of this paper comes when we consider

reductions to SU(3) structure three-folds. Indeed, upon reducing on

Y = X6 × R ,

where X6 is a complex three-fold with an appropriate SU(3) structure, it is easy to see

that the seven-dimensional instanton condition splits into the requirement that the bundle
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is holomorphic, in addition to the Yang-Mills condition,

F (0,2) = 0 , gab̄Fab̄ = 0 .

Ignoring issues related to compactness of Y , it is interesting to see how both these conditions

can be incorporated in the same structure ďA. Due to this fact, it is also conceivable that

one can learn a lot about the ďA-cohomologies by what is already known about stable

holomorphic bundles, and this is an interesting direction of further investigation.
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A Formulas

In this appendix we gather a number of formulas and identities which we have used in this

paper. The contractions between ϕ and ψ can be found in a number of references, see for

example [61]. More useful relations can be found in [33]

ϕabc ϕabc = 42 , (A.1)

ϕacd ϕbcd = 6 δab , (A.2)

ϕeab ϕecd = 2 δa[c δ
b
d] + ψabcd . (A.3)

ϕad1d2 ψbcd1d2 = 4ϕabc , (A.4)

ϕabf ψcdef = −6 δ[a
[c ϕ

b]
de] , (A.5)

ψabcdψabcd = 7 · 24 = 168 , (A.6)

ψacdeψbcde = 24 δab , (A.7)

ψabe1e2ψcde1e2 = 8 δa[c δ
b
d] + 2ψabcd , (A.8)

ψa1a2a3cψb1b2b3c = 6 δa1[b1
δa2b2 δ

a3
b3] + 9ψ[a1a2

[b1b2 δ
a3]
b3] − ϕ

a1a2a3 ϕb1b2b3 , (A.9)

ψa1a2a3a4ψb1b2b3b4 = 24 δa1[b1
δa2b2 δ

a3
b3
δa4b4] (A.10)

+ 72ψ[a1a2
[b1b2 δ

a3
b3
δ
a4]
b4] − 16ϕ[a1a2a3 ϕ[b1b2b3 δ

a4]
b4] . (A.11)
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Let α be a one form (possibly with values in some bundle)

ϕy(α ∧ ϕ) = (αyψ)yψ = −4α , (A.12)

ψy(α ∧ ψ) = (αyϕ)yϕ = 3α , (A.13)

ϕy(α ∧ ψ) = 2αyϕ . (A.14)

Let α be a two form (possibly with values in some bundle)

ϕy(α ∧ ϕ) = − (αyψ)yψ = 2α+ αyψ , (A.15)

ψy(α ∧ ψ) = (αyϕ)yϕ = 3π7(α) = α+ αyψ . (A.16)

Lemma 4. Let β ∈ Λ2
14 (possibly with values in some bundle). Then the identities

βd[a ϕbc]
d = 0 , (A.17)

βae ψebcd = −3βe[b ψcd]
ae , (A.18)

follow from β = −βyψ.

Proof.

β = −βyψ =⇒ −2βab = βcd ψ
cd
ab .

We use this to prove both identities.

For the first one, we contract with ϕ as follows:

βad ϕ
d
bc = −1

2
βef ψ

ef
ad ϕ

d
bc = 3βef δ[b

[e ϕc]
fd] gda = 2 gda βef δ[b

e ϕc]
fd

= −βbd ϕdca − βcdϕdab .

For the second identity, we contract with ψ as follows:

−2βae ψebcd = βf1f2 ψ
f1f2ae ψebcd

= −βf1f2
(

6 δ
[f1
b δf2c δ

a]
d + 9ψ[f1f2

[bc δ
a]
d]

)
= −6β[bc δ

a
d] − 3βf1f2

(
ψf1f2 [bc δ

a
d] + 2ψf2a[bc δ

f1
d]

)
= −6β[bc δ

a
d] + 6β[bc δ

a
d] − 6ψea[bc βd]e .

Hence

βae ψebcd = −3ψea[bc βd]e = −3βe[b ψcd]
ae .

Lemma 5. Let β ∈ Λ2
14(Y,E), where E is a bundle over Y , so that

β ∧ ψ = 0 .

Then, this equation is equivalent to

1

3!
β ∧ ψbcda dxbcd = βab dxb ∧ ψ . (A.19)

Hence

π14

(
β ∧ ψbcda dxbcd

)
= 0 .
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Proof. Equation β ∧ ψ = 0 can be written as

0 = 6β[e1e2 ∧ ψbcda] .

Then

0 = 3β[e1e2 ∧ ψbcda] dxe1e2bcd = (3βe1e2 ψbcda − βae1 ψe2bcd) dxe1e2bcd

= 4β ∧ ψbcda dxbcd − 4!βab dxb ∧ ψ ,

hence equation (A.19) follows. The statement that

π14

(
β ∧ ψbcda dxbcd

)
= 0 ,

is just the observation that the right hand side of equation (A.19) is a five-form in Λ5
7.

Lemma 6. Let β ∈ Λ2
7 (perhaps β also takes values in some vector bundle). Then β

satisfies the identity

βda ϕbc
d = βd[b ϕc]a

d + gϕa[b (βyϕ)c] . (A.20)

Proof. A two form β in Λ2
7, must satisfy

2β = βyψ ,

or, equivalently

4βad = βbc ψ
bc
ad .

Contracting this with ϕbc
d and using equation (A.5) we have

4βad ϕbc
d = βe1e2 ψ

e1e2
ad ϕbc

d = −6βe1e2 gϕae3 δ
[e1
[b ϕc]

e2e3]

= −2βe1e2 gϕae3

(
2 δe1[b ϕc]

e2e3 + δe3[b ϕc]
e1e2
)

= −4βd[b ϕc]a
d − 2βde gϕa[b ϕc]

de = −4
(
βd[b ϕc]a

d + gϕa[b (βyϕ)c]

)
,

from which the identity (A.20) follows.

A.1 Identities involving Hodge duals

Let α be a k-form and β a p+ k-form. Then

αyβ = (−1)p(d−p−k) ∗ (α ∧ ∗β) , (A.21)

d†α = − 1

(k − 1)!
gmn∇LCm (αnp1···pk−1

) dxp1 ∧ · · · ∧ dxpk−1 . (A.22)
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A.2 Identities for derivatives of ϕ and ψ

In our computations related to the moduli problem, we will need identities which relate

derivatives of ϕ and ψ with the connection dθ. We present these here by means of two

lemmas. Note that the lemmas hold for manifolds with any G2 structure, not only for

G2 holonomy.

Lemma 7. Let ψ be a four form on a seven dimensional manifold Y (not necessarily a

manifold with a G2 structure). Then we have the identity

4 d
(
ψbcda dxbcd

)
= −4! ∂aψ + (dψ)bcdea dxbcde .

If the manifold Y has a G2 structure determined by ϕ (not necessarily harmonic) with a

connection ∇ compatible with the G2 structure we also have

∂aψ = − 1

3!
θa
b ∧ ψcdeb dxcde .

where θa
b = Γac

b dxc and Γac
b are the connection symbols of ∇.

Proof. For the first identity we compute

d(ψbcda dxbcd) = ∂eψbcda dxebcd

=
(
5 ∂[eψbcda] − 3 ∂bψcdae − ∂aψebcd

)
dxebcd

= (dψ)bcdea dxbcde − 3 d
(
ψbcda dxbcd

)
− 4! ∂aψ ,

which gives the result desired.

For the second we have,

∂aψ =
1

4!
∂aψbcde dxbcde =

1

4!

(
∇aψbcde + 4 Γab

f ψfcde

)
dxbcde

=
1

3!
Γab

f ψfcde dxbcde = − 1

3!
θa
b ∧ ψcdeb dxcde ,

where we have used ∇ψ = 0.

Lemma 8. Let ϕ be a three form on a seven dimensional manifold Y (not necessarily a

manifold with a G2 structure). Then we have the identity

3 d(ϕbca dxbc) = 3! ∂aϕ+ (dϕ)bcda dxbcd .

If the manifold Y has a G2 structure determined by ϕ (not necessarily harmonic) with a

connection ∇ compatible with the G2 structure we also have

∂aϕ =
1

2
θa
b ∧ ϕcdb dxcd .

where θa
b = Γac

b dxc and Γac
b are the connection symbols of ∇.

Proof. The proof is similar to the proof of lemma 7 and is left as an exercise.
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B Elliptic complex

In this appendix we recall basic notions about ellipticity of operators and complexes, fol-

lowing the book of Gilkey [83], to which we refer for a more detailed account. We then show

that the complexes defined in section 2 and 3 are elliptic. We first recall that a complex is

elliptic if it is exact on the level of leading symbols:

Definition 3 (Gilkey). Let V be a graded vector bundle: V is a collection of vector bundles

{Vj}j∈Z such that Vj 6= {0} for only a finite number of indices j. Let P be a graded pseudo

differential operator (ΨDO) of order d: P is a collection of dth order ΨDOs Pj : C∞(Vj)→
C∞(Vj+1). Then (P, V ) is a complex if Pj+1Pj = 0 and σLPj+1σLPj = 0. (P, V ) is an

elliptic complex if

N(σLPj)(x, ξ) = R(σLPj+1)(x, ξ) (B.1)

i.e. the complex is exact on the level of the leading symbol σL.8

To be able to use this definition, we must define pseudo differential operators, as well

as the symbol of an operator. Let α = (α1, . . . αm) a multi-index, and |α| = α1 + . . .+αm.

Introduce a notation for multiple partial differential operator

Dα
x = (−i)|α|

(
∂

∂x1

)α1

. . .

(
∂

∂xm

)αm
,

where the factors of i will simplify the expressions below. A linear partial differential

operator of order d may then be expressed as

P =
∑
|α|≤d

aα(x)Dα
x ,

where aα(x) are smooth functions. Using the dual variable ξ that appears in the Fourier

transform (where the measure dx is defined so that factors of 2πi are absorbed)

f̂(ξ) =

∫
e−ix·ξf(x)dx , (B.2)

we define the symbol σP by

σP (x, ξ) =
∑
|α|≤d

aα(x)ξα (B.3)

This is a polynomial of order d in ξ. The leading symbol, σLP , is the highest degree part

of this polynomial

σLP (x, ξ) =
∑
|α|=d

aα(x)ξα . (B.4)

As described in [83], we may generalise to non-polynomial symbols, for which the cor-

responding operator is called a pseudo differential operator (ΨDO). The complexes of

relevance here all have polynomial symbols.

8N denotes the null space (i.e. kernel) of the operator, and R denotes the range (or image).
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The condition of ellipticity for a complex can also be stated in terms of a constraint

on the associated Laplacian. Define the Laplacian of an operator Pj as

∆j = P ∗j Pj + Pj−1P
∗
j−1 : C∞(Vj)→ C∞(Vj) , (B.5)

where P ∗j denotes the adjoint operator of Pj . The leading symbol of ∆j is given by

σL(∆j) = p∗jpj + pj−1p
∗
j−1, where pj = σL(Pj) (B.6)

An operator is elliptic if its leading symbol is non-singular for ξ 6= 0. We then have, as

proven in [83]:

Lemma 9 (Gilkey). Let (P, V ) be a dth order partial differential complex. Then (P, V ) is

elliptic iff ∆j is an elliptic operator of order 2d for all j.

B.1 Examples of elliptic complexes

Let us now demonstrate that the complexes (2.10) and (3.9) are elliptic. We will use that

de Rham complex is elliptic, so we start by recalling this fact.

Ellipticity of the de Rham complex. (Gilkey)

To prove that the de Rham comples is elliptic, we need the symbol of d. Recall that the

symbol of ∂
∂xj

is given by the dual coordinate iξj , via the Fourier transform (B.2). To find

the symbol for d =
∑

dxj ∧ ∂
∂xj

, define the one-form ξ =
∑
ξjdxj . The symbol of d is then

σ(d) = iext(ξ) (B.7)

where

ext(ξ)ω = ξ ∧ ω . (B.8)

Note that for this example, the symbol only contains monomials of maximal degree = 1,

and so the leading symbol coincides with the symbol.

We must now show that (B.1) holds for σ(d) = iext(ξ). Fix ξ 6= 0 and choose a frame

{e1, . . . , em} in T ∗Y such that ξ = e1. We then have

iext(ξ)eI =
{ 0 , i1 = 1

eJ , J = {1, i1, . . . , ip}
. (B.9)

It follows that N (ext(ξp)) = R (ext(ξp−1)), as required (note that the index p and p− 1 is

not necessary, since the operator d is the same for all p). This proves that the de Rham

complex is exact on the symbol level, as required for an elliptic complex.

Ellipticity of the ď-complex. Let us now consider the complex (2.10) of Fernandez-

Ugarte. The ellipticity of this complex was shown in [34, 35], but we repeat the argument

here for convenience. We first recall the complex

0→ Λ0(Y )
ď−→ Λ1(Y )

ď−→ Λ2
7(Y )

ď−→ Λ3
1(Y )→ 0 (B.10)
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where the corresponding nilpotent operator is

ď = π ◦ d , (B.11)

where π-denotes the projection onto the appropriate group. Note that for α ∈ Λ̌∗(Y )

we have

ψ ∧ α = ψ ∧ π(α) . (B.12)

The corresponding symbol is hence

σ(ξ, x) = π ◦ ext(ξ) , (B.13)

modulo non-important prefactors.

Now let α be a one-form. If α is in the kernel of σ, it implies that

ψ ∧ ξ ∧ α = 0 , (B.14)

or equivalently

ξmαnϕmnp = 0 . (B.15)

It follows that α = f ξ for some function f , and N(σ) = R(σ) at the level of one-forms.

We next assume α ∈ Λ2
7(Y ). Being in the kernel of σ is then equivalent to

ξmαnpϕmnp = 0 . (B.16)

Further, we can decompose α as

α = ξ ∧ γ + β , (B.17)

where ξyβ = 0. It follows that

ξmβnpϕmnp = 0 . (B.18)

As β is orthogonal to ξ, this implies that

βnpϕmnp = 0 , ⇒ β ∧ ψ = 0 . (B.19)

But then

α = π(α) = π(ξ ∧ γ) . (B.20)

Hence α ∈ Im(σ). Finally, we note that σ is surjective onto Λ3
1(Y ), and so the symbol is

exact at this level as well. Hence the complex (B.10) is elliptic.

Ellipticity of the ďA-complex. It is now straight-forward to prove also that the com-

plex (3.9) is elliptic. First, recall that by Theorem 4, we have

ď2
A = 0 (B.21)

as long as A is an instanton connection. With

dAω =
∑
j,I

(
∂ωI
∂xj

+AjωI

)
dxj ∧ dxI , (B.22)

the symbol of ďA is

σ(ďA) = π ◦ ext(iξ +A) (B.23)

so the leading symbol σL(ďA) equals σL(ď), and hence also (ďA, C
∞(Λ(T ∗M))) is an ellip-

tic complex.
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