A. F. Carey and J. Carlson, Insect olfaction from model systems to disease control, Proc. Natl. Acad. Sci. USA, pp.12987-129951103472108, 2011.
DOI : 10.1186/1475-2875-5-26

W. Leal, Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes, Annual Review of Entomology, vol.58, issue.1, pp.10-1146, 2013.
DOI : 10.1146/annurev-ento-120811-153635

N. Durand, Degradation of Pheromone and Plant Volatile Components by a Same Odorant-Degrading Enzyme in the Cotton Leafworm, Spodoptera littoralis, PLoS ONE, vol.19, issue.6, 2011.
DOI : 10.1371/journal.pone.0029147.g005

URL : https://hal.archives-ouvertes.fr/hal-01000256

R. G. Vogt, Molecular Basis of Pheromone Detection in Insects, In Comprehensive Molecular Insect Science, vol.3, pp.753-803, 2005.
DOI : 10.1016/B0-44-451924-6/00047-8

R. G. Vogt, F. E. Callahan, M. E. Rogers, and J. C. Dickens, Odorant Binding Protein Diversity and Distribution among the Insect Orders, as Indicated by LAP, an OBP-related Protein of the True Bug Lygus lineolaris (Hemiptera, Heteroptera), Chemical Senses, vol.24, issue.5, pp.481-495481, 1999.
DOI : 10.1093/chemse/24.5.481

R. Vogt, L. Riddiford, and G. Prestwich, 46188 | DOI: 10.1038/srep46188 6 Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of Antheraea polyphemus, Proc. Natl. Acad. Sci. USA 82, p.8827, 1985.

F. Younus, Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster, Insect Biochemistry and Molecular Biology, vol.53, 2014.
DOI : 10.1016/j.ibmb.2014.07.003

S. D. Mane, L. Tompkins, and R. C. Richmond, Male Esterase 6 Catalyzes the Synthesis of a Sex Pheromone in Drosophila melanogaster Females, Science, vol.222, issue.4622, p.419, 1983.
DOI : 10.1126/science.222.4622.419

T. Chertemps, A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila, BMC Biology, vol.10, issue.1, pp.10-1186, 2012.
DOI : 10.1038/nn.2800

URL : https://hal.archives-ouvertes.fr/hal-01190223

C. Gomez-diaz, J. Reina, C. Cambillau, and R. Benton, Ligands for Pheromone-Sensing Neurons Are Not Conformationally Activated Odorant Binding Proteins, PLoS Biology, vol.66, issue.4, 2013.
DOI : 10.1371/journal.pbio.1001546.s003

R. Benton, Sensitivity and specificity in Drosophila pheromone perception, Trends in Neurosciences, vol.30, issue.10, pp.512-519004, 2007.
DOI : 10.1016/j.tins.2007.07.004

T. Chertemps, An antennal carboxylesterase from Drosophila melanogaster, esterase 6, is a candidate odorant-degrading enzyme toward food odorants, Frontiers in Physiology, vol.53, p.315, 2015.
DOI : 10.1016/j.ibmb.2014.07.003

URL : https://hal.archives-ouvertes.fr/hal-01266310

R. Richmond, D. Gilbert, K. Sheehan, M. Gromko, and F. Butterworth, Esterase 6 and reproduction in Drosophila melanogaster, Science, vol.207, issue.4438, pp.10-11266767273, 1980.
DOI : 10.1126/science.6767273

D. Gilbert, Ejaculate esterase 6 and initial sperm use by female Drosophila melanogaster, Journal of Insect Physiology, vol.27, issue.9, pp.10-1016, 1981.
DOI : 10.1016/0022-1910(81)90112-8

D. Scott, Inhibition of Female Drosophila melanogaster Remating by a Seminal Fluid Protein (Esterase 6), Evolution, vol.40, issue.5, pp.10-2307, 1986.
DOI : 10.2307/2408766

R. Vander-meer, M. Obin, S. Zawistowski, K. Sheehan, and R. Richmond, A reevaluation of the role of cis-vaccenyl acetate, cisvaccenol and esterase 6 in the regulation of mated female sexual attractiveness in Drosophila melanogaster, J. Insect Physiol, vol.32, issue.86, pp.10-1016, 1986.

R. V. Rane, Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores?, Current Opinion in Insect Science, vol.13, pp.70-76, 2016.
DOI : 10.1016/j.cois.2015.12.001

C. J. Jackson, Structure and function of an insect ??-carboxylesterase (??Esterase7) associated with insecticide resistance, Proc. Natl. Acad. Sci. USA, pp.10177-101821304097110, 2013.
DOI : 10.1093/bioinformatics/btn392

M. Harel, Three?dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors, Protein Sci, vol.9, 2000.

J. G. Oakeshott, An episode of accelerated amino acid change in Drosophila esterase-6 associated with a change in physiological function, Genetica, vol.110, issue.3, pp.231-244, 2000.
DOI : 10.1023/A:1012727814167

P. Becher, Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development, Functional Ecology, vol.29, issue.4, 2012.
DOI : 10.1111/j.1365-2435.2012.02006.x

URL : http://hdl.handle.net/11858/00-001M-0000-000F-9DB4-B

A. Bar-even, The Moderately Efficient Enzyme: Evolutionary and Physicochemical Trends Shaping Enzyme Parameters, Biochemistry, vol.50, issue.21, pp.4402-4410, 2011.
DOI : 10.1021/bi2002289

M. A. Myers, M. J. Healy, and J. G. Oakeshott, Effects of the residue adjacent to the reactive serine on the substrate interactions ofDrosophila esterase 6, Biochemical Genetics, vol.118, issue.7-8, pp.259-278, 1993.
DOI : 10.1007/BF00553170

H. Dweck, Pheromones mediating copulation and attraction in Drosophila, Proc. Natl. Acad. Sci. USA 112, p.1504527112, 2015.

H. Dweck, Olfactory Preference for Egg Laying on Citrus Substrates in Drosophila, Current Biology, vol.23, issue.24, p.47, 2013.
DOI : 10.1016/j.cub.2013.10.047

C. Galizia, D. Münch, M. Strauch, A. Nissler, and S. Ma, Integrating Heterogeneous Odor Response Data into a Common Response Model: A DoOR to the Complete Olfactome, Chemical Senses, vol.35, issue.7, pp.10-1093, 2010.
DOI : 10.1093/chemse/bjq042

S. Mansourian and M. Stensmyr, The chemical ecology of the fly, Current Opinion in Neurobiology, vol.34, p.6, 2015.
DOI : 10.1016/j.conb.2015.02.006

D. Münch and C. Galizia, DoOR 2.0 - Comprehensive Mapping of Drosophila melanogaster Odorant Responses, Scientific Reports, vol.468, issue.1, pp.10-1038, 2016.
DOI : 10.1038/nature09537

D. Mathew, Functional diversity among sensory receptors in a Drosophila olfactory circuit, Proc. Natl. Acad. Sci. USA 110, p.1306976110, 2013.

P. H. Cooke and J. G. Oakeshott, Amino acid polymorphisms for esterase-6 in Drosophila melanogaster., Proc. Natl. Acad. Sci. USA, pp.1426-1430, 1989.
DOI : 10.1073/pnas.86.4.1426

J. Karotam, A. C. Delves, and J. G. Oakeshott, Conservation and change in structural and 5??? flanking sequences of esterase 6 in siblingDrosophila species, Genetica, vol.16, issue.1, pp.11-28, 1993.
DOI : 10.1007/BF02424448

A. De-marco, Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli, Microbial Cell Factories, vol.8, issue.1, pp.10-1186, 2009.
DOI : 10.1186/1475-2859-8-26

T. Walter, Lysine Methylation as a Routine Rescue Strategy for Protein Crystallization, Structure, vol.14, issue.11, p.5, 2006.
DOI : 10.1016/j.str.2006.09.005

N. Lenfant, the database of the ? /? -hydrolase fold superfamily of proteins: tools to explore diversity of functions, Nucleic Acids Res, vol.41, pp.10-1093, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01218998

T. Margraf, G. Schenk, and A. Torda, The SALAMI protein structure search server, Nucleic Acids Research, vol.37, issue.Web Server, pp.10-1093, 2009.
DOI : 10.1093/nar/gkp431

A. T. Binkowski, S. Naghibzadeh, J. Liang, and . Castp, CASTp: Computed Atlas of Surface Topography of proteins, Nucleic Acids Research, vol.31, issue.13, pp.3352-3355, 2003.
DOI : 10.1093/nar/gkg512

J. Schymkowitz, The FoldX web server: an online force field, Nucleic Acids Research, vol.33, issue.Web Server, pp.10-1093, 2005.
DOI : 10.1093/nar/gki387

N. London, Covalent docking of large libraries for the discovery of chemical probes, Nature Chemical Biology, vol.10, issue.12, pp.1066-1072, 2014.
DOI : 10.1038/nprot.2007.361

M. C. Larsson, Or83b Encodes a Broadly Expressed Odorant Receptor Essential for Drosophila Olfaction, Neuron, vol.43, issue.5, pp.703-714019, 2004.
DOI : 10.1016/j.neuron.2004.08.019

K. M. Yao and K. White, Neural Specificity of elav Expression: Defining a Drosophila Promoter for Directing Expression to the Nervous System, Journal of Neurochemistry, vol.63, issue.1, pp.41-51, 1994.
DOI : 10.1046/j.1471-4159.1994.63010041.x

S. R. Shanbhag, Expression mosaic of odorant-binding proteins inDrosophila olfactory organs, Microscopy Research and Technique, vol.200, issue.5, pp.297-306, 2001.
DOI : 10.1002/jemt.1179

M. S. Kim, A. Repp, and D. P. Smith, LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster, Genetics, vol.150, pp.711-721, 1998.

E. Hallem, M. Ho, and J. Carlson, The Molecular Basis of Odor Coding in the Drosophila Antenna, Cell, vol.117, issue.7, p.12, 2004.
DOI : 10.1016/j.cell.2004.05.012

M. Knaden, A. Strutz, J. Ahsan, S. Sachse, and B. S. Hansson, Spatial Representation of Odorant Valence in an Insect Brain, Cell Reports, vol.1, issue.4, pp.392-399002, 2012.
DOI : 10.1016/j.celrep.2012.03.002

J. Christiaens, The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep, 2014.

E. Hallem and J. Carlson, Coding of Odors by a Receptor Repertoire, Cell, vol.125, issue.1, p.50, 2006.
DOI : 10.1016/j.cell.2006.01.050

J. Stökl, A Deceptive Pollination System Targeting Drosophilids through Olfactory Mimicry of Yeast, Current Biology, vol.20, issue.20, p.33, 2010.
DOI : 10.1016/j.cub.2010.09.033

M. González-mas, J. Rambla, M. Alamar, A. Gutiérrez, and A. Granell, Comparative Analysis of the Volatile Fraction of Fruit Juice from Different Citrus Species, PLoS ONE, vol.28, issue.7, 2011.
DOI : 10.1371/journal.pone.0022016.s005

R. J. Bartelt, A. M. Schaner, and L. L. Jackson, Cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster, J. Chem. Ecol, vol.11, pp.10-1007, 1985.

A. Ejima, Pleiotropic actions of the male pheromone cis-vaccenyl acetate in Drosophila melanogaster, Journal of Comparative Physiology A, vol.83, issue.80, pp.10-1007, 2015.
DOI : 10.1007/s00359-015-1020-9

L. Griffith and A. Ejima, Courtship learning in Drosophila melanogaster: Diverse plasticity of a reproductive behavior, Learning & Memory, vol.16, issue.12, pp.10-1101, 2009.
DOI : 10.1101/lm.956309

Y. Grosjean, An olfactory receptor for food-derived odours promotes male courtship in Drosophila, Nature, vol.23, issue.7368, pp.236-240, 2011.
DOI : 10.1038/nature10428

URL : https://hal.archives-ouvertes.fr/hal-00722946

M. Schlief and R. Wilson, Olfactory processing and behavior downstream from highly selective receptor neurons, Nature Neuroscience, vol.28, issue.5, pp.10-1038, 2007.
DOI : 10.1098/rspb.2003.2512

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2838507

A. Strutz, Decoding odor quality and intensity in the Drosophila brain, p.4147, 2014.

M. Gilson, Open "back door" in a molecular dynamics simulation of acetylcholinesterase, Science, vol.263, issue.5151, pp.1276-12788122110, 1994.
DOI : 10.1126/science.8122110

S. Biswas, Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera, PLoS ONE, vol.15, issue.10, p.3542, 2008.
DOI : 10.1371/journal.pone.0003542.s011

N. Durand, A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis, Insect Mol. Biol, vol.19, 2010.

Y. Ishida and W. Leal, Rapid inactivation of a moth pheromone, Proc. Natl. Acad. Sci. USA 102, p.505340102, 2005.

A. F. Silbering, Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems, Journal of Neuroscience, vol.31, issue.38, 2011.
DOI : 10.1523/JNEUROSCI.2360-11.2011

URL : https://hal.archives-ouvertes.fr/hal-00788031

M. Stensmyr, E. Giordano, A. Balloi, A. Angioy, and B. Hansson, Novel natural ligands for Drosophila olfactory receptor neurones, Journal of Experimental Biology, vol.206, issue.4, pp.10-124200143, 2003.
DOI : 10.1242/jeb.00143

URL : http://hdl.handle.net/11858/00-001M-0000-0014-5AC9-D

R. Eisenthal, M. J. Danson, and D. W. Hough, Catalytic efficiency and kcat/KM: a useful comparator?, Trends in Biotechnology, vol.25, issue.6, pp.247-249010, 2007.
DOI : 10.1016/j.tibtech.2007.03.010

C. A. Love, P. E. Lilley, and N. E. Dixon, Stable high-copy-number bacteriophage ?? promoter vectors for overproduction of proteins in Escherichia coli, Gene, vol.176, issue.1-2, pp.49-53, 1996.
DOI : 10.1016/0378-1119(96)00208-9

S. W. Kruse, R. Zhao, D. P. Smith, and D. N. Jones, Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster, Nature Structural Biology, vol.10, issue.9, pp.694-700, 1038.
DOI : 10.1038/nsb960

S. Katti, N. Lokhande, D. González, A. Cassill, and R. Renthal, Quantitative analysis of pheromone-binding protein specificity, Insect Molecular Biology, vol.558, issue.1, 2013.
DOI : 10.1111/j.1365-2583.2012.01167.x

E. Gasteiger, Protein Identification and Analysis Tools on the ExPASy Server, The Proteomics Protocols Handbook, pp.571-607, 2005.
DOI : 10.1385/1-59259-890-0:571

C. S. Bond, TopDraw: a sketchpad for protein structure topology cartoons, Bioinformatics, vol.19, issue.2, pp.311-312, 2003.
DOI : 10.1093/bioinformatics/19.2.311

Y. Han, Proteomic and molecular analyses of esterases associated with monocrotophos resistance in Helicoverpa armigera, Pesticide Biochemistry and Physiology, vol.104, issue.3, p.5, 2012.
DOI : 10.1016/j.pestbp.2012.09.005