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 2

ABSTRACT: The carbon materials have become a hot topic as potential substitution of Pt/C 

catalysts for oxygen reduction reaction (ORR). However, most of them only prove their catalytic 

activities in alkaline solutions, which severely limit the applications in polyelectrolyte membrane 

fuel cells (PEMFCs). To address this issue, here porous boron carbon nitride (BCN) nanosheets 

are fabricated by a facile and efficient polymer sol-gel method, which involves the annealing of 

polyvinylic akohol (PVA), boric acid, guanidine and poly (ethylene oxide-co- propylene oxide) 

(P123) gel mixtures. The as-prepared porous BCN nanosheets possess a high surface area of 817 

m
2
/g and display impressive ORR catalytic performance in both alkaline and acid media, 

rivalling that of commercial Pt/C and other latest reported carbon materials. Importantly, the 

resulting metal-free catalysts exhibit much greater durability and higher methanol tolerance in 

both alkaline and acid environment as well. This study provides a new sight for metal-free ORR 

catalysts which are practicable in industrial fuel cells.  

 

TOC GRAPHICS 

                                              

 

 

 

Page 2 of 24

ACS Paragon Plus Environment

ACS Energy Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3

    The ORR is pivotal in fuel cells and metal batteries.
1
 In general, the noble metal Pt-based 

catalysts dominate in the ORR field owing to excellent electrocatalytic activity.
2 
Nevertheless, 

the scarcity, easy deactivation by CO poisoning, fuel crossover effect, and low durability greatly 

impede the development of Pt based catalysts.
3-5
 To address these issues, other materials such as 

transition-metal dichalcogenides
6
 and carbon nanomaterials

7,8 
are favoured as promising 

candidates. Among them, metal-free heteroatom-doped (such as B,N,S,P) carbon nanomaterials 

are predominate with superior ORR catalytic performance by providing not only large surface 

area but also more polarized active sites for oxygen adsorption or splitting.
9-11

  However, most of 

them are mainly focused on behaviours in alkaline conditions. Only a few metal-free carbon 

nanomaterials catalysts can be affordable in the acidic media,
12-15

 due to the poor durability and 

electroactivity deterioration. However, currently, most fuel cells are equipped with acid 

electrolyte.
4,12

 Meanwhile, those carbon nanomaterials with benign behaviours in acid conditions 

are commonly functionalized with metal impurities or complexes,
16,17

 which unavoidably 

increase the cost. Therefore, to cater for the current commercial market, the development of a 

practical metal-free heteroatom-doped carbon nanomaterial applicable in both alkaline and acid 

environments is a big challenge.  

  Previous research has witnessed the boost of graphene as prominent two-dimensional (2D) 

nanomaterial in the energy applications including energy storage
 
and electrocatalysis,

5,18,19
 

related to its pronounced physiochemical and electronic properties with elegant planar geometry. 

Structurally analogous to graphene, 2D hexagonal boron nitride (h-BN) is of extensive interests 

as well. In spite of being a wide gap semiconductor, h-BN displays excellent thermal 

conductivity, chemical stability and mechanical properties in the applications of polymer 

composites,
20
 hydrogen storage

21 
and water cleaning.

22-25
 Related to but different from either 
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 4

graphene or h-BN, ternary boron carbon nitride (BCN) nanosheets are likely to possess striking 

performances by integrating the merits of both graphene and h-BN. Furthermore, it has been 

reported that the band gap (0-5.5eV) of BCN is tuneable via adjusting the content of each 

heteroelement.
26-28

 In addition, heteropolar B, N bonding largely stimulates electroactivity, thus 

benefiting the versatility of BCN nanosheets in electro energy applications.
29-31

 Up to now, BCN 

nanosheets have placed values on lithium-ion batteries,
32 
oxygen reduction reaction (ORR),

33
 

hydrogen evolutions (HER)
34
 and supercapacitors,

35
 which rival those of other 2D nanomaterials.  

Although B, N doped CNTs,
36,37

 graphene
38-40 

or BCN nanostructures
41-45 

have been reported as 

effective ORR catalysts in alkaline media,
 
no research has proposed the ORR electrocatalysis by 

metal-free BCN in acid condition. Hence, it is a challenge to developing a BCN-based 

nanostructured electrocatalyst performing not only in alkaline, but also in acid environment. 

   Herein, we design a simple and efficient polymer sol-gel method to prepare porous BCN 

nanosheets. In contrast with other traditional methods such as chemical vapor deposition (CVD), 

and microwave plasma CVD,
46,47   

this route is of large scale production, low cost, and does not 

require high energy, vacuum systems and catalysts. The as-obtained BCN nanosheets reveal a 

high surface area of 817 m
2
/g with both meso and micro pores. Our BCN catalysts demonstrate 

impressive ORR catalytic performances in both alkaline and acid conditions, comparable to Pt/C 

and other carbon nanomaterials ever reported. In addition, the products also manifest great long-

term stability and better tolerance to the methanol crossover effect in both alkaline and acid 

media than commercial Pt/C. Obviously, the BCN nanosheets with porous nanostructure pave a 

potential way for substitution of Pt/C as effective metal-free ORR catalysts in industrial fuel 

cells. 
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 5

   
Scheme 1. Schematic synthesis process of porous BCN nanosheets including: (a) The gelation of 

polymer precursor. (b) The adding of P123 and (c) The pyrolysis at 900°C under N2. 

     The synthetic strategy is schematically illustrated in Scheme 1. Firstly, the polymeric gel 

precursor is formed by hydroxyl and amino group crosslinking between polyvinylic akohol 

(PVA), boric acid and guanidine carbonate salt. Then the polymeric precursor is further cured  

by introduction of P123 for both porosity development
48,49 

and nanosheets morphology control 

under the carbonation process.
50
 After annealing at 900°C in N2, the precursor gel architecture is 

gradually converted into a 2D porous layered structure and B, N, C atoms are mutually bonded 

upon carbonization. Finally the porous BCN nanosheets are generated in a mass scale. 
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 6

    
Figure 1. Characterization of the porous BCN nanosheets. a) XRD, b) FTIR and c) Raman of 

BCN nanosheets. d) TEM image of BCN nanosheets and corresponding EDS mapping of B,C,N 

elements, e) XPS B 1s spectrum, f) XPS C1s spectrum and g) XPS of N 1s spectrum of BCN 

nanosheets. 

    The X-Ray Diffraction (XRD) pattern (Figure 1a) suggests two characteristic peaks at around 

26°and 43° respectively, typically representing (002) and (101) interlayers reflections of BCN.
26
 

Compared with reference h-BN and graphene, these intervenient shifting broad humps of (002) 

and (101) imply the presence of defects
28
 and existence of sp

2
-bonded conjugated graphitic 

carbons containing structural heteroatoms integrated within small stacks.
51
 In the Fourier 

Transform Infrared (FTIR) spectrum (Figure 1b), two small bands at around 1380cm
-1
 and 

900cm
-1
 could be attributed to B-N stretching bands (νB-N) and B-N bending bands (δB-N) 

respectively. 

Evidently, these two bands show a little blue shift in contrast with that of h-BN, highlighting 

the conjugative effect of C-N-B in the ternary system.
38,39 

The Raman spectrum (Figure 1c) 
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 7

shows the characteristic signals of the D and G bands at around 1360 cm
-1
 and 1600cm

-1
 as well 

as two weak 2D and D+G bands at 2668 and 2900 cm
-1
, consistent with previously reported 

BCN nanosheets.
47
 A typical shift of the G band (1600cm

-1
) in BCN is observed from pure 

graphene (1580cm
-1
), attributing to the structural distortion of graphitic carbon with different 

bond lengths of N-B and C-N.
41
 Besides, the appearance of relatively weak 2D band indicates 

the presence of a few layers in BCN nanosheets,
46
 conforming to XRD analysis. Noticeably, the 

relative intensity of ID/IG, which represents the level of defects and heteroatom doping,
52
 is 0.945 

in this study, less than most of the B,N co-doped graphene (ID/IG >1)
38-45

. On one hand, it 

suggests that local structures of our BCN nanosheets evolve towards graphitization instead of 

highly defective and disordered heterojunctions.
45,51

 On the other hand, the balance of 

electroactive defects and conductive ordered domains might be optimized in our sample, 

facilitating the electrochemical activities to the most extent.
4,49

 Energy-dispersive spectroscopy 

(EDS) mapping (Figure 1d) and X-ray photoelectron spectroscopy (XPS) (Figure 1e-g and 

Figure S1) further demonstrate the existence of B, C and N elements in our sample. From EDS 

images, it is clear that all the elements (B,C and N) are distributed in the nanosheets evenly. The 

atomic concentration ratio of BCN is calculated to be B1C6.66N1.09 (B: 11.48 at.%, C: 76.02  at.%, 

N: 12.50  at.%) from XPS results. The B1s spectra (Figure 1e) could be deconvoluted into two 

different signals at around 190.6eV and 192.1eV, indicating the coexistence of B-N-C and B-O 

bonds accordingly.
35,44,53,54

 The C1s spectrum in Figure 1f highlights that sp
2
 C=C bonding (at 

~284.7eV) dominates in the whole BCN conjugated frame. Other two smaller C 1s peaks at 

about 286eV and 289eV are corresponding to C-O/C-N and C=N bonds respectively.
26,35,38 

 

Moreover, the deconvolution of high-resolution N1s band describes four types of N species 

including pyridinic N (~398.2eV),  pyrrolic N (~400.4eV), quaternary N (~401.4eV) and C-N-
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 8

B(~399eV) separately (Figure 1g).
35,55

 Interestingly, pyridinic N accounts for the highest 

percentage (38.64 at.%) in the N atomic concentration, followed by C-N-B bonding (27.6 at.%), 

implying that a large number of ORR active sites exists in our BCN nanosheets.
43,56,57

 In 

agreement with XRD, Raman and FTIR, the XPS results demonstrate the successful synthesis of 

BCN nanosheets. In addition, the potential complementary effects of B and N atoms as well as 

adjustable electronic structure of carbon should greatly benefit the electrochemical activity as 

ORR catalysts.
27
 

    
Figure 2. Morphologies of the porous BCN nanosheets. a) SEM, b) TEM and c) AFM pictures 

of BCN nanosheets. Inset of (b) shows the edge folding of the BCN sheet with 3-5 layers. d) 

Nitrogen adsorption/desorption isotherms of BCN nanosheets, the inset shows the corresponding 

pore size distributions. 

    Scanning electron microscope (SEM) displays the fluffy, thin and stacked lamellar 

architectures of BCN nanosheets as shown in Figure 2a. This is also confirmed in Transmission 

Electron Microscopy (TEM) images (Figure 2b), in which a crumpled lamellar structure could be 

seen clearly. High-resolution TEM (HRTEM) (Inset of Figure 2b) discloses 3-5 parallel fringes 

on the folded edge of the nanosheets, suggesting 3-5 layers contained in the nanosheets. In 

addition, some wrinkled fringes on the nanosheets reveal a little disorder of the crystallization, 
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 9

corresponding to the XRD results. The interlayer distance is about 0.35nm, well in accordance 

with the interplane (002) spacing of BCN.
33
 The Atomic Force Microscope (AFM) results 

(Figure 2c) further confirm the layered structure of BCN with a uniform thickness of 1.24nm, 

conforming to 3-4 stacked layers. Besides, a holey structure of BCN nanosheets could be well 

discerned in the AFM image (Figure S4), which could also be observed in the TEM image 

(Figure S2). The surface area and porosity of the materials are studied by Brunauer-Emmett-

Teller (BET) test. In Figure 2d, the nitrogen adsorption–desorption isotherms suggest a type IV 

curve with a visible H3 type hysteresis loop, demonstrating the presence of a size distribution of 

mesopores in the range of relative pressure 0.5-1.0.
22
 The BET surface area and the total pore 

volume are calculated to be 817m
2
/g and 0.624cm

3
/g respectively, larger than previously 

reported gelatin derived BCN nanosheets (416m
2
/g).

35
 It is worth noting that soft templates P123 

would lead to hydrogen bonding bridge in the polymer gel precursors, giving rise to more 

gaseous oxygen containing groups among chains in contrast with no P123 cured precursor 

(FigureS5). In the synthesis, some gases such as CO, CO2 and NH3 are released through the 

spaces between layers during decomposition. Thus a larger number of pores are finally 

achieved.
48,49  

The results implicate that such a porous structure of nanosheets with relative high 

BET surface could promote the ORR catalytic activities to a large extent.   
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 10

   

Figure 3. ORR catalytic performance of the porous few-layered BCN in 0.1M KOH. a) LSV 

curves of BCN catalysts and Pt/C at a rotation rate of 1600 rpm and a scan rate of 5mV/s. The 

inset shows the higher magnification of LSV curves between 0.9-1.0V vs. RHE. b) LSV curves 

of BCN catalysts with various rotation rates from 400 rpm-2500 rpm at a scan rate of 5 mV/s. 

The inset shows the corresponding Koutecky–Levich plot. c) RRDE voltammograms and d) 

H2O2 yield corresponding to the total oxygen reduction products and the calculated electron 

transfer number of few-layered BCN. e) Chronoamperometric measurement for few-layered 

BCN and Pt/C in an O2-saturated 0.1 M KOH solution and when 3.0 M methanol is added at 

around 300 s at an electrode rotation rate of 1600 rpm. f) Current–time chronoamperometric 
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 11

response of few-layered BCN and Pt/C in an O2-saturated 0.1 M KOH solution at a rotation rate 

of 1600 rpm. 

   The ORR activity of the as-synthesized BCN nanosheets is investigated under alkaline 

condition (0.1M KOH) firstly. A Cyclic voltammetry (CV) (Figure S7a) reveals a well-defined 

and strong cathodic ORR peak at around 0.8V vs. RHE, indicating the high catalytic activity of 

BCN nanosheets in alkaline environment. In addition, as shown in Figure3a, the onset potential 

(Eonset) of the porous BCN nanosheets is 0.940V vs. RHE, only 13mV less than 20% Pt/C 

(0.953V vs. RHE). And the half-wave potential (E1/2) is 0.82V vs. RHE, which is dramatically 

close to that of Pt/C (0.84V vs. RHE) as well.
12
 Notably, the ORR activity of our sample is better 

than several other reported B,N dual doped graphene or BCN nanomaterials with either Eonset, 

E1/2 or both potential being more positive
 
(Table S1).

36-45 
 The number (n) of electrons transferred 

per O2 molecule is estimated to be 3.91 at 0.364 V vs. RHE according to the Koutecky–Levich 

(K-L) plot built from the linear sweep voltammetry (LSV) curves under different electrode 

rotating speeds (Figure 3b),
51,52

 thus indicating a 4e
-
 pathway for ORR. To further study the ORR 

performance in 0.1M KOH, the rotating ring-disk electrode (RRDE) measurement is conducted. 

Figure 3c displays both disk and ring currents for BCN nanosheets. The average electron number 

is measured to be 3.93 (Figure 3d), verifying the 4e
-
 oxygen reduction selectivity again, well 

conforming to the results obtained from K-L plot. Furthermore, the calculated H2O2 yield is 

below 6%, suggesting an efficient 4e
- 
pathway ORR catalytic behavior. Moreover, the porous 

BCN nanosheets exhibit an outstanding tolerance for methanol cross-over effect (Figure 3f) and 

impressive long term durability (Figure 3d), which are both superior to commercial 20% Pt/C. 
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 12

     

Figure 4. ORR catalytic performance of the porous few-layered BCN in 0.1M HClO4. a) LSV 

curves of BCN catalysts and Pt/C at a rotation rate of 1600 rpm and a scan rate of 5mV/s. b) 

LSV curves of BCN catalysts with various rotation rates from 400 rpm-2500 rpm at a scan rate 

of 5 mV/s. The inset shows the corresponding Koutecky–Levich plot. c) RRDE voltammograms 

and d) H2O2 yield corresponding to the total oxygen reduction products and the calculated 

electron transfer number of few-layered BCN. e) Chronoamperometric measurement for few-

layered BCN and Pt/C in an O2-saturated 0.1 M HClO4 solution and when 3.0 M methanol is 

added at around 300 s at an electrode rotation rate of 1600 rpm. f) Current–time 

chronoamperometric response of few-layered BCN and Pt/C in an O2-saturated 0.1 M HClO4 

solution at a rotation rate of 1600 rpm. 
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     It is of great importance that the as-obtained BCN catalysts also exhibit excellent ORR 

activity and stability in acidic 0.1M HClO4. A distinct cathodic peak could be clearly observed in 

Figure S7b. Although the onset potential (Eonset) of our BCN catalyst (0.84V vs. RHE) is slightly 

less than Pt/C (0.93V vs. RHE) in Figure 4a, it is fully comparable and even better than the most 

recently reported state-of-the-art carbon materials including heteroatoms doped CNT/graphene 

or Fe/N doped CNTs  in acid environment (See Table S2).
12-17

  Besides, the K-L plot in Figure 

4b inset (n=3.82 at 0.364V vs. RHE) and RRDE measurement results in Figure 4c and d (average 

n=3.88) both confirm a 4e
-
 transfer route for BCN nanosheets in 0.1M HClO4. Furthermore, the 

peroxide yield is lower than 8% at all potentials, disclosing the high O2 reduction selectivity even 

in acid condition. More significantly, the nearly unchanged durability and tolerance for MeOH 

cross-over effect (Figure 4e and 4f) demonstrate the feasibility of the porous BCN nanosheets as 

potential candidates in PEM fuel cells again. 

  In respect to the chemical compositional, structural and morphological characterizations of 

the porous BCN nanosheets, the superior ORR catalytic activity and stability could be ascribed 

to several aspects. Firstly, high concentration of pyridinic N (38.64%) doped into the nanosheets 

could accelerate O2 adsorption by reducing the local work function and providing more Lewis 

base sites next to carbon, which are energetically favoured as adsorption sites by oxygen 

molecules.
50,56

 Therefore, the number of the activated carbon atoms are boomed with the 

nitrogen doping.
57,58

 Secondly, recent studies reveal that B-N-C edge groups play a crucial role 

to enhance the ORR performance.
27,40

 Notably, although isolated BN domains are inactive as the 

ORR catalysts,
37,39 

the edge B-N-C groups may boost the ORR catalytic activity. In our sample, 

it is likely that abundant B-N-C (27.6 at.%) bonding is easily accessible to OH adsorption and O 

protonation in the graphitic carbon edge area.
53,55

 As a consequence, the ORR activity is further 
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presumably improved at B-N-C edge. Thirdly, heteropolar B-N bonding as well as ionized B-O 

bonds provides an extra dipole, thereby likely enhancing the relative wettability (hydrophilicity) 

between electrolyte and electrode materials and develops a faster O2 transfer kinetic 

mechanism.
29-31

 Furthermore, the large surface area facilitates more active sites. The micropores 

and mesopores in our sample are able to support a shorter ion-transport pathway, preferably 

realizing the exchange of molecules and ions in the electrolytes.
30
 In addition, although the  ORR 

catalytic performance in acid environment is inferior to that of alkaline, the difference is 

relatively minor in contrast with some of other carbon materials.
12-16

 For single nitrogen-doped 

carbon materials in low pH solutions, the increased proton concentration degrades the ORR 

reaction kinetics with the protonation of negatively charged N atoms.
59
  However, for BCN 

nanosheets, the positively charged B atoms might alleviate the effect of protonation process, 

thereby narrowing the gap of ORR catalytic activity between alkaline and acid environment. 

Briefly, the stimulative B, N dual-doping effects discussed above and the 2D nanostructure with 

hierarchical porosity make our BCN nanosheets a remarkable low-cost and highly efficient ORR 

metal-free catalysts in both alkaline and acid media. 

  In summary, we have designed a novel, simple, and scalable polymer sol-gel approach to 

directly synthesize porous and few-layered BCN nanosheets. The B, N co-doping, 2D-

nanostructure and high surface area with rational porosity enable the BCN nanosheets to be 

efficient as ORR catalysts. In the alkaline medium, the sample displays comparable activity, 

greater methanol durability and better stability than 20% Pt/C. More importantly, the as-obtained 

catalysts also demonstrate considerable ORR performance in strong acid environment, superior 

to some other carbon materials. Therefore, this study provides an effective method to construct 
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new BCN nanomaterials as high-efficiency metal-free ORR electrocatalysts in both alkaline and 

acid conditions, which could satisfy the greater desire of commercial PEMFCs. 
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