T. Alcoverro, C. Duarte, and J. Romero, Annual growth dynamics of Posidonia oceanica: 552 contribution of large-scale versus local factors to seasonality, Mar Ecol Prog Ser, vol.553, issue.120, pp.203-210, 1995.

K. Anthony, G. Diaz-pulido, N. Verlinden, B. Tilbrook, and A. Andersson, Benthic buffers and boosters of ocean acidification on coral reefs, Biogeosciences, vol.10, issue.7, pp.4897-4909, 2013.
DOI : 10.5194/bg-10-4897-2013

K. Anthony, J. Kleypas, and J. Gattuso, Coral reefs modify their seawater carbon chemistry - implications for impacts of ocean acidification, Global Change Biology, vol.3, issue.12, pp.3655-559, 2011.
DOI : 10.1111/j.1365-2486.2011.02510.x

E. Apostolaki, S. Vizzini, I. Hendriks, and Y. Olsen, Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent, Marine Environmental Research, vol.99, pp.9-15, 2014.
DOI : 10.1016/j.marenvres.2014.05.008

S. Beer and E. Koch, Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments, Marine Ecology Progress Series, vol.141, pp.199-204, 1996.
DOI : 10.3354/meps141199

M. Borowitzka, P. Lavery, and M. Van-keulen, Seagrasses: Biology, Ecology and 568 Conservation Epiphytes of seagrasses, p.569, 2006.

D. Bosence, Biogenic carbonate production in Florida Bay, Bull Mar Sci, vol.44, pp.419-433, 1989.

D. Britton, C. Cornwall, A. Revill, C. Hurd, and C. Johnson, Ocean acidification reverses the 572 positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat- 573 forming kelp, Ecklonia radiata, 2016.

O. Burnell, B. Russell, A. Irving, and S. Connell, Seagrass response to CO2 contingent on epiphytic algae: indirect effects can overwhelm direct effects, Oecologia, vol.106, issue.1627, pp.871-882, 2014.
DOI : 10.1007/s00442-014-3054-z

J. Campbell and J. Fourqurean, Ocean acidification outweighs nutrient effects in structuring seagrass epiphyte communities, Journal of Ecology, vol.104, issue.3, pp.730-737, 2014.
DOI : 10.1111/1365-2745.12233

URL : https://doi.pangaea.de/10.1594/PANGAEA.834419

J. Cebrián, S. Enríquez, M. Fortes, N. Agawin, J. Vermaat et al., Epiphyte accrual 580 on Posidonia oceanica (L.) Delile leaves: Implications for light absorption, pp.123-128, 1999.

K. Chave and B. Wheeler, Mineralogic changes during growth in the red alga, p.583, 1965.

M. Heimann, C. Jones, L. Quéré, C. Myneni, R. Piao et al., Carbon and 586 other biogeochemical cycles, 2013.

K. Clarke, Non-parametric multivariate analyses of changes in community structure, Austral Ecology, vol.28, issue.1, p.589, 1993.
DOI : 10.1007/BF00265008

C. Cornwall, C. Pilditch, C. Hepburn, and C. Hurd, Canopy macroalgae influence understorey 591 corallines' metabolic control of near-surface pH and oxygen concentration, Mar Ecol, p.592, 2015.

C. Cornwall, P. Boyd, C. Mcgraw, C. Hepburn, C. Pilditch et al., Hurd 594 CL (2014) Diffusion boundary layers ameliorate the negative effects of ocean 595 acidification on the temperate coralline macroalga Arthrocardia corymbosa, PLoS ONE, vol.596

G. Davies and A. Gray, Don't let spurious accusations of pseudoreplication limit our ability 605 to learn from natural experiments (and other messy kinds of ecological monitoring) Ecol 606, 2015.

G. Diaz-pulido, M. Nash, K. Anthony, D. Bender, B. Opdyke et al., Greenhouse conditions induce mineralogical changes and dolomite accumulation 609 in coralline algae on tropical reefs, Nature Comm, vol.608, pp.10-610, 1038.

L. Donnarumma, C. Lombardi, S. Cocito, and M. Gambi, Settlement pattern of Posidonia 611 oceanica epibionts along a gradient of ocean acidification : an approach with mimics, Mediterr Mar Sci, vol.612, issue.15, pp.498-509, 2014.

H. Egilsdottir, F. Noisette, L. Noël, J. Olafsson, and S. Martin, Effects of pCO2 on 614 physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata, 2013.

V. Fabry, B. Seibel, R. Feely, and J. Orr, Impacts of ocean acidification on marine fauna and ecosystem processes, ICES Journal of Marine Science, vol.65, issue.3, pp.414-432, 2008.
DOI : 10.1093/icesjms/fsn048

R. Feely, Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans, Science, vol.305, issue.5682, pp.362-366, 2004.
DOI : 10.1126/science.1097329

T. Frankovich and J. Zieman, Total epiphyte and epiphytic carbonate production on 621 Thalassia testudinum across Florida Bay, Bull Mar Sci, vol.54, pp.679-695, 1994.

S. Widdicombe and P. Brewer, Free-ocean CO2 enrichment (FOCE) systems: present 625 status and future developments, Biogeosciences, vol.11, pp.4057-4075, 2014.

S. Cooley, C. Eakin, O. Hoegh-guldberg, R. Kelly, H. Portner et al., Contrasting futures for ocean and society from different anthropogenic CO2 630 emissions scenarios, Science, vol.349, pp.629-4722, 2015.

E. Sanford, S. Schreiber, V. Thiyagarajan, M. Vaughan, S. Widdicombe et al., Ocean acidification through the lens of ecological theory, Ecology, vol.634, issue.961, pp.3-15, 2015.

F. Gazeau, L. Parker, S. Comeau, J. Gattuso, O. Connor et al., Impacts of ocean acidification on marine shelled molluscs, Marine Biology, vol.29, issue.371, pp.2207-638, 2013.
DOI : 10.1007/s00227-013-2219-3

URL : https://hal.archives-ouvertes.fr/hal-01255951

E. Gischler, S. Dietrich, D. Harris, J. Webster, and R. Ginsburg, A comparative study of modern carbonate mud in reefs and carbonate platforms: Mostly biogenic, some precipitated, Sedimentary Geology, vol.292, pp.36-55, 2013.
DOI : 10.1016/j.sedgeo.2013.04.003

S. Pesant, C. Garcia-comas, and F. Prejger, Digital zooplankton image analysis using 644 the ZooScan integrated system, J Plankton Res, vol.32, pp.285-303, 2010.

M. Buia, Volcanic carbon dioxide vents show ecosystem effects of ocean 647 acidification, Nature, vol.454, pp.96-99, 2008.

I. Hendriks, C. Duarte, Y. Olsen, A. Steckbauer, L. Ramajo et al., McCulloch 651 M (2014a) Biological mechanisms supporting adaptation to ocean acidification in coastal 652 ecosystems, Estuar Coast Shelf Sci, vol.152

I. Hendriks, Y. Olsen, L. Ramajo, L. Basso, A. Steckbauer et al., Photosynthetic activity buffers ocean acidification in seagrass meadows, Biogeosciences, vol.654, issue.11, pp.333-346, 2014.
DOI : 10.5194/bgd-10-12313-2013

URL : http://doi.org/10.5194/bgd-10-12313-2013

L. Hofmann and K. Bischof, Ocean acidification effects on calcifying macroalgae, Aquatic Biology, vol.22, issue.22, pp.261-279, 2014.
DOI : 10.3354/ab00581

URL : http://oceanrep.geomar.de/25512/1/b022p261.pdf

L. Hofmann, M. Koch, and D. De-beer, Biotic control of surface pH and evidence of light- 659 induced H+ pumping and Ca 2+ -H + exchange in a tropical crustose coralline alga, PloS, vol.660, issue.11, pp.159057-661, 2016.

C. Hurd, Slow-flow habitats as refugia for coastal calcifiers from ocean acidification, Journal of Phycology, vol.2, issue.4, pp.599-605, 2015.
DOI : 10.1111/jpy.12307

URL : http://ecite.utas.edu.au/104203/1/Hurd%202015.pdf

S. Hurlbert, Pseudoreplication and the Design of Ecological Field Experiments, Ecological Monographs, vol.54, issue.2, pp.187-211, 1984.
DOI : 10.2307/1942661

E. Jackson, S. Rees, C. Wilding, and M. Attrill, Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service, Conservation Biology, vol.76, issue.3, pp.899-90912436, 2015.
DOI : 10.1371/journal.pone.0042708

M. Johnson, V. Moriarty, and R. Carpenter, Acclimatization of the crustose coralline alga 670 Porolithon onkodes to variable pCO2, PLoS ONE, vol.9, 2014.

P. Kerrison, J. Hall-spencer, D. Suggett, L. Hepburn, and M. Steinke, Assessment of pH 673 variability at a coastal CO2 vent for ocean acidification studies, Estuar Coast Shelf Sci, vol.674, pp.94129-137, 2011.

N. Keul, G. Langer, L. De-nooijer, and J. Bijma, Effect of ocean acidification on the benthic 676 foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration, Biogeosciences, vol.677, issue.10, pp.6185-6198, 2013.

J. Kleypas, R. Buddemeier, D. Archer, J. Gattuso, C. Langdon et al., Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs, Science, vol.284, issue.5411, pp.118-680, 1999.
DOI : 10.1126/science.284.5411.118

M. Koch, G. Bowes, C. Ross, and X. Zhang, Climate change and ocean acidification effects on seagrasses and marine macroalgae, Global Change Biology, vol.39, issue.1, pp.103-132, 2013.
DOI : 10.1111/j.1365-2486.2012.02791.x

S. Krayesky-self, J. Richards, M. Rahmatian, and S. Fredericq, spp. (Hapalidiaceae, Hapalidiales, Rhodophyta): new insights in biomineralization and phylomineralogy, Journal of Phycology, vol.99, issue.2, pp.161-173, 2016.
DOI : 10.1111/jpy.12392

K. Kroeker, R. Kordas, R. Crim, and G. Singh, Impacts of ocean acidification on marine 689 organisms: quantifying sensitivities and interaction with warming, Glob Change Biol, vol.690, issue.19, pp.1884-1896, 2013.

J. Gattuso, Meta-analysis reveals negative yet variable effects of ocean 693 acidification on marine organisms: Biological responses to ocean acidification, Ecol Lett, vol.694, issue.13, pp.1419-1434, 2010.

K. Kroeker, F. Micheli, and M. Gambi, Ocean acidification causes ecosystem shifts via altered competitive interactions, Nature Climate Change, vol.45, issue.2, pp.156-159, 2012.
DOI : 10.1038/nature06252

L. Land, Carbonate mud; production by epibiont growth on Thalassia testudinum, Journal of Sedimentary Research, vol.40, issue.4, pp.1361-1363, 1970.
DOI : 10.1306/74D721B7-2B21-11D7-8648000102C1865D

G. Lepoint, S. Havelange, S. Gobert, and J. Bouquegneau, Fauna vs flora contribution to the 700 leaf epiphytes biomass in a Posidonia oceanica seagrass bed, Hydrobiologia, vol.394, pp.70163-67, 1999.

G. Lepoint, J. Jacquemart, J. Bouquegneau, V. Demoulin, and S. Gobert, (MONOCOTYLEDONS, POSIDONIACEAE), Journal of Phycology, vol.43, issue.2, pp.208-218, 2007.
DOI : 10.1111/j.1529-8817.2007.00322.x

G. Lepoint, F. Nyssen, S. Gobert, P. Dauby, and J. Bouquegneau, Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets, Marine Biology, vol.136, issue.3, pp.513-518, 2000.
DOI : 10.1007/s002270050711

M. Littler and D. Littler, The nature of crustose coralline algae and their interactions on reefs, Smithson Contrib Mar Sci, vol.708, issue.39, pp.199-212, 2013.

C. Lombardi, S. Cocito, M. Gambi, B. Cisterna, F. Flach et al., (2011a) Effects of ocean acidification on growth, organic tissue and protein profile of the 711, p.710

C. Lombardi, M. Gambi, C. Vasapollo, P. Taylor, and S. Cocito, Skeletal alterations and 714 polymorphism in a Mediterranean bryozoan at natural CO2 vents, Zoomorphology, vol.715, issue.130, pp.135-145, 2011.

L. Mabrouk, B. Brahim, M. Hamza, A. Mahfoudhi, M. Bradai et al., A comparison of 717 abundance and diversity of epiphytic microalgal assemblages on the leaves of the 718 seagrasses Posidonia oceanica (L.) and Cymodocea nodosa (Ucria), 2014.

S. Martin and J. Gattuso, Response of Mediterranean coralline algae to ocean acidification and elevated temperature, Global Change Biology, vol.63, issue.8, pp.2089-2100, 2009.
DOI : 10.1111/j.1365-2486.2009.01874.x

S. Martin, R. Rodolfo-metalpa, E. Ransome, S. Rowley, M. Buia et al., Effects of naturally acidified seawater on seagrass calcareous epibionts, Biology Letters, vol.3, issue.5682, pp.689-6920412, 2008.
DOI : 10.1126/science.1097403

B. Martínez-crego, I. Olivé, and R. Santos, CO<sub>2</sub> and nutrient-driven changes across multiple levels of organization in <i>Zostera noltii</i> ecosystems, Biogeosciences, vol.11, issue.24, pp.7237-7249, 2014.
DOI : 10.5194/bg-11-7237-2014-supplement

S. Mccoy and N. Kamenos, Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change, Journal of Phycology, vol.71, issue.1, pp.6-24, 2015.
DOI : 10.1111/jpy.12262

S. Mccoy and F. Ragazzola, Skeletal trade-offs in coralline algae in response to ocean acidification, Nature Climate Change, vol.49, issue.8, pp.719-723, 2014.
DOI : 10.1029/2009GC002411

M. Nash, B. Opdyke, Z. Wu, H. Xu, and J. Trafford, Simple X-Ray Diffraction Techniques To Identify MG Calcite, Dolomite, and Magnesite In Tropical Coralline Algae and Assess Peak Asymmetry, Journal of Sedimentary Research, vol.83, issue.12, pp.1084-1098, 2014.
DOI : 10.2110/jsr.2013.67

M. Nash, U. Troitzsch, B. Opdyke, J. Trafford, B. Russell et al., First discovery 737 of dolomite and magnesite in living coralline algae and its geobiological implications, Biogeosciences, vol.738, issue.8, pp.3331-3340, 2011.

J. Nelsen and R. Ginsburg, Calcium carbonate production by epibionts on Thalassia, p.740, 1986.

W. Nelson, Calcified macroalgae - critical to coastal ecosystems and vulnerable to change: a review, Marine and Freshwater Research, vol.60, issue.8, pp.787-801, 2009.
DOI : 10.1071/MF08335

L. Oksanen, Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 745, pp.27-38, 2001.

V. Pasqualini, C. Pergent-martini, P. Clabaut, and G. Pergent, Mapping ofPosidonia oceanicausing Aerial Photographs and Side Scan Sonar: Application off the Island of Corsica (France), Estuarine, Coastal and Shelf Science, vol.47, issue.3, pp.359-367, 1998.
DOI : 10.1006/ecss.1998.0361

C. Perry and S. Beavington-penney, Epiphytic calcium carbonate production and facies 750 development within sub-tropical seagrass beds, 2005.
DOI : 10.1016/j.sedgeo.2004.12.003

L. Pettit, C. Smart, M. Hart, M. Milazzo, and J. Hall-spencer, Seaweed fails to prevent 753 ocean acidification impact on foraminifera along a shallow-water CO 2 gradient, Ecol, vol.754, 2015.

J. Pinckney and M. Fiorenza, Microalgae on seagrass mimics: Does epiphyte community structure differ from live seagrasses?, Journal of Experimental Marine Biology and Ecology, vol.221, issue.1, pp.59-70, 1998.
DOI : 10.1016/S0022-0981(97)00115-9

P. Prado, T. Alcoverro, and J. Romero, Seasonal response of Posidonia oceanica epiphyte assemblages to nutrient increase, Marine Ecology Progress Series, vol.359, pp.89-98, 2008.
DOI : 10.3354/meps07438

R. Rodolfo-metalpa, C. Lombardi, S. Cocito, J. Hall-spencer, and M. Gambi, Effects of 760 ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural 761 CO2 vents, Mar Ecol, vol.31, pp.447-456, 2010.

M. Roleda, C. Cornwall, Y. Feng, C. Mcgraw, A. Smith et al., Effect of ocean 763 acidification and pH Fluctuations on the growth and development of coralline algal 764 recruits, and an associated benthic algal assemblage, PLOS ONE, vol.10, 2015.

V. Saderne and M. Wahl, Differential responses of calcifying and non-calcifying epibionts of 767 a brown macroalga to present-day and future upwelling pCO2, PLoS ONE, vol.8, 2013.

A. Smith, Growth and Calcification of Marine Bryozoans in a Changing Ocean, The Biological Bulletin, vol.226, issue.3, pp.203-210, 2014.
DOI : 10.1086/BBLv226n3p203

A. Smith, J. Sutherland, L. Kregting, T. Farr, and D. Winter, Phylomineralogy of the 776 coralline red algae: Correlation of skeletal mineralogy with molecular phylogeny, Phytochemistry, vol.777, issue.81, pp.97-108, 2012.

J. Steel and B. Wilson, Which is the phyte in epiphyte?, Folia Geobotanica, vol.32, issue.1, pp.97-99, 2003.
DOI : 10.1007/BF02803129

A. Stewart-oaten, W. Murdoch, and K. Parker, Environmental Impact Assessment: "Pseudoreplication" in Time?, Ecology, vol.67, issue.4, pp.929-940, 1986.
DOI : 10.2307/1939815

E. Sanford, V. Thiyagarajan, M. Vaughan, S. Widdicombe, and C. Harley, Ocean 785 acidification can mediate biodiversity shifts by changing biogenic habitat, Nat Clim Change, vol.786, issue.7, pp.81-85, 2016.

F. Tomas, X. Turon, and J. Romero, Effects of herbivores on a Posidonia oceanica seagrass meadow: importance of epiphytes, Marine Ecology Progress Series, vol.287, pp.115-125, 2005.
DOI : 10.3354/meps287115

S. Vizzini, D. Leonardo, R. Costa, V. Tramati, C. Luzzu et al., Trace element bias in the use of CO2 vents as analogues for low pH environments: Implications for contamination levels in acidified oceans, Estuarine, Coastal and Shelf Science, vol.134, pp.19-30, 2013.
DOI : 10.1016/j.ecss.2013.09.015