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ABSTRACT: A convenient, versatile and easy to handle intramolecular hydrofunctionalization of alkenes (C–O and C–N bonds 
formation) is reported using a novel niobium-based catalytic system. This atom economic and eco-friendly methodology provides 
an additional synthetic tool for the straightforward formation of valuable building blocks enabling molecular complexity. Various 
pyran, furan, pyrrolidine, piperidine, lactone, lactam derivatives as well as spirocyclic compounds are produced in high yields and 
selectivities.  

Development of environmentally friendly and economical 
processes is absolutely critical for the construction of valuable 
synthetic targets. Over the last decades, catalysis has proven to 
be an effective strategy to rapidly access molecular complexity 
with consideration of step/atom economy, energy and re-
sources saving or waste minimization. While associated with 
limited availabilities, expensive costs and identified toxicity, 
noble metals catalysis has been nevertheless behind most of 
the commonly used methodologies. With this in mind, the 
exploitation of inexpensive, non-toxic and abundant low-
valent transition metals in catalysis is an ongoing field of 
research. Inspired by Obora’s work,1 we recently identified 
NbCl3•DME as a competent catalyst for the unprecedented 
[2+2+2] cycloaddition of fully substituted benzosilacyclo-
butenes.2 Despite its valuable benefits in terms of sustainabil-
ity, toxicity and cost, niobium chemistry is still in its infancy 
and most of the reported literature is dedicated to the for-
mation of coordination complexes and materials mainly for 
industrial applications.3 Because of their unusual reactivity 
compared to other transition metal halides, niobium complexes 
such as NbCl5 or NbCl3•DME have received a particular atten-
tion either as Lewis acid or as precursor of reactive Nb(III)-
alkyne or -imine complexes, and some niobium-mediated 
processes have been developed.2, 4 
With a goal of broadening the toolbox for synthetic chemists, 
we set out to more deeply explore the reactivity of NbCl5 as 
catalyst for the intramolecular hydrofunctionalization of unac-
tivated alkenes (C–O and C–N bonds formation, Scheme 1).5 
Such completely atom economic transformations promoted 

either by various and often precious transition metals (Au, Pt, 
Ru, Re, Zr, Ti, Al, Bi, Mg, …)6 or Brønsted acids7 have been 
deeply studied showing contrasting results. Unfortunately, 
despite their great potential, only few transition metal based 
catalytic systems have shown suitable versatility regarding 
substrates and the direct use of strong organic acids often 
demonstrates inferior catalytic performance due to their inher-
ent instability and difficulty to handle. Indeed, to the best of 
our knowledge, processes matching  
 
Scheme 1. Eco-Friendly Hydrofunctionalization of Alkenes 
 

 
broad scope, low cost and low environmental impact are lim-
ited to the use of Ag,8 Ln,9 Cu,10 Co,10a, 11 Fe10a, 12 and Ca13 
catalysis (Scheme 1). However, none of these metals exhibits 
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generality in each of the following cylizations: unsaturated 
alcohols, amines, carboxylic acids and amides14 and the suc-
cess of the reactions often requires high catalyst loadings (up 
to 25 mol %), excess of additives (silver salts up to 30 mol %, 
bases, disiloxanes, oxidants, ammonium or pyridinium salts), 
ionic liquids, zeolithes and sophisticated ligands. In this con-
text, niobium catalysis emerges as a novel eco-friendly alter-
native for the construction of molecular complexity. Indeed 
this metal offers low toxicity, is affordable and relatively 
abundant in earth’s crust.3, 15 
We first selected unsaturated alcohol 1a as a hydroalkoxyla-
tion model substrate. Comparison of the cyclization efficiency 
using catalytic amounts of niobium(III) or (V) catalysts clearly 
demonstrated the supremacy of the cationic NbCl5/AgNTf2 
system at room temperature (Table 1, entries 1-7, see Support-
ing Information, parts 2 and 3 for more detailed optimization 
studies).16 After screening various types of solvent, chlorinated 
solvents gave the best efficiency with dichloroethane (DCE) as 
best candidate (Table 1, entries 6 and 8). Further tuning of the 
stoichiometry of NbCl5/AgNTf2 catalytic system was realized 
and it was found that using a (1:2) ratio delivered a mixture of 
cyclized compounds 2a and 3a in 75% yield with high selec-
tivity (Table 1, entries 8 and 9). Increasing the reaction tem-
perature to 80 °C led to a full conversion of 1a and in that case 
catalyst loadings could be decreased with only a slight loss of 
yield (Table 1, entries 10 and 11). Finally, 1a underwent 
smooth hydroalkoxylation at 50 °C affording a mixture of 2a 
and 3a after 6 h in good yield (70%) and selectivity (94 / 6) 
(Table 1, entry 12). In contrast, conducting the reaction in the 
absence of NbCl5 or AgNTf2 was not productive, emphasizing 
the  
 
Table 1. Catalyst Screening and Optimization of the Reac-
tion Conditions 

 
benefic effect of the catalytic combination NbCl5/AgNTf2 
(Table 1, entries 13 and 14). Interestingly, this one-step pro-

cess was readily gram-scalable and the catalyst loading could 
be reduced to 1 mol % of niobium at the cost of a prolonged 
reaction time (Table 1, entry 15). 
After optimization of our catalytic system, we investigated its 
performance in terms of substrate scope. The direct access to 
substituted tetrahydrofurans and tetrahydropyrans was first 
envisaged (Table 2). The cyclization of unsaturated alcohols 
1a-h proceeded smoothly at 50 or 80 °C in 6 hours (Table 2, 
entries 1-8). The features of the process appeared closely 
related to the substitution pattern of the double bond and a 
highly regioselective cyclization generally occurred at the 
most substituted carbon. To our great delight, quantitative 
yields of tetrahydrofurans 2b and 2c were obtained (Table 2, 
entries 2 and 3). The substitution on the tether had only an 
influence on the reaction rate and unsubstituted alcohols 1f 
and 1g were cyclized with satisfactory yields up to 97% at 80 
°C (Table 2, entries 6 and 7). Finally, the terminal 2- allylphe-
nol 1h could afford the corresponding cyclized compound 2h 
with 66% yield and a complete regioselectivity (Table 2, entry 
8). 
 
Table 2. Scope of Unsaturated Alcohols 

 
The reactivity of alkynes was also tested in this niobium-
catalyzed hydroalkoxylation reaction. Interestingly, spirocy-
clization of diol 4 proceeded efficiently and yielded the valua-
ble spiro-(5,6) compound 5 as the sole product (Scheme 2). 
 
Scheme 2. Niobium-Catalyzed Spiro-Compound Synthesis 

 
 
To explore the full scope of this reaction, we investigated the 
ability of unsaturated amines to undergo cyclization (Table 3). 
Unfortunately, no hydroamination occurred with unprotected 
primary amine 6a presumably due to reaction inhibition 
through strong but non-productive coordination to niobium17 
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preventing any activation of the amine moiety or through non-
desired trapping of a proton source that could be in situ deliv-
ered (Table 3, entry 1, see SI, part 6 for preliminary mechanis-
tic investigations). Identically, most of N-protecting groups 
proved unsuccessful (6b-d, Bn, Bz, Boc, Table 3, entry 2). 
Gratifyingly, this niobium catalytic system could catalyze the 
desired cyclization with nucleophiles such as sulfonamides 6e-
i (Table 3, entries 3-7). While the corresponding pyrrolidines 
7e-g (Table 3, entries 3-5) and piperidine 8i (Table 3, entry 7) 
could be isolated with high selectivities and excellent yields 
up to 99%, the reaction of sulfonamide 6h featuring a prenyl 
moiety gave product 8h in low yield with isolation of an unde-
sired compound 8h’ as major product arising from a hydroary-
lation reaction (Table 3, entry 6). 
 
Table 3. Scope of Unsaturated Amines 

 
We next examined the outcome of the reaction of unsaturated 
amino-alcohols under our catalytic conditions (Scheme 3). 
Once again, reaction was totally suppressed when using non-
protected amino-alcohol 9a. As seen previously, hydroxy-
sulfonamide 9b was the best candidate and afforded heterocy-
clic compounds 10b and 11b in good yields with hydroalkoxy-
lation as favored pathway (see SI, part 5 for additional studies 
on reaction chemioselectivity). Finally, the synthetic potential 
of our method was highlighted by the possibility to readily 
form spirocyclic compound 13 in 81% yield as valuable scaf-
fold. 
 
Scheme 3. Hydroalkoxylation versus Hydroamination 

 

Encouraged by these results we further explored the versatility 
of our method by conducting hydrocarboxylation and hy-
droamidation reactions (Table 4). The optimized conditions 
could be applied to a variety of unsaturated carboxylic acids 
and amides yielding the corresponding lactones (Table 4, 
entries 1-3) and lactams (Table 4, entries 4 and 5) thus illus-
trating the synthetic potential of our methodology. Surprising-
ly and in marked contrast to previous results, the cyclization of 
the carboxylic acid homolog of 1a led to low selectivity (Table 
4, entry 1). However, high regioselectivities and satisfactory 
yields were achieved by modifying the substitution pattern of 
the double bond (Table 4, entries 2 and 3) or switching to 
amide-type analogs (Table 4, entries 4 and 5). 
 
Table 4. Scope of Unsaturated Carboxylic Acids and Am-
ides 

 
 
In summary, we have established an atom economic method 
for the intramolecular hydrofunctionalization of alkenes with 
high yields and selectivities. Being an efficient strategy for the 
straightforward synthesis of a large panel of heterocyclic com-
pounds as valuable scaffolds for natural products and pharma-
ceuticals, this niobium-catalyzed reaction provides a nice and 
attractive contribution to the synthetic toolbox. While our 
given methodology, centered on a relatively inexpensive nio-
bium-based catalyst, is convenient, versatile and easy to use, 
the exact nature of the niobium active species and the reaction 
mechanism are still to determine and are subject to further 
investigations (see SI, part 6 for preliminary mechanistic in-
vestigations). As initial results, control experiments using 
PhSiMe3 as an efficient non-coordinative proton scavenger 
have suggested a mechanism involving a direct interaction 
between the metallic species and the substrate in contrast to a 
hidden Brønsted acid catalytic pathway. Gaining better insight 
into the reaction mechanism is necessary to explore the full 
potential of this method and to develop some more attractive 
asymmetric versions.  
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a No reaction was observed. b Full conversion was observed. c Product 8h' arising 
from undesired hydroarylation.
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