
HAL Id: hal-01520491
https://hal.sorbonne-universite.fr/hal-01520491v1

Preprint submitted on 12 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Hybrid Architecture for Multi-Party Conversational
Systems

Maira Gatti de Bayser, Paulo Cavalin, Renan Souza, Alan Braz, Heloisa
Candello, Claudio Pinhanez, Jean-Pierre Briot

To cite this version:
Maira Gatti de Bayser, Paulo Cavalin, Renan Souza, Alan Braz, Heloisa Candello, et al.. A Hybrid
Architecture for Multi-Party Conversational Systems. 2017. �hal-01520491�

https://hal.sorbonne-universite.fr/hal-01520491v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Hybrid Architecture for
Multi-Party Conversational Systems

Maira Gatti de Bayser1, Paulo Cavalin1, Renan Souza1, Alan Braz1, Heloisa
Candello1, Claudio Pinhanez1, and Jean-Pierre Briot2

1IBM Research, Rio de Janeiro, Brazil
2Sorbonne Universit’es, UPMC Univ Paris 06, CNRS, Laboratoire

d’Informatique de Paris 6 (LIP6), Paris, France

May 8, 2017

Abstract

Multi-party Conversational Systems are systems with natural language interaction
between one or more people or systems. From the moment that an utterance is sent to
a group, to the moment that it is replied in the group by a member, several activities
must be done by the system: utterance understanding, information search, reasoning,
among others. In this paper we present the challenges of designing and building multi-
party conversational systems, the state of the art, our proposed hybrid architecture
using both norms and machine learning and some insights after implementing and
evaluating one on the finance domain.

1 Introduction
Back to 42 BC, the philosopher Cicero has raised the issue that although there were many
Oratory classes, there were none for Conversational skills [1]. He highlighted how important
they were not only for politics, but also for educational purpose. Among other conversational
norms, he claimed that people should be able to know when to talk in a conversation, what
to talk depending on the subject of the conversation, and that they should not talk about
themselves.

Norms such as these may become social conventions and are not learnt at home or at
school. Social conventions are dynamic and may change according to context, culture and
language. In online communication, new commonsense practices are evolved faster and
accepted as a norm [2], [3]. There is not a discipline for that on elementary or high schools
and there are few linguistics researchers doing research on this field.

On the other hand, within the Artificial Intelligence area, some Conversational Systems
have been created in the past decades since the test proposed by Alan Turing in 1950.
The test consists of a machine’s ability to exhibit intelligent behavior equivalent to, or
indistinguishable from that of a human [4]. Turing proposed that a human evaluator would
judge natural language conversations between a human and a machine that is designed to
generate human-like responses. Since then, many systems have been created to pass the

1

ar
X

iv
:1

70
5.

01
21

4v
2

 [
cs

.C
L

]
 4

 M
ay

 2
01

7

Turing’s test. Some of them have won prizes, some not [5]. Although in this paper we do
not focus on creating a solution that is able to build conversational systems that pass the
Turing’s test, we focus on Natural Dialogue Systems (NDS). From [6], "NDS are systems
that try to improve usability and user satisfaction by imitating human behavior". We refer
to Conversational Systems as NDS, where the dialogues are expressed as natural language
texts, either from artificial intelligent agents (a.k.a. bots) or from humans.

That said, the current popular name to systems that have the ability to make a con-
versation with humans using natural language is Chatbot. Chatbots are typically used in
conversational systems for various practical purposes, including customer service or informa-
tion acquisition. Chatbots are becoming more widely used by social media software vendors.
For example, Facebook1 recently announced that it would make Facebook Messenger (its
900-million-user messaging app by 2016), into a full-fledged platform that allows businesses
to communicate with users via chatbots. Google is also building a new mobile-messaging
service that uses artificial intelligence know-how and chatbot technology. In addition, ac-
cording to the Wall Street Journal, there are more than 2 billion users of mobile apps. Still,
people can be reluctant to install apps. So it is believed that social messaging can be a plat-
form and chatbots may provide a new conversational interface for interacting with online
services, as chatbots are easier to build and deploy than apps [7].

China seems to be the place where chatbots adoption and use is most advanced today. For
example, China’s popular WeChat messaging platform can take payments, scan QR codes,
and integrate chatbot systems. WeChat integrates e-mail, chat, videocalls and sharing of
large multimedia files. Users can book flights or hotels using a mixed, multimedia interaction
with active bots. WeChat was first released in 2011 by Tecent, a Chinese online-gaming and
social-media firm, and today more than 700 million people use it, being one of the most
popular messaging apps in the world (The Economist 2016). WeChat has a mixture of
real-live customer service agents and automated replies (Olson 2016).

Still, current existing chatbot engines do not properly handle a group chat with many
users and many chatbots. This makes the chatbots considerably less social, which is a
problem since there is a strong demand of having social chatbots that are able to provide
different kinds of services, from traveling packages to finance advisors. This happens because
there is a lack of methods and tools to design and engineer the coordination and mediation
among chatbots and humans, as we present in Sections 2 and 3. In this paper, we refer
to conversational systems that are able to interact with one or more people or chatbots in
a multi-party chat as Multi-Party Conversational System (MPCS). Altogether, this paper
is not meant to advance the state of the art on the norms for MPCS. Instead, the main
contributions of this paper are threefold:

1. We discuss the challenges of designing and building MPCS (Section 2),

2. We categorize the state of the art with works that tackle each of the challenges some-
how (Section 3),

3. We present our hybrid conceptual architecture (Section 4), and insights and lessons
learned after implementing and validating one on the finance domain (Section 5).

We then present some discussion and future work in the last section.
1http://www.facebook.com

2

2 Challenges on Chattering
There are plenty of challenges in conversation contexts, and even bigger ones when people
and machines participate in those contexts. Conversation is a specialized form of interaction,
which follows social conventions. Social interaction makes it possible to inform, context,
create, ratify, refute, and ascribe, among other things, power, class, gender, ethnicity, and
culture [3]. Social structures are the norms that emerge from the contact people have with
others [8], for example, the communicative norms of a negotiation, taking turns in a group,
the cultural identity of a person, or power relationships in a work context.

Conventions, norms and patterns from everyday real conversations are applied when
designing those systems to result in adoption and match user’s expectations. [9] describes
implicit interactions in a framework of interactions between humans and machines. The
framework is based on the theory of implicit interactions which posits that people rely on
conventions of interaction to communicate queries, offers, responses, and feedback to one
another. Conventions and patterns drive our expectations about interactive behaviors. This
framework helps designers and developers create interactions that are more socially appro-
priate. According to the author, we have interfaces which are based on explicit interaction
and implicit ones. The explicit are the interactions or interfaces where people rely on ex-
plicit input and output, whereas implicit interactions are the ones that occur without user
awareness of the computer behavior.

Social practices and actions are essential for a conversation to take place during the turn-
by-turn moments of communication. [10] highlights that a distinguishing feature of ordinary
conversation is "the local, moment-by-moment management of the distribution of turns, of
their size, and what gets done in them, those things being accomplished in the course of
each current speaker’s turn." Management of turns and subject change in each course is a
situation that occurs in real life conversations based on circumstances (internal and external)
to speakers in a dialogue. Nowadays, machines are not prepared to fully understand context
and change the course of conversations as humans. Managing dialogues with machines is
challenging, which increases even more when more than one conversational agent is part of
the same conversation. Some of those challenges in the dialogue flow were addressed by [11].
According to them, we have system-initiative, user-initiative, and mixed-initiative systems.

In the first case, system-initiative systems restrict user options, asking direct questions,
such as (Table 1): "What is the initial amount of investment?" Doing so, those types of sys-
tems are more successful and easier to answer to. On the other hand, user-initiative systems
are the ones where users have freedom to ask what they wish. In this context, users may
feel uncertain of the capabilities of the system and starting asking questions or requesting
information or services which might be quite far from the system domain and understanding
capacity, leading to user frustration. There is also a mixed-initiative approach, that is, a
goal-oriented dialogue which users and computers participate interactively using a conver-
sational paradigm. Challenges of this last classification are to understand interruptions,
human utterances, and unclear sentences that were not always goal-oriented.

The dialog in Table 1 has the system initiative in a question and answer mode, while
the one in Table 3 is a natural dialogue system where both the user and the system take
the initiative. If we add another user in the chat, then we face other challenges.

In Table 4, line 4, the user U1 invites another person to the chat and the system does not
reply to this utterance, nor to utterances on lines 6, 7 and 8 which are the ones when only
the users (wife and husband) should reply to. On the other hand, when the couple agrees
on the period and initial value of the investment (line 9), then the system S1 (at the time

3

Table 1: System initiative
Turn Utterance
S Which investment option do you choose?
U Dollar
S What is the initial amount of investment?
U R$ 35,000
S What is the time period of investment?
U 2 years
S The return of investment is R$38,000 at the end.

Table 2: User initiative
Turn Utterance
U What is an investment?
S To invest is to allocate money (or sometimes another resource,

such as time) in the expectation of some benefit in the future. In
finance, the expected future benefit from investment is a return.

U What are the types of investment?
S There are traditional and alternative investments.
U Which investments are traditional investments?
S Bonds, cash and real state.

the only system in the chat) replies indicating that it will invite more systems (chatbots)
that are experts on this kind of pair < period, initial value >. They then join the chat and
start interacting with each other. At the end, on line 17, the user U2 interacts with U1 and
they agree with the certificate option. Then, the chatbot responsible for that, S3, is the
only one that replies indicating how to invest.

Table 4 is one example of interactions on which the chatbots require knowledge of when to
reply given the context of the dialog. In general, we acknowledge that exist four dimensions
of understanding and replying to an utterance in MPCS which a chatbot that interacts in
a multi-party chat group should fulfill:

1. What is the message/utterance about? This task means to recognize the utterance,
such as the intent of the utterance, the entity making the utterance, and features of
the entity, such as a time or initial value;

2. Who should reply to the utterance? I.e., to whom it is addressed? Should it be to a
user? Or should it be to a chatbot?

3. How the reply should be built/generated? For example, the reply depends on an
execution of an action to generate the reply, like computing a value or guiding a car.

4. When should the reply be sent? For instance, perhaps the reply needs to be sent
within 2 minutes, 10 minutes, 1 day, or after someone/some chatbot in the chat, or
before someone, some chatbot speaks, etc.

In the next section we present the state of the art and how they fullfil some of these
dimensions.

4

Table 3: Natural Dialogue with Mixed initiative
Turn Utterance
S How can I help you?
U I would like to invest in Dollars, is it good?
S Oh, that would be a great choice. What would be the initial

amount of investment and for how long would you keep the money
invested?

U Maybe R$35,000 in 2 years?
S OK, um, let me see? The return of investment is R$38,000 at the

end.

Table 4: MultiParty Conversation with Mixed initiative
Turn Utterance

1 S1 How can I help you?
2 U1 I would like to invest in Dollars, is it good?
3 S1 Well, not so sure. What would be the initial amount of investment

and for how long would you keep the money invested?
4 U1 Actually, I am not sure. Let me invite my husband to this chat...
5 U2 << U2 joins the chat >>
6 U1 Honey, for how long would you like to keep the money invested?
7 U2 for 2 years
8 U1 Right, so R$ 35,000 for 2 years?
9 U2 yes
10 S1 Ok, in this case I will invite two experts to simulate for you.
11 S2 << S2 joins the chat >>
12 S3 << S3 joins the chat >>
13 S1 Experts, can you simulate the return of investment for R$ 35,000

in 2 years?
14 S2 Sure, in the savings account the return at the end will be R$

38,000
15 S3 Sure, in the certificate of deposit the return at the end will be R$

38,600
16 S1 Thanks. It looks like it is better to invest in the certificate of

deposit.
17 U2 Honey, lets go with the certificate.
18 U1 Ok, it seems a good idea...
19 S3 Sure, to start you can click here.

3 Conversational Systems
In this section we discuss the state of the art on conversational systems in three perspectives:
types of interactions, types of architecture, and types of context reasoning. Then we present
a table that consolidates and compares all of them.

ELIZA [12] was one of the first softwares created to understand natural language pro-
cessing. Joseph Weizenbaum created it at the MIT in 1966 and it is well known for acting
like a psychotherapist and it had only to reflect back onto patient’s statements. ELIZA was
created to tackle five "fundamental technical problems" : the identification of critical words,

5

the discovery of a minimal context, the choice of appropriate transformations, the genera-
tion of appropriate responses to the transformation or in the absence of critical words, and
the provision of an ending capacity for ELIZA scripts.

Right after ELIZA came PARRY, developed by Kenneth Colby, who is psychiatrist at
Stanford University in the early 1970s. The program was written using the MLISP language
(meta-lisp) on the WAITS operating system running on a DEC PDP-10 and the code is non-
portable. Parts of it were written in PDP-10 assembly code and others in MLISP. There
may be other parts that require other language translators. PARRY was the first system to
pass the Turing test - the psychiatrists were able to make the correct identification only 48
percent of the time, which is the same as a random guessing.

A.L.I.C.E. (Artificial Linguistic Internet Computer Entity) [13] appeared in 1995 but
current version utilizes AIML, an XML language designed for creating stimulus-response
chat robots [14]. A.L.I.C.E. bot has, at present, more than 40,000 categories of knowledge,
whereas the original ELIZA had only about 200. The program is unable to pass the Turing
test, as even the casual user will often expose its mechanistic aspects in short conversations.

Cleverbot (1997-2014) is a chatbot developed by the British AI scientist Rollo Carpen-
ter. It passed the 2011 Turing Test at the Technique Techno-Management Festival held by
the Indian Institute of Technology Guwahati. Volunteers participate in four-minute typed
conversations with either Cleverbot or humans, with Cleverbot voted 59.3 per cent human,
while the humans themselves were rated just 63.3 per cent human [15].

Table 5: Categories of Classical Chatbots per Interaction and Intentions
Interactions Intentions
Dyadic Coordinated Goal Non Goal

ELIZA l m w l

PARRY l m w l

A.L.I.C.E l w w l

Cleverbot l w m l

Table 6: Categories of Classical Chatbots per Architectures and Context Reasoning
Architectures Context Reasoning
Rule Data Hybrid Rule Data Hybrid

ELIZA l m m w m m

PARRY w l l m m m

A.L.I.C.E m l l w m m

Cleverbot m l m m l m

3.1 Types of Interactions
Although most part of the research literature focuses on the dialogue of two persons, the
reality of everyday life interactions shows a substantial part of multi-user conversations,
such as in meetings, classes, family dinners, chats in bars and restaurants, and in almost
every collaborative or competitive environment such as hospitals, schools, offices, sports
teams, etc. The ability of human beings to organize, manage, and (mostly) make productive
such complex interactive structures which are multi-user conversations is nothing less than
remarkable. The advent of social media platforms and messaging systems such as WhatsApp
in the first 15 years of the 21st century expanded our ability as a society to have asynchronous

6

conversations in text form, from family and friends chatgroups to whole nations conversing
in a highly distributed form in social media [16].

In this context, many technological advances in the early 2010s in natural language pro-
cessing (spearheaded by the IBM Watson’s victory in Jeopardy [17]) spurred the availability
in the early 2010s of text-based chatbots in websites and apps (notably in China [18]) and
spoken speech interfaces such as Siri by Apple, Cortana by Microsoft, Alexa by Amazon,
and Allo by Google. However, the absolute majority of those chatbot deployments were
in contexts of dyadic dialog, that is, a conversation between a single chatbot with a single
user. Most of the first toolkits for chatbot design and development of this initial period
implicit assume that an utterance from the user is followed by an utterance of the chatbot,
which greatly simplifies the management of the conversation as discussed in more details
later. Therefore, from the interaction point of view, there are two types: 1) one in which
the chatbot was designed to chat with one person or chatbot, and 2) other in which the
chatbot can interact with more than two members in the chat.

Dyadic Chatbot

A Dyadic Chatbot is a chatbot that does know when to talk. If it receives an utterance,
it will always handle and try to reply to the received utterance. For this chatbot to behave
properly, either there are only two members in the chat, and the chatbot is one of them,
or there are more, but the chatbot replies only when its name or nickname is mentioned.
This means that a dyadic chatbot does not know how to coordinate with many members in
a chat group. It lacks the social ability of knowing when it is more suitable to answer or
not. Also, note that we are not considering here the ones that would use this social ability
as an advantage in the conversation, because if the chatbot is doing with this intention, it
means that the chatbot was designed to be aware of the social issues regarding a chat with
multiple members, which is not the case of a dyadic chatbot. Most existing chatbots, from
the first system, ELIZA [12], until modern state-of-the-art ones fall into this category.

Multiparty Conversations

In multiparty conversations between people and computer systems, natural language
becomes the communication protocol exchanged not only by the human users, but also
among the bots themselves. When every actor, computer or user, understands human
language and is able to engage effectively in a conversation, a new, universal computer
protocol of communication is feasible, and one for which people are extremely good at.

There are many differences between dyadic and multiparty conversations, but chiefly
among them is turn-taking, that is, how a participant determines when it is appropriate to
make an utterance and how that is accomplished. There are many social settings, such as
assemblies, debates, one-channel radio communications, and some formal meetings, where
there are clear and explicit norms of who, when, and for long a participant can speak.

The state of the art for the creation of chatbots that can participate on multiparty
conversations currently is a combination of the research on the creation of chatbots and
research on the coordination or governance of multi-agents systems. A definition that mixes
both concepts herein present is: A chatbot is an agent that interacts through natural
language. Although these areas complement each other, there is a lack of solutions for
creating multiparty-aware chatbots or governed chatbots, which can lead to higher degree
of system trust.

7

(i) Multi-Dyadic Chatbots

Turn-taking in generic, multiparty spoken conversation has been studied by, for exam-
ple, Sacks et al. [19]. In broad terms, it was found that participants in general do not
overlap their utterances and that the structure of the language and the norms of con-
versation create specific moments, called transition-relevance places, where turns can
occur. In many cases, the last utterances make clear to the participants who should
be the next speaker (selected-next-speaker), and he or she can take that moment to
start to talk. Otherwise, any other participant can start speaking, with preference
for the first starter to get the turn; or the current speaker can continue [19].

A key part of the challenge is to determine whether the context of the conversation
so far have or have not determined the next speaker. In its simplest form, a vocative
such as the name of the next speaker is uttered. Also, there is a strong bias towards
the speaker before the current being the most likely candidate to be the next speaker.

In general the detection of transition-relevance places and of the selected-next-speaker
is still a challenge for speech-based machine conversational systems. However, in the
case of text message chats, transition-relevance places are often determined by the
acting of posting a message, so the main problem facing multiparty-enabled textual
chatbots is in fact determining whether there is and who is the selected-next-speaker.
In other words, chatbots have to know when to shut up. Bohus and Horowitz [20] have
proposed a computational probabilistic model for speech-based systems, but we are
not aware of any work dealing with modeling turn-taking in textual chats.

(ii) Coordination of Multi-Agent Systems

A multi-agent system (MAS) can be defined as a computational environment in which
individual software agents interact with each other, in a cooperative manner, or in
a competitive manner, and sometimes autonomously pursuing their individual goals.
During this process, they access the environment’s resources and services and occa-
sionally produce results for the entities that initiated these software agents. As the
agents interact in a concurrent, asynchronous and decentralized manner, this kind of
system can be categorized as a complex system [21].

Research in the coordination of multi-agent systems area does not address coordina-
tion using natural dialogue, as usually all messages are structured and formalized so
the agents can reason and coordinate themselves. On the other hand, chatbots co-
ordination have some relations with general coordination mechanisms of multi-agent
systems in that they specify and control interactions between agents. However, chat-
bots coordination mechanisms is meant to regulate interactions and actions from a
social perspective, whereas general coordination languages and mechanisms focus on
means for expressing synchronization and coordination of activities and exchange of
information, at a lower computational level.

8

In open multi-agent systems the development takes place without a centralized con-
trol, thus it is necessary to ensure the reliability of these systems in a way that all the
interactions between agents will occur according to the specification and that these
agents will obey the specified scenario. For this, these applications must be built
upon a law-governed architecture.

Minsky published the first ideas about laws in 1987 [22]. Considering that a law is
a set of norms that govern the interaction, afterwards, he published a seminal pa-
per with the Law-Governed Interaction (LGI) conceptual model about the role of
interaction laws on distributed systems [23]. Since then, he conducted further work
and experimentation based on those ideas [24]. Although at the low level a multi-
party conversation system is a distributed system and the LGI conceptual model can
be used in a variety of application domains, it is composed of abstractions basically
related to low level information about communication issues of distributed systems
(like the primitives disconnected, reconnected, forward, and sending or receiving of
messages), lacking the ability to express high level information of social systems.

Following the same approach, the Electronic Institution (EI) [25] solution also pro-
vides support for interaction norms. An EI has a set of high-level abstractions that
allow for the specification of laws using concepts such as agent roles, norms and scenes.

Still at the agent level but more at the social level, the XMLaw description lan-
guage and the M-Law framework [26] [27] were proposed and developed to support
law-governed mechanism. They implement a law enforcement approach as an object-
oriented framework and it allows normative behavior through the combination be-
tween norms and clocks. The M-Law framework [27] works by intercepting messages
exchanged between agents, verifying the compliance of the messages with the laws
and subsequently redirecting the message to the real addressee, if the laws allow it. If
the message is not compliant, then the mediator blocks the message and applies the
consequences specified in the law, if any. They are called laws in the sense that they
enforce the norms, which represent what can be done (permissions), what cannot be
done (prohibitions) and what must be done (obligations).

(iii) Coordinated Aware Chatbots in a Multiparty Conversation

With regard to chatbot engines, there is a lack of research directed to building co-
ordination laws integrated with natural language. To the best of our knowledge, the
architecture proposed in this paper is the first one in the state of the art designed to
support the design and development of coordinated aware chatbots in a multiparty
conversation.

3.2 Types of Architectures
There are mainly three types of architectures when building conversational systems: totally
rule-oriented, totally data-oriented, and a mix of rules and data-oriented.

9

Rule-oriented

A rule-oriented architecture provides a manually coded reply for each recognized utter-
ance. Classical examples of rule-based chatbots include Eliza and Parry. Eliza could also
extract some words from sentences and then create another sentence with these words based
on their syntatic functions. It was a rule-based solution with no reasoning. Eliza could not
"understand" what she was parsing. More sophisticated rule-oriented architectures contain
grammars and mappings for converting sentences to appropriate sentences using some sort
of knowledge. They can be implemented with propositional logic or first-order logic (FOL).
Propositional logic assumes the world contains facts (which refer to events, phenomena,
symptoms or activities). Usually, a set of facts (statements) is not sufficient to describe a
domain in a complete manner. On the other hand, FOL assumes the world contains Objects
(e.g., people, houses, numbers, etc.), Relations (e.g. red, prime, brother of, part of, comes
between, etc.), and Functions (e.g. father of, best friend, etc.), not only facts as in proposi-
tional logic. Moreover, FOL contains predicates, quantifiers and variables, which range over
individuals (which are domain of discourse).

Prolog (from French: Programmation en Logique) was one of the first logic programming
languages (created in the 1970s), and it is one of the most important languages for expressing
phrases, rules and facts. A Prolog program consists of logical formulas and running a
program means proving a theorem. Knowledge bases, which include rules in addition to
facts, are the basis for most rule-oriented chatbots created so far.

In general, a rule is presented as follows:

if < premise > then < conclusion > (1)

Prolog made it possible to perform the language of Horn clauses (implications with only
one conclusion). The concept of Prolog is based on predicate logic, and proving theorems
involves a resolute system of denials. Prolog can be distinguished from classic programming
languages due to its possibility of interpreting the code in both a procedural and declar-
ative way. Although Prolog is a set of specifications in FOL, it adopts the closed-world
assumption, i.e. all knowledge of the world is present in the database. If a term is not in
the database, Prolog assumes it is false.

In case of Prolog, the FOL-based set of specifications (formulas) together with the facts
compose the knowledge base to be used by a rule-oriented chatbot. However an Ontology
could be used. For instance, OntBot [28] uses mapping technique to transform ontologies
and knowledge into relational database and then use that knowledge to drive its chats. One
of the main issues currently facing such a huge amount of ontologies stored in a database
is the lack of easy to use interfaces for data retrieval, due to the need to use special query
languages or applications.

In rule-oriented chatbots, the degree of intelligent behavior depends on the knowledge
base size and quality (which represents the information that the chatbot knows), poor ones
lead to weak chatbot responses while good ones do the opposite. However, good knowledge
bases may require years to be created, depending on the domain.

Data-oriented
As opposed to rule-oriented architectures, where rules have to be explicitly defined, data-
oriented architectures are based on learning models from samples of dialogues, in order
to reproduce the behavior of the interaction that are observed in the data. Such kind of

10

learning can be done by means of machine learning approach, or by simply extracting rules
from data instead of manually coding them.

Among the different technologies on which these system can be based, we can high-
light classical information retrieval algorithms, neural networks [29], Hidden Markov Models
(HMM) [30], and Partially Observable Markov Decision Process (POMDP) [31]. Examples
include Cleverbot and Tay [32]. Tay was a chatbot developed by Microsoft that after one
day live learning from interaction with teenagers on Twitter, started replying impolite ut-
terances. Microsoft has developed others similar chatbots in China (Xiaoice2) and in Japan
(Rinna3). Microsoft has not associated its publications with these chatbots, but they have
published a data-oriented approach[33] that proposes a unified multi-turn multi-task spoken
language understanding (SLU) solution capable of handling multiple context sensitive clas-
sification (intent determination) and sequence labeling (slot filling) tasks simultaneously.
The proposed architecture is based on recurrent convolutional neural networks (RCNN)
with shared feature layers and globally normalized sequence modeling components.

A survey of public available corpora for can be found in [34]. A corpus can be classified
into different categories, according to: the type of data, whether it is spoken dialogues,
transcripts of spoken dialogues, or directly written; the type of interaction, if it is human-
human or human-machine; and the domain, whether it is restricted or unconstrained. Two
well-known corpora are the Switchboard dataset, which consists of transcripts of spoken, un-
constrained, dialogues, and the set of tasks for the Dialog State Tracking Challenge (DSTC),
which contain more constrained tasks, for instance the restaurant and travel information
sets.
Rule and Data-oriented

The model of learning in current A.L.I.C.E. [14] is incremental or/and interactive learning
because a person monitors the robot’s conversations and creates new AIML content to make
the responses more appropriate, accurate, believable, "human", or whatever he/she intends.
There are algorithms for automatic detection of patterns in the dialogue data and this
process provides the person with new input patterns that do not have specific replies yet,
permitting a process of almost continuous supervised refinement of the bot.

As already mentioned, A.L.I.C.E. consists of roughly 41,000 elements called categories
which is the basic unit of knowledge in AIML. Each category consists of an input question,
an output answer, and an optional context. The question, or stimulus, is called the pattern.
The answer, or response, is called the template. The two types of optional context are
called that and topic. The keyword that refers to the robot’s previous utterance. The AIML
pattern language consists only of words, spaces, and the wildcard symbols "_" and "*".
The words may consist only of letters and numerals. The pattern language is case invariant.
Words are separated by a single space, and the wildcard characters function like words,
similar to the initial pattern matching strategy of the Eliza system. More generally, AIML
tags transform the reply into a mini computer program which can save data, activate other
programs, give conditional responses, and recursively call the pattern matcher to insert
the responses from other categories. Most AIML tags in fact belong to this template side
sublanguage [14].

AIML language allows:

1. Symbolic reduction: Reduce complex grammatical forms to simpler ones.
2http://www.msxiaoice.com/
3http://rinna.jp/

11

2. Divide and conquer: Split an input into two or more subparts, and combine the
responses to each.

3. Synonyms: Map different ways of saying the same thing to the same reply.

4. Spelling or grammar corrections: the bot both corrects the client input and acts as a
language tutor.

5. Detecting keywords anywhere in the input that act like triggers for a reply.

6. Conditionals: Certain forms of branching to produce a reply.

7. Any combination of (1)-(6).

When the bot chats with multiple clients, the predicates are stored relative to each
client ID. For example, the markup <set name="name">Matthew</set > stores the string
Matthew under the predicate named "name". Subsequent activations of<get name="name">
return "Matthew". In addition, one of the simple tricks that makes ELIZA and A.L.I.C.E.
so believable is a pronoun swapping substitution. For instance:

U: My husband would like to invest with me.
S: Who else in your family would like to invest with you?

3.3 Types of Intentions
According to the types of intentions, conversational systems can be classified into two cate-
gories: a) goal-driven or task oriented, and b) non-goal-driven or end-to-end systems.

In a goal-driven system, the main objective is to interact with the user so that back-end
tasks, which are application specific, are executed by a supporting system. As an example
of application we can cite technical support systems, for instance air ticket booking systems,
where the conversation system must interact with the user until all the required information
is known, such as origin, destination, departure date and return date, and the supporting
system must book the ticket. The most widely used approaches for developing these systems
are Partially-observed Decision Processes (POMDP) [31], Hidden Markov Models (HMM)
[30], and more recently, Memory Networks [29]. Given that these approaches are data-
oriented, a major issue is to collect a large corpora of annotated task-specific dialogs. For
this reason, it is not trivial to transfer the knowledge from one to domain to another. In
addition, it might be difficult to scale up to larger sets of tasks.

Non-goal-driven systems (also sometimes called reactive systems), on the other hand,
generate utterances in accordance to user input, e.g. language learning tools or computer
games characters. These systems have become more popular in recent years, mainly owning
to the increase of popularity of Neural Networks, which is also a data-oriented approach.
The most recent state of the art to develop such systems have employed Recurrent Neural
Networs (RNN) [35], Dynamic Context-Sensitive Generation [36], and Memory Networks
[37], just to name a few. Nevertheless, probabilistic methods such as Hidden Topic Markov
Models (HTMM) [38] have also been evaluated. Goal-driven approach can create both pro-
active and reactive chatbots, while non-goal-driven approach creates reactive chatbots. In
addition, they can serve as a tool to goal-driven systems as in [29]. That is, when trained
on corpora of a goal-driven system, non-goal-driven systems can be used to simulate user
interaction to then train goal-driven models.

12

3.4 Types of Context Reasoning
A dialogue system may support the context reasoning or not. Context reasoning is necessary
in many occasions. For instance, when partial information is provided the chatbot needs to
be able to interact one or more turns in order to get the complete information in order to be
able to properly answer. In [39], the authors present a taxonomy of errors in conversational
systems. The ones regarding context-level errors are the ones that are perceived as the
top-10 confusing and they are mainly divided into the following:

• Excess/lack of proposition: the utterance does not provide any new proposition to the
discourse context or provides excessive information than required.

• Contradiction: the utterance contains propositions that contradict what has been said
by the system or by the user.

• Non-relevant topic: the topic of the utterance is irrelevant to the current context such
as when the system suddenly jumps to some other topic triggered by some particular
word in the previous user utterance.

• Unclear relation: although the utterance might relate to the previous user utterance,
its relation to the current topic is unclear.

• Topic switch error: the utterance displays the fact that the system missed the switch
in topic by the user, continuing with the previous topic.

Rule-oriented

In the state of the art most of the proposed approaches for context reasoning lies on rules
using logics and knowledge bases as described in the Rule-oriented architecture sub-section.
Given a set of facts extracted from the dialogue history and encoded in, for instance, FOL
statements, a queries can be posed to the inference engine and produce answers. For in-
stance, see the example in Table 7. The sentences were extracted from [37] (which does not
use a rule-oriented approach), and the first five statements are their respective facts. The
system then apply context reasoning for the query Q: Where is the apple.

Table 7: Example of sequence of utterances and FOL statements
Utterance FOL statement
Sam walks into the kitchen. isAt(Sam, kitchen)
Sam picks up an apple. pickUp(Sam, apple)
Sam walks into the bedroom. isAt(Sam, bedroom)
Sam drops the apple. ∀x(∀y(∀w(drops(x, y) ∧ isAt(x,w)→ isAt(y, w))))
Q: Where is the apple?
A: Bedroom isAt(apple, bedroom)

If statements above are received on the order present in Table 7, if the query Q: Where
is the apple is sent, the inference engine will produce the answer A: Bedroom (i.e., the
statement isAt(apple, bedroom) is found by the model and returned as True).

13

Nowadays, the most common way to store knowledge bases is on triple stores, or RDF
(Resource Description Framework)4 stores. A triple store is a knowledge base for the stor-
age and retrieval of triples through semantic queries. A triple is a data entity composed
of subject-predicate-object, like "Sam is at the kitchen" or "The apple is with Sam", for
instance. A query language is needed for storing and retrieving data from a triple store.
While SPARQL is a RDF query language, Rya5 is an open source scalable RDF triple store
built on top of Apache Accumulo6. Originally developed by the Laboratory for Telecom-
munication Sciences and US Naval Academy, Rya is currently being used by a number of
american government agencies for storing, inferencing, and querying large amounts of RDF
data.

A SPARQL query has a SQL-like syntax for finding triples matching specific patterns.
For instance, see the query below. It retrieves all the people that works at IBM and lives
in New York:

SELECT ?people
WHERE {
?people <worksAt> <IBM> .
?people <livesIn> <New York>.
}

Since triple stores can become huge, Rya provides three triple table index [40] to help
speeding up queries:

SPO : subject, predicate, object
POS : predicate, object, subject
OSP : object, subject, predicate

While Rya is an example of an optimized triple store, a rule-oriented chatbot can make
use of Rya or any triple store and can call the semantic search engine in order to inference
and generate proper answers.

Data-oriented

Recent papers have used neural networks to predict the next utterance on non-goal-
driven systems considering the context, for instance with Memory Networks [41]. In this
work [37], for example the authors were able to generate answers for dialogue like below:

Sam walks into the kitchen.
Sam picks up an apple.
Sam walks into the bedroom.
Sam drops the apple.
Q: Where is the apple?
A: Bedroom

4The Resource Description Framework (RDF) is a standard model for expressing graph data for the
World Wide Web.

5https://rya.apache.org/
6https://accumulo.apache.org/

14

Sukhbaatar’s model represents the sentence as a vector in a way that the order of the
words matter, and the model encodes the temporal context enhancing the memory vec-
tor with a matrix that contains the temporal information. During the execution phase,
Sukhbaatar’s model takes a discrete set of inputs x1, ..., xn that are to be stored in the
memory, a query q, and outputs an answer a. Each of the xi, q, and a contains symbols
coming from a dictionary with V words. The model writes all x to the memory up to a
fixed buffer size, and then finds a continuous representation for the x and q. The continuous
representation is then processed via multiple computational steps to output a. This allows
back propagation of the error signal through multiple memory accesses back to the input
during training. Sukhbaatar’s also presents the state of the art of recent efforts that have
explored ways to capture dialogue context, treated as long-term structure within sequences,
using RNNs or LSTM-based models. The problem of this approach is that it is has not
been tested for goal-oriented systems. In addition, it works with a set of sentences but not
necessary from multi-party bots.

3.5 Platforms
Regarding current platforms to support the development of conversational systems, we can
categorize them into three types: platforms for plugging chatbots, for creating chatbots and
for creating service chatbots. The platforms for plugging chatbots provide tools for inte-
grating them another system, like Slack7. The chatbots need to receive and send messages
in a specific way, which depends on the API and there is no support for actually helping on
building chatbots behavior with natural language understanding. The platforms for creat-
ing chatbots mainly provide tools for adding and training intentions together with dialogue
flow specification and some entities extraction, with no reasoning support. Once the models
are trained and the dialogue flow specified, the chatbots are able to reply to the received
intention. The platforms for creating service chatbots provide the same functionalities as
the last one and also provide support for defining actions to be executed by the chatbots
when they are answering to an utterance. Table 8 summarizes current platforms on the
market accordingly to these categories. There is a lack on platforms that allow to create
chatbots that can be coordinated in a multiparty chat with governance or mediation.

Table 8: Platforms for Building Chatbots
Plugging
Bots

Creating
Bots

Creating
Service Bots

Coordination
Control

IBM (Watson) m l w m

Pandora m l l m

Facebook
(Wit.ai)

m l l m

Microsoft
(LUIS)

m l m m

Google Hangout l m m m

Slack l m m m

WeChat l l l m

Kik l m m m

7www.slack.com

15

4 A Conceptual Architecture for Multiparty-Aware Chat-
bots

In this section the conceptual architecture for creating a hybrid rule and machine learning-
based MPCS is presented. The MPCS is defined by the the entities and relationships
illustrated in Fig. 1 which represents the chatbot’s knowledge. A Chat Group contains
several Members that join the group with a Role. The role may constrain the behavior of
the member in the group. Chatbot is a type of Role, to differentiate from persons that may
also join with different roles. For instance, a person may assume the role of the owner of the
group, or someone that was invited by the owner, or a domain role like an expert, teacher
or other.

Figure 1: Chatbot Knowledge’s Conceptual Model in a MPCS

When a Member joins the Chat Group, it/he/she can send Utterances. The Member
then classifies each Utterance with an Intent which has a Speech Act8. The Intent
class, Speech Act class and the Intent Flow trigger the Action class to be executed by
the Member that is a Chatbot. The Chatbots associated to the Intention are the only ones
that know how to answer to it by executing Actions. The Action, which implements one
Speech Act, produces answers which are Utterances, so, for instance, the Get_News action
produces an Utterance for which Intention’s speech act is Inform_News. The Intent
Flow holds the intent’s class conversation graph which maps the dialog state as a decision
tree. The answer’s intention class is mapped in the Intent Flow as a directed graph G
defined as following:

G = (V,R)|(x, y) = (< Iu, Ir >, Ia) (2)
8Or dialogue act, or communicative act, of performative, depending on the research community.

16

From the graph definitions, V is for vertices and R is for relations, which are the arrows
in the graph. And in Equation 2: V is the set of intentions pairs,
R is the set of paths to navigate through the intentions,
< Iu, Ir > is the arrow’s head, and
Ia is the arrow’s tail.

This arrow represents a turn from an utterance with Iu intention class which is replying
to an utterance with Ir intention class to the state which an utterance with Ir intention’s
class is sent.

Ia is the intention class of the answer to be provided to the received Iu intention class.
In addition, each intent’s class may refer to many Entities which, in turn, may be

associated to several Features. For instance, the utterance

"I would like to invest USD10,000 in Savings Account for 2 years"

contains one entity – the Savings Account’s investment option – and two features –
money (USD10,000) and period of time (2 years). The Intent Flow may need this infor-
mation to choose the next node which will give the next answer. Therefore, if the example
is changed a little, like

"I would like to invest in Savings Account",

Ia is constrained by the "Savings Account" entity which requires the two aforementioned
features. Hence, a possible answer by one Member of the group would be

"Sure, I can simulate for you, what would be the initial amount and the period of time
of the investment?"

With these conceptual model’s elements, a MPCS system can be built with multiple
chatbots. Next subsection further describes the components workflow.

4.1 Workflow
Figure 2 illustrates from the moment that an utterance is sent in a chat group to the moment
a reply is generated in the same chat group, if the case. One or more person may be in the
chat, while one or more chatbots too. There is a Hub that is responsible for broadcasting the
messages to every Member in the group, if the case. The flow starts when a Member sends the
utterance which goes to the Hub and, if allowed, is broadcasted. Many or none interactions
norms can be enforced at this level depending on the application. Herein, a norm can be a
prohibition, obligation or permission to send an utterance in the chat group.

Once the utterance is broadcasted, a chatbot needs to handle the utterance. In order
to properly handle it, the chatbot parses the utterance with several parsers in the Parsing
phase: a Topic Classifier, the Dependency Parsing, which includes Part-of-Speech tags
and semantics tags, and any other that can extract metadata from the utterance useful for
the reasoning. All these metadata, together with more criteria, may be used in the Frame
parsing which is useful for context reasoning. All knowledge generated in this phase can
be stored in the Context. Then, the Intent Classifier tries to detect the intent class of

17

the utterance. If detected, the Speech Act is also retrieved. And an Event Detector can
also check if there is any dialog inconsistency during this phase.

After that, the Filtering phase receives the object containing the utterance, the de-
tected intent, and all metadata extracted so far and decides if an action should be performed
to reply to the utterance. If yes, it is sent to the Acting phase which performs several steps.
First the Action Classifier tries to detect the action to be performed. If detected, the
action is executed. At this step, many substeps may be performed, like searching for an
information, computing maths, or generating information to create the answer. All of this
may require a search in the Context and also may activate the Error Detector component
to check if the dialog did not run into a wrong state. After the answer is generated, the
Filtering phase is activated again to check if the reply should be really sent. If so, it is
sent to the Hub which, again may check if it can be broadcasted before actually doing it.

4.1.1 Topic Classifier

The topic classifier is domain-dependent and is not mandatory. However, the chatbot can
better react when the intent or action is not detected, which means that it does not know
how to answer. Many reasons might explain this situation: the set of intents might be
incomplete, the action might not have produced the proper behavior, misunderstanding

Figure 2: Workflow

18

might happen, or the chatbot was not designed to reply to a particular topic. In all cases, it
must be able to produce a proper reply, if needed. Because this might happen throughout the
workflow, the sooner that information is available, the better the chatbot reacts. Therefore
it is one of the first executions of the flow.

4.1.2 Dependency Parsing

Dependency is the notion that linguistic units, e.g. words, are connected to each other by
directed links. The (finite) verb is taken to be the structural center of clause structure.
All other syntactic units (words) are either directly or indirectly connected to the verb in
terms of the directed links, which are called dependencies. It is a one-to-one correspondence:
for every element (e.g. word or morph) in the sentence, there is exactly one node in the
structure of that sentence that corresponds to that element. The result of this one-to-one
correspondence is that dependency grammars are word (or morph) grammars. All that
exist are the elements and the dependencies that connect the elements into a structure.
Dependency grammar (DG) is a class of modern syntactic theories that are all based on the
dependency relation.

Semantic dependencies are understood in terms of predicates and their arguments. Mor-
phological dependencies obtain between words or parts of words. To facilitate future research
in unsupervised induction of syntactic structure and to standardize best-practices, a tagset
that consists of twelve universal part-of-speech categories was proposed [42].

Dependency parsers have to cope with a high degree of ambiguity and nondeterminism
which let to different techniques than the ones used for parsing well-defined formal languages.
Currently the mainstream approach uses algorithms that derive a potentially very large set
of analyses in parallel and when disambiguation is required, this approach can be coupled
with a statistical model for parse selection that ranks competing analyses with respect to
plausibility [43].

Below we present an example of a dependency tree for the utterance:

"I want to invest 10 thousands" :

" t r e e " : {
"want␣VERB␣ROOT" : {

" I ␣PRON␣nsubj " : {} ,
" to ␣ADP␣mark" : {} ,
" i nv e s t ␣VERB␣nmod" : {

" thousands ␣NOUN␣nmod" : {
"10␣NUM␣nummod" : {}

}
}

}

The coarse-grained part-of-speech tags, or morphological dependencies (VERB, PRON,
ADP, NOUN and NUM) encode basic grammatical categories and the grammatical relationships
(nsubjs, nmod, nummod) are defined in the Universal Dependencies project9 [42].

9http://universaldependencies.org/

19

4.1.3 Frame Parsing

In this module, the dependency tree generated is used together with a set of rules to extract
information that is saved in the context using the Frame-based approach. This approach fills
the slots of the frame with the extracted values from the dialogue. Frames are like forms and
slots are like fields. Using the knowledge’s conceptual model, the fields are represented by
the elements Entities and Features. In the dependency tree example, the entity would be
the implicit concept: the investment option, and the feature is the implicit concept: initial
amount – 10 thousands. Since the goal is to invest, and there are more entities needed
for that (i.e., fields to be filled), the next node in the Intention Flow tree would return an
utterance which asks the user the time of investment, if he/she has not provided yet.

This module could be implemented using different approaches according to the domain,
but tree search algorithms will be necessary for doing the tree parsing.

4.1.4 Intent Classifier

The Intent Classifier component aims at recognizing not only the Intent but the goal
of the utterance sent by a Member, so it can properly react. The development of an intent
classifier needs to deal with the following steps:

i) the creation of dataset of intents, to train the classification algorithm;
ii) the design of a classification algorithm that provides a reasonable level of accuracy;
iii) the creation of dataset of trees of intents, the same as defined in i) and which maps the
goals;
iv) the design of a plan-graph search algorithm that maps the goal’s state to a node in the
graph;

There are several approaches to create training sets for dialogues: from an incremental
approach to crowdsourcing. In the incremental approach, the Wizard of Oz method can
be applied to a set of potential users of the system, and from this study, a set of questions
that the users asked posted to the ‘fake’ system can be collected. These questions have to
be manually classified into a set of intent classes, and used to train the first version of the
system. Next, this set has to be increased both in terms of number of classes and samples
per class.

4.1.5 Speech Act Classifier

The Speech Act Classifier can be implemented with many speech act classes as needed
by the application. The more classes, the more flexible the chatbot is. It can be built based
on dictionaries, or a machine learning-based classifier can be trained. In the table below
we present the main and more general speech act classes [44] used in the Chatbots with
examples to differentiate one from another:

4.1.6 Action Classifier

There are at least as many Action classes as Speech Act classes, since the action is the real-
ization of a speech act. The domain specific classes, like "Inform_News" or "Inform_Factoids",
enhance the capabilities of answering of a chatbot.

The Action Classifier can be defined as a multi-class classifier with the tuple

20

Table 9: Main Generic Speech Acts Classes
Speech Act Example
GREETINGS Hello
THANK Thank you very much
INFORM The stock market is launched
QUERY Is the stock market launched?
CFP Can someone launch the stock market?
REQUEST Launch the stock market
AGREE OK, I will launch the stock market
REFUSE I will not launch the stock market
FAILURE I can not launch the stock market
PROPOSE I can launch the stock market for X dollars
SUBSCRIBE I would like to know when someone launches the stock

market
NOT-UNDERSTOOD Stock market? Which stock market?
BYE See you

A =< Ia, Sa, E, F > (3)

where Ia is the intent of the answer defined in (2), Sa is the speech act of the answer,
E and F are the sets of entities and features needed to produce the answer, if needed,
respectively.

4.1.7 Action Execution

This component is responsible for implementing the behavior of the Action class. Basic
behaviors may exist and be shared among different chatbots, like the ones that implement
the greetings, thanks or not understood. Although they can be generic, they can also be
personalized to differentiate the bot from one another and also to make it more "real". Other
cases like to inform, to send a query, to send a proposal, they are all domain-dependent and
may require specific implementations.

Anyway, figure 3 shows at the high level the generic workflow. If action class detected
is task-oriented, the system will implement the execution of the task, say to guide a car, to
move a robot’s arm, or to compute the return of investments. The execution might need
to access an external service in the Internet in order to complete the task, like getting the
inflation rate, or the interest rate, or to get information about the environment, or any
external factor. During the execution or after it is finished, the utterance is generated as a
reply and, if no more tasks are needed, the action execution is finished.

In the case of coordination of chatbots, one or more chatbots with the role of mediator
may exist in the chat group and, at this step, it is able to invite one or more chatbots to
the chat group and it is also able to redirect the utterances, if the case.

The proposed architecture addresses the challenges as the following:

1. What is the message/utterance about? solved by the Parsing phase ;

2. Who should reply to the utterance? solved by the Filtering phase and may be
enforced by the Hub;

21

Figure 3: Action Execution

3. How the reply should be built/generated? solved by the Acting phase ;

4. When should the reply be sent? may be solved by the Acting phase or the Filtering
phase , and may be enforced by the Hub;

And Context and Logging module is used throughout all phases.

5 Architecture Implementation and Evaluation
This section presents one implementation of the conceptual architecture presented in last
section. After many refactorings, a framework called SABIA (Speech-Act-Based Intelligent
Agents Framework) has been developed and CognIA (Cognitive Investment Advisor) appli-
cation has been developed as an instantiation of SABIA framework. We present then the
accuracy and some automated tests of this implementation.

5.1 Speech-Act-based Intelligent Agents Framework
SABIA was developed on top of Akka middleware10. Akka is a toolkit and runtime that
implements the Actor Model on the JVM. Akka’s features, like concurrency, distributed
computing, resilience, and message-passing were inspired by Erlang’s actor model [45] [46].
The actor model is a mathematical model of concurrent computation that treats "actors"
as the universal primitives of concurrent computation. In response to a message that it
receives, an actor can: make local decisions, create more actors, send more messages, and
determine how to respond to the next received message. Actors may modify private state,

10http://akka.io

22

but can only affect each other through messages (avoiding the need for any locks). Akka
middleware manages the actors life cycle and actors look up by theirs name, locally or
remotely.

We implemented each Member of the Chat Group as an Actor by extending the UntypedActor
class of Akka middleware. Yet, we created and implemented the SabiaActorSystem as a
singleton (i.e., a single instance of it exists in the system) [47] that has a reference to Akka’s
ActorSystem. During SabiaActorSystem’s initialization, all parsers that consume too much
memory during their initialization to load models are instantiated as singletons. In this way,
we save time on their calls during the runtime. Moreover, all chat group management, like
to join or leave the group, or to broadcast or filter a message at the Hub level is implemented
in SABIA through the Chat Group behavior.

5.1.1 Dependency Parsing

This is implemented in SABIA as a singleton that is initialized during the SabiaActorSystem
initialization with the URL of the service that implements the dependency parsing and is
used on each utterance’s arrival through the execution of the tagUtterance method. The
service must retrieve a JSON Object with the dependency tree which is then parsed using
depth-first search.

5.1.2 Frame Parsing

SABIA does not support invariants for frame parsing. We are leaving this task to the
instantiated application.

5.1.3 Intent Classifier

There are two intent classifiers that can be loaded with trained models in order to be ready
to be used at runtime: the 1-nearest-neighbor (1NN) and the SVM-based classifier.

5.1.4 Action Classifier

SABIA implements the Action Classifier assuming that the application uses a relational
database with a data schema that implements the conceptual model presented in Figure 1.
Then the invariants parts that use SQL are already present and the application only needs
to implement the database connection and follow the required data schema.

5.1.5 Action Execution

SABIA provides partial implemented behavior for the Action through the Template method
design pattern [47], which implements the invariants parts of the action execution and leaves
placeholders for customization.

5.2 CognIA: A Cognitive Investment Advisor
We developed CognIA, which is an instantiation of Sabia framework. A conversation is
composed of a group chat that can contain multiple users and multiple chatbots. This
example, in particular, has a mediator that can help users on financial matters, more specif-
ically on investment options. For example, consider the following dialogue in the table below:

23

Table 10: MultiParty Conversation with Mixed initiative
Turn Utterance

1 User "I have $30,000 USD, where should I invest it?"
2 Mediator chatbot "Well, for how long could you keep the money in-

vested?"
3 User "Say, for 2 years."
4 Mediator chatbot "All right, then, considering the amount and the time

period, why don’t you simulate this investment in a
savings account?"

5 User "Sure! I would love to."
6 Mediator chatbot "Ok, I will invite the savings account to this group."
7 Savings account chat-

bot
<< Savings account chatbot joins the group >>

8 Mediator chatbot "Hi Savings Account expert, could you please simulate
the return of investment of $30,000 in 2 years?"

9 Savings account chat-
bot

"Sure, just a minute..."

10 Savings account chat-
bot

"Well, at the end, one would have $32,500 USD."

11 Mediator chatbot "Thank you. Well, it seems a good idea given the econ-
omy right now."

12 User "Thank you all."
13 Savings account chat-

bot
"You’re welcome."

14 Mediator chatbot "No problem. Let me know if I can help you with
something else."

The Table 10 shows an example that uses the mixed-initiative dialogue strategy, and a
dialogue mediator to provide coordination control. In this example of an application, there
are many types of intentions that should be answered: Q&A (question and answer) about
definitions, investment options, and about the current finance indexes, simulation of invest-
ments, which is task-oriented and requires computation, and opinions, which can be highly
subjective.

In Table 11, we present the interaction norms that were needed in Cognia. The Trigger
column describes the event that triggers the Behavior specified in the third column. The
Pre-Conditions column specifies what must happen in order to start the behavior execu-
tion. So, for instance, line 2, when the user sends an utterance in the chat group, an event
is triggered and, if the utterance’s topic is CDB (Certificate of Deposit which is a fixed rate
investment) or if it is about the Savings Account investment option and the speech act is
not Query_Calculation and the CDB and Savings Account members are not in the chat,
then the behavior is activated. The bot members that implement these behaviors are called
cdbguru and poupancaguru. Therefore these names are used when there is a mention.

Note that these interactions norms are not explicitly defined as obligations, permissions,
and prohibitions. They are implict from the behavior described. During this implementa-
tion, we did not worry about explicitly defining the norms, because the goal was to evaluate
the overall architecture, not to enhance the state of the art on norms specification for conver-

24

sational systems. In addition, CognIA has only the presented interaction norms defined in
Table 11, which is a very small set that that does not required model checking or verification
of conflicts.

Table 11: Cognia Interaction Norms

Trigger Pre-Conditions Behavior
On group
chat creation

Cognia chatbot is available Cognia chatbot joins the chat
with the mediator role and
user joins the chat with the
owner_user role

On utterance
sent by user

Utterance’s topic is CDB (cd-
bguru) or Savings Account
(poupancaguru) and speech act
is not Query_Calculation and
they are not in the chat

Cognia invites experts to the
chat and repeats the utterance to
them

On utterance
sent by user

Utterance’s topic is CDB (cd-
bguru) or Savings Account
(poupancaguru) and speech act
is not Query_Calculation and
they are in the chat

Cognia waits for while and cd-
bguru or poupancaguru respec-
tively handles the utterance.
If they don’t understand, they
don’t reply

On utterance
sent by the
experts

If Cognia is waiting for them and
has received both replies

Cognia does not wait anymore

On utterance
sent

Utterance mentions cdbguru or
poupancaguru

cdbguru or poupancaguru respec-
tively handles the utterance

On utterance
sent

Utterance mentions cdbguru or
poupancaguru and they don’t re-
ply after a while and speech act
is Query_Calculation

Cognia sends I can only chat
about investments...

On utterance
sent

Utterance mentions cdbguru or
poupancaguru and they don’t re-
ply after while and speech act is
not Query_Calculation

Cognia sends I didn’t understand

On utterance
sent

Utterance’s speech act is
Query_Calculation and period
or initial amount of investment
were not specified

Cognia asks the user the missing
information

On utterance
sent

Utterance’s speech act is
Query_Calculation and period
and initial amount of investment
were specified and the experts
are not in the chat

Cognia invites experts to the
chat and repeats the utterance to
them

25

On utterance
sent

Utterance’s speech act is
Query_Calculation and period
and initial amount of investment
were specified and the experts
are in the chat

Cognia repeats the utterance to
experts

On utterance
sent

Utterance’s speech act is
Query_Calculation

Cognia extracts variables and
saves the context

On utterance
sent

Utterance’s speech act is
Query_Calculation and the
experts are in the chat and the
experts are mentioned

Experts extract information,
save in the context, compute
calculation and send information

On utterance
sent

Utterance’s speech act is In-
form_Calculation and Cognia
received all replies

Cognia compares the results and
inform comparison

On utterance
sent

Utterance mentions a chatbot
but has no other text

The chatbot replies How can I
help you?

On utterance
sent

Utterance is not understood and
speech act is Question

The chatbot replies I don’t
know... I can only talk about
topic X

On utterance
sent

Utterance is not understood and
speech act is not Question

The chatbot replies I didn’t un-
derstand

On utterance
sent

Utterance’s speech act is one of
{ Greetings, Thank, Bye }

All chatbots reply to utterance

On group
chat end

All chatbots leave the chat, and
the date and time of the end of
chat is registered

5.2.1 Instantiating SABIA to develop CognIA

We instantiated SABIA to develop CognIA as follows: the Mediator, Savings Account,
CDB and User Actors are the Members of the Chat Group. The Hub was implemented using
two servers: Socket.io and Node.JS which is a socket client of the Socket.io server. The
CognIA system has also one Socket Client for receiving the broadcast and forwarding to
the Group Chat Manager. The former will actually do the broadcast to every member after
enforcing the norms that applies specified in Table 11. Each Member will behave according
to this table too. For each user of the chat group, on a mobile or a desktop, there is its
corresponding actor represented by the User Actor in the figure. Its main job is to receive
Akka’s broadcast and forward to the Socket.io server, so it can be finally propagated to the
users.

All the intents, actions, factual answers, context and logging data are saved in DashDB (a
relational Database-as-a-Service system). When an answer is not retrieved, a service which
executes the module Search Finance on Social Media on a separate server is called. This
service was implemented with the assumption that finance experts post relevant questions
and answers on social media. Further details are explained in the Action execution sub-
section.

26

Figure 4: Cognia Deployment View

5.2.2 Topic Classifier

We built a small dictionary-based topic classifier to identify if an utterance refers to finance
or not, and if it refers to the two investment options (CDB or Savings Account) or not.

5.2.3 Dependency Parsing

The dependency parsing is extremely important for computing the return of investment
when the user sends an utterance with this intention. Our first implementation used regular
expressions which led to a very fragile approach. Then we used a TensorFlow implemen-
tation11 [48] of a SyntaxNet model for Portuguese and used it to generate the dependency
parse trees of the utterances. The SyntaxNet model is a feed-forward neural network that
operates on a task-specific transition system and achieves the state-of-the-art on part-of-
speech tagging, dependency parsing and sentence compression results [49]. Below we present
output12 of the service for the utterance:

"I want to invest 10 thousands in 40 months" :

{ " o r i g i n a l " : " I would l i k e to i nv e s t 10 thousands in 40 months " ,
" start_pos " : [

23 ,
3 2] ,

"end_pos" : [
27 ,

11TensorFlow is an open-source software library for numerical computation using data flow graphs. Nodes
in the graph represent mathematical operations, while the graph edges represent the multidimensional data
arrays (tensors) communicated between them. URL: https://www.tensorflow.org/

12Converted from Brazilian Portuguese to English.

27

33] ,
" d i g i t s " : [

10000 ,
40] ,

" converted " : " I would l i k e to i nv e s t 10000 in 40 months " ,
" t r e e " : {

" l i k e ␣VERB␣ROOT" : {
" I ␣PRON␣nsubj " : {} ,
"would␣MD␣aux" : {

" i nv e s t ␣VERB␣xcomp" : {
" to ␣TO␣aux" : {} ,
"10000␣NUM␣dobj " : {} ,
" in ␣IN␣prep" : {

"months␣NOUN␣pobj " : {
"40␣NUM␣num" : {}}}}}}}

The service returns a JSON Object containing six fields: original, start_pos, end_pos,
digits, converted and tree. The original field contains the original utterance sent to
the service. The converted field contains the utterance replaced with decimal numbers,
if the case (for instance, "10 thousands" was converted to "10000" and replaced in the
utterance). The start_pos and end_pos are arrays that contain the start and end char po-
sitions of the numbers in the converted utterance. While the tree contains the dependency
parse tree for the converted utterance.

5.2.4 Frame Parsing

Given the dependency tree, we implemented the frame parsing which first extracts the
entities and features from the utterance and saves them in the context. Then, it replaces
the extracted entities and features for reserved characters.

Algorithm 1 extract_period_of_investment (utteranceTree)
1: numbersNodes ← utteranceTree.getNumbersNodes();
2: foreach(numberNode in numbersNodes) do
3: parentsOfNumbersNode ← numbersNode.getParents()
4: foreach(parent in parentsOfNumbersNodes) do
5: if (parent.name contains { "day", "month", "year"}) then
6: parentOfParent ← parent.getParent()
7: if (parentOfParent is not null and

parentOfParent.getPosTag==Verb and
parentOfParent.name in investmentVerbsSet) then

8: return numberNode

Therefore an utterance like "I would like to invest 10 thousands in 3 years" be-
comes "I would like to invest #v in #dt years". Or "10 in 3 years" becomes "#v
in #dt years", and both intents have the same intent class.

For doing that we implemented a few rules using a depth-first search algorithm combined
with the rules as described in Algorithm 1, Algorithm 2 and Algorithm 3. Note that our
parser works only for short texts on which the user’s utterance mentions only one period of
time and/ or initial amount of investment in the same utterance.

28

Algorithm 2 extract_initial_amount_of_investment (utteranceTree)
1: numbersNodes ← utteranceTree.getNumbersNodes();
2: foreach(numberNode in numbersNodes) do
3: parentsOfNumbersNode ← numbersNode.getParents()
4: foreach(parent in parentsOfNumbersNodes) do
5: if (parent.name does not contain { "day", "month", "year"}) then
6: return numberNode

Algorithm 3 frame_parsing(utterance, utteranceTree)
1: period ← extract_period_of_investment (utteranceTree)
2: save_period_of_investment(period)
3: value ← extract_initial_amount_of_investment (utteranceTree)
4: save_initial_amount_of_investment(value)
5: new_intent ← replace(new_intent, period, "#dt")
6: new_intent ← replace(new_intent, value, "#v")

5.2.5 Speech Act Classifier

In CognIA we have complemented the speech act classes with the ones related to the execu-
tion of specific actions. Therefore, if the chatbot needed to compute the return of investment,
then, once it is computed, the speech act of the reply will be Inform_Calculation and the
one that represents the query for that is Query_Calculation. In table 12 we list the specific
ones.

Table 12: CognIA Specific Speech Acts Classes
Speech Act Example
QUERY DEFINITION What is CD?
INFORM DEFINITION A certificate of deposit (CD) is a time deposit, you

lend money to the bank so it can use your money to
invest somewhere else.

QUERY NEWS Nowadays, is is better to invest in CDB or in the
Savings Account?

INFORM NEWS Depends, but nowadays CDs are good options.
QUERY CALCULATION What if I invest 10 thousands for 3 years?
INFORM CALCULATION At the end, you will have 12 thousands in the Savings

Account and 12,5 thousand with a CD.

5.2.6 Intention Classifier

Given that there is no public dataset available with financial intents in Portuguese, we have
employed the incremental approach to create our own training set for the Intent Classifier.
First, we applied the Wizard of Oz method and from this study, we have collected a set of
124 questions that the users asked. Next, after these questions have been manually classified
into a set of intent classes, and used to train the first version of the system, this set has been
increased both in terms of number of classes and samples per class, resulting in a training
set with 37 classes of intents, and a total 415 samples, with samples per class ranging from

29

3 to 37.
We have defined our classification method based on features extracted from word vectors.

Word vectors consist of a way to encode the semantic meaning of the words, based on
their frequency of co-occurrence. To create domain-specific word vectors, a set of thousand
documents are needed related to desired domain. Then each intent from the training set
needs to be encoded with its corresponding mean word vector. The mean word vector is
then used as feature vector for standard classifiers.

We have created domain-specific word vectors by considering a set 246,945 documents,
corresponding to of 184,001 Twitter posts and and 62,949 news articles, all related to finance
13.

The set of tweets has been crawled from the feeds of blog users who are considered
experts in the finance domain. The news article have been extracted from links included in
these tweets. This set contained a total of 63,270,124 word occurrences, with a vocabulary of
97,616 distinct words. With the aforementioned word vectors, each intent from the training
set has been encoded with its corresponding mean word vector. The mean word vector has
been then used as feature vector for standard classifiers.

As the base classifier, we have pursued with a two-step approach. In the first step,
the main goal was to make use of a classifier that could be easily retrained to include new
classes and intents. For this reason, the first implementation of the system considered an
1-nearest-neighbor (1NN) classifier, which is simply a K-nearest-neighbor classifier with K
set to 1. With 1NN, the developer of the system could simply add new intents and classes
to the classifier, by means of inserting new lines into the database storing the training set.
Once we have considered that the training set was stable enough for the system, we moved
the focus to an approach that would be able to provide higher accuracy rates than 1NN.
For this, we have employed Support Vector Machines (SVM) with a Gaussian kernel, the
parameters of which are optimized by means of a grid search.

5.2.7 Action Classifier

We manually mapped the intent classes used to train the intent classifier to action classes
and the dependent entities and features, when the case. Table 13 summarizes the number
of intent classes per action class that we used in CognIA.

5.2.8 Action Execution

For the majority of action classes we used SABIA’s default behavior. For instance, Greet
and Bye actions classes are implemented using rapport, which means that if the user says
"Hi" the chatbot will reply "Hi".

The Search News, Compute and Ask More classes are the ones that require specific
implemention for CognIA as following:

• Search News: search finance on social media service [50], [51] receives the utterance
as input, searches on previously indexed Twitter data for finance for Portuguese and
return to the one which has the highest score, if found.

13We have also evaluated word vectors created with all texts from the Wikipedia in Portuguese, but after
conducting some preliminary experiments we observed that the use of tweets and news articles presented
better results. We believe this happens due to (i) the more specific domain knowledge in the news articles
and (ii) the more informal language used in tweets, which tend to be similar to texts sent to chatbots.

30

Table 13: Action Classes Mapping
Action Class #Intent

Classes
Entities Features

Greet 1
Thank 1
Bye 1
Get Definition 60
Search News 45
Compute 10 savings account,

certificate of de-
posit

period of time,
initial value

Ask More 79 savings account,
certificate of de-
posit

period of time,
initial value

Send Informa-
tion

2

Send Refuse 1
No Action 1

• Ask More: If the user sends an utterance that has the intention class of simulating
the return of investment, while not all variables to compute the return of investment
are extracted from the dialogue, the mediator keeps asking the user these information
before it actually redirects the query to the experts. This action then checks the state
of the context given the specified intent flow as described in (2) and (3) in section 4 to
decide which variables are missing. For CognIA we manually added these dependencies
on the database.

• Compute: Each expert Chatbot implements this action according to its expertise.
The savings account chatbot computes the formula (4) and the certificate of deposit
computes the formula (5). Both are currently formulas for estimating in Brazil.

RoISA = IV + IV ∗ (R+ TR) (4)

where RoISA is the return of investment for the savings account, IV is the initial value
of investment, R is the savings account interest rate and TR is the savings account
rate base14.

RoICD = IV + (IV ∗ ID ∗ P d)− IT (5)

where RoICD is the return of investment for certificate of deposit, IV is the initial
value of investment, ID is the Interbank Deposit rate (DI in Portuguese), P is the
ID’s percentual payed by the bank (varies from 90% to 120%), d is the number of days
the money is invested, and finally IT is the income tax on the earnings.

14The base rate is the interest rate that is paid each month regardless of whether your investment meets
the conditions for the payment of the extra bonus rate.

31

Table 14: Action Execution
Action Class Task and Answer Generation

Greet rapport
Thank send you’re welcome
Bye rapport

Get Definition answer manually pre-defined or search finance on social media
server

Search News search finance on social media server
Compute loads period of time and initial value from context to compute per

chatbot expert
Ask More search on the intent flow graph

Send Refuse answer manually pre-defined
No Action no answer

5.3 Intention Classifier Accuracy
In Table 15 we present the comparison of some distinct classification on the first version
of the training set, i.e. the set used to deploy the first classifier into the system. Roughly
speaking, the 1NN classifier has been able to achieve a level of accuracy that is higher than
other well-known classifiers, such as Logistic Regression and Naïve Bayes, showing that 1NN
is suitable as a development classifier. Nevertheless, a SVM can perform considerable better
than 1NN, reaching accuracies of about 12 percentage points higher, which demonstrates
that this type of base classifier is a better choice to be deployed once the system is stable
enough. It is worth mentioning that these results consider the leave-one-out validation
procedure, given the very low number of samples in some classes.

Table 15: Evaluation of different classifiers in the first version of the training set
Precision Recall F1 Accuracy

1NN 0.85 0.84 0.84 0.84
Logistic Regression 0.66 0.68 0.64 0.68

Naïve Bayes 0.80 0.79 0.78 0.79
SVM 0.97 0.96 0.96 0.96

Table 16: Evaluation of different classifiers in the most recent version of the training set
Precision Recall F1 Accuracy

1NN 0.81 0.80 0.80 0.80
Logistic Regression 0.75 0.77 0.75 0.77

Naïve Bayes 0.79 0.77 0.76 0.77
SVM 0.96 0.95 0.95 0.95

As we mentioned, the use of an 1NN classifier has allowed the developer of the system
to easily add new intent classes and samples whenever they judged it necessary, so that the
system could present new actions, or the understanding of the intents could be improved.
As a consequence, the initial training set grew from 37 to 63 classes, and from 415 to 659
samples, with the number of samples per class varying from 2 to 63. For visualizing the
impact on the accuracy of the system, in Table 16 we present the accuracy of the same
classifiers used in the previous evaluation, in the new set. In this case, we observe some

32

drop in accuracy for 1NN, showing that this classifier suffers in dealing with scalability. On
the other hand, SVM has shown to scale very well to more classes and samples, since its
accuracy kept at a very similar level than that with the other set, with a difference of about
only 1 percentage point.

5.4 Testing SABIA
In this section, we describe the validation framework that we created for integration tests.
For this, we developed it as a new component of SABIA’s system architecture and it provides
a high level language which is able to specify interaction scenarios that simulate users
interacting with the deployed chatbots. The system testers provide a set of utterances and
their corresponding expected responses, and the framework automatically simulates users
interacting with the bots and collect metrics, such as time taken to answer an utterance and
other resource consumption metrics (e.g., memory, CPU, network bandwidth). Our goal
was to: (i) provide a tool for integration tests, (ii) to validate CognIA’s implementation,
and (iii) to support the system developers in understanding the behavior of the system and
which aspects can be improved. Thus, whenever developers modify the system’s source
code, the modifications must first pass the automatic test before actual deployment.

5.4.1 Test framework

The test framework works as follows. The system testers provide a set D = {d1, ..., dn} of
dialogues as input. Each dialogue di ∈ D is an ordered set whose elements are represented
by < u,R >, where u is the user utterance and R is an ordered set of pairs < r, c > that
lists each response r each chatbot c should respond when the user says u. For instance,
Table 17 shows a typical dialogue (d1) between a user and the CognIA system. Note that
we are omitting part of the expected answer with "..." just to better visualize the content
of the table.

Table 17: Content of dialogue d1 (example of dialogue in CognIA)

User utterance u rId Expected response r Chatbot c

hello 1 Hello Mediator
what is cdb? 2 @CDBExpert what is cdb? Mediator

3 CDB is a type of investment
that...

CDB Expert

which is better: cdb or
savings account?

4 I found a post in the social
media for....

Mediator

i would like to invest R$
50 in six months

5 @SavingsAccountExpert and
@CDBExpert, could you do a
simulation...

Mediator

6 If you invest in Savings Ac-
count, ...

Savings Account
Exp.

7 If you invest in CDB,... CDB Expert
8 Thanks Mediator
9 @User, there is no significant

difference..
Mediator

33

so i want to invest R$
10000 in 2 years

10 @SavingsAccountExpert and
@CDBExpert, could you do a
simulation...

Mediator

11 If you invest in Savings Ac-
count,...

Savings Account
Exp.

12 If you invest in CDB,... CDB Expert
13 Thanks Mediator
14 @User, in that case, it is bet-

ter...
Mediator

what if i invest
R$10,000 in 5 years?

15 @SavingsAccountExpert and
@CDBExpert, could you do a
simulation...

Mediator

16 If you invest in Saving Ac-
count,...

Savings Account
Exp.

17 If you invest in CDB,... CDB Expert
18 Thanks Mediator
19 @User, in that case, it is bet-

ter...
Mediator

how about 15 years? 20 @SavingsAccountExpert and
@CDBExpert, could you do a
simulation...

Mediator

21 If you invest in Savings Ac-
count,...

Savings Account Exp

22 If you invest in CDB,... CDB Expert
23 Thanks Mediator
24 @User, in that case, it is bet-

ter...
Mediator

and 50,0000? 25 @SavingsAccountExpert and
@CDBExpert, could you do a
simulation...

Mediator

26 If you invest in Savings Ac-
count,...

Savings Account
Exp.

27 If you invest in CDB,... CDB Expert
28 Thanks Mediator
29 @User, in that case, it is bet-

ter..
Mediator

I want to invest in
50,000 for 15 years in
CDB

30 Sure, follow this link to your
bank...

Mediator

thanks 31 You are welcome. Mediator

The testers may also inform the number of simulated users that will concurrently use
the platform. Then, for each simulated user, the test framework iterates over the dialogues
in D and iterates over the elements in each dialogue to check if each utterance u was
correctly responded with r by the chatbot c. There is a maximum time to wait. If a bot

34

does not respond with the expected response in the maximum time (defined by the system
developers), an error is raised and the test is stopped to inform the developers about the
error. Otherwise, for each correct bot response, the test framework collects the time taken
to respond that specific utterance by the bot for that specific user and continues for the next
user utterance. Other consumption resource metrics (memory, CPU, network, disk). The
framework is divided into two parts. One part is responsible to gather resource consumption
metrics and it resides inside SABIA. The other part works as clients (users) interacting with
the server. It collects information about time taken to answer utterances and checks if the
utterances are answered correctly.

By doing this, we not only provide a sanity test for the domain application (CognIA)
developed in SABIA framework, but also a performance analysis of the platform. That is, we
can: validate if the bots are answering correctly given a pre-defined set of known dialogues,
check if they are answering in a reasonable time, and verify the amount of computing
resources that were consumed to answer a specific utterance. Given the complexity of
CognIA, these tests enable debugging of specific features like: understanding the amount of
network bandwidth to use external services, or analyzing CPU and memory consumption
when responding a specific utterance. The later may happen when the system is performing
more complex calculations to indicate the investment return, for instance.

5.4.2 Test setup

CognIA was deployed on IBM Bluemix, a platform as a service, on a Liberty for Java Cloud
Foundry app with 3 GB RAM memory and 1 GB disk. Each of the modules shown in
Figure 4 are deployed on separate Bluemix servers. Node.JS and Socket.IO servers are
both deployed as Node Cloud Foundry apps, with 256 MB RAM memory and 512 MB
disk each. Search Finance on Social Media is on a Go build pack Cloud Foundry app
with 128 MB RAM memory and 128 GB disk. For the framework part that simulates
clients, we instantiated a virtual machine with 8 cores on IBM’s SoftLayer that is able to
communicate with Bluemix. Then, the system testers built two dialogues, i.e., D = {d1, d2}.
The example shown in Table 17 is the dialogue test d1. For the dialogue d2, although it
also has 10 utterances, the testers varied some of them to check if other utterances in the
finance domain (different from the ones in dialogue d1) are being responded as expected by
the bots. Then, two tests are performed and the results are analyzed next. All tests were
repeated until the standard deviation of the values was less than 1%. The results presented
next are the average of these values within the 1% margin.

5.4.3 Results

Test 1: The first test consists of running both dialogues d1 and d2 for only one user for sanity
check. We set 30 seconds as the maximum time a simulated user should wait for a bot cor-
rect response before raising an error. The result is that all chatbots (Mediator, CDBExpert,
and SavingsAccountExpert) responded all expected responses before the maximum time.
Additionally, the framework collected how long each chatbot took to respond an expected
answer.

In Figure 5, we show the results for those time measurements for dialogue d1, as for the
dialogue d2 the results are approximately the same. The x-axis (Response Identifier)
corresponds to the second column (Resp. Id) in Table 17. We can see, for example,
that when the bot CDBExpert responds with the message 3 to the user utterance "what is
cdb?", it is the only bot that takes time different than zero to answer, which is the expected

35

behavior. We can also see that the Mediator bot is the one that takes the longest, as it is
responsible to coordinate the other bots and the entire dialogue with the user. Moreover,
when the expert bots (CDBExpert and SavingsAccountExpert) are called by the Mediator
to respond to the simulation calculations (this happens in responses 6, 7, 11, 12, 16,
17, 21, 22, 26, 27), they take approximately the same to respond. Finally, we see that
when the concluding responses to the simulation calculations are given by the Mediator
(this happens in responses 9, 14, 19, 24, 29), the response times reaches the greatest
values, being 20 seconds the greatest value in response 19. These results support the system
developers to understand the behavior of the system when simulated users interact with it
and then focus on specific messages that are taking longer.

Figure 5: Single simulated user results for dialogue d1.

Figure 6: Eight concurrent simulated users.

Test 2: This test consists of running dialogue d1, but now using eight concurrent sim-
ulated users. We set the maximum time to wait to 240 seconds, i.e., eight times the
maximum set up for the single user in Test 1. The results are illustrated in Figure 6, where
we show the median time for the eight users. The maximum and minimum values are also
presented with horizontal markers. Note that differently than what has been shown in Fig-
ure 5, where each series represents one specific chatbot, in Figure 6, the series represents the
median response time for the responses in the order (x-axis) they are responded, regardless
the chatbot.

Comparing the results in Figure 6 with the ones in Figure 5, we can see that the bots
take longer to respond when eight users are concurrently using the platform than when
a single user uses it, as expected. For example, CDBExpert takes approximately 5 times
longer to respond response 3 to eight users than to respond to one user. On average, the
concluding responses to the simulation questions (i.e., responses 9, 14, 19, 24, 29) take

36

approximately 7.3 times more to be responded with eight users than with one user, being
the response 9 the one that presented greatest difference (11.4 times longer with eight users
than with one). These results help the system developers to diagnose the scalability of the
system architecture and to plan sizing and improvements.

6 Conclusions and Future Work
In this article, we explored the challenges of engineering MPCS and we have presented a
hybrid conceptual architecture and its implementation with a finance advisory system.

We are currently evolving this architecture to be able to support decoupled interaction
norms specification, and we are also developing a multi-party governance service that uses
that specification to enforce exchange of compliant utterances.

In addition, we are exploring a micro-service implementation of SABIA in order to
increase its scalability and performance, so thousands of members can join the system within
thousands of conversations.

Acknowledgments
The authors would like to thank Maximilien de Bayser, Ana Paula Appel, Flavio Figueiredo
and Marisa Vasconcellos, who contributed with discussions during SABIA and CognIA’s
implementation.

References
[1] Cicero. On Duties. 42BC.

[2] C. Danescu-Niculescu-Mizil, R. West, D. Jurafsky, J. Leskovec, and C. Potts. No
country for old members: User lifecycle and linguistic change in online communities.
In Proceedings of the 22nd International Conference on World Wide Web, WWW’13,
2013.

[3] C. Jenks. Social Interaction in Second Language Chat Rooms. Edinburgh University
Press, Edinburgh, 2014.

[4] Alan M. Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.

[5] Loebner prize, 1990. http://www.loebner.net/Prizef/loebner-prize.html.

[6] Markus M. Berg. Modelling of Natural Dialogues in the Context of Speech-based In-
formation and Control Systems. PhD thesis, Universität zu Kiel, Kiel, Germany, July
2014.

[7] Facebook posts strong profit and revenue growth, 2016.
https://www.wsj.com/articles/facebook-posts-strong-profit-and-revenue-growth-
1469650289.

[8] T. Parsons. The Structure of Social Action. McGraw-Hill, New York, 1937.

37

http://www.loebner.net/Prizef/loebner-prize.html

[9] Wendy G. Ju. The Design of Implicit Interactions. PhD thesis, Stanford, CA, USA,
2008. AAI3313595.

[10] L. Suchman. Human-machine reconfigurations: Plans and situated actions. Cambridge
University Press, Cambridge, 2007.

[11] V. Zue. Proc. of ieee. 88(8):1166–1180, 2000.

[12] J. Weizenbaum. Computer Power and Human Reason: From Judgment to Calculation.
W.H. Freeman and Company, New York, NY, 1976. ISBN 0-7167-0464-1.

[13] R. Wallace. Alice. Thompson, 2002. p. 2.

[14] R. Wallace. The anatomy of alice, 2006. Parsing the Turing Test.

[15] Jacob Aron. Software tricks people into thinking it is human., 2016.

[16] H. Jenkins, S. Ford, and J. Green. Spreadable media: Creating value and meaning in a
networked culture. NYU press, 2013.

[17] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. Introduction to ?this is watson?
IBM Journal of Research and Development, 56, 2012.

[18] P. Olson. Get ready for the chat bot revolution: They?re simple, cheap and about to
be everywhere., August 2016.

[19] Harvey Sacks, Emanuel A. Schegloff, and Gail Jefferson. A simplest systematics for the
organization of turn-taking for conversation. Language, 50(4):696–735, 1974.

[20] D. Bohus and E. Horvitz. Decisions about turns in multiparty conversation: From
perception to action. In Proceedings of the 13th International Conference on Multimodal
Interfaces, ICMI1́1, pages 153–160, New York, NY, USA, 2011. ACM.

[21] Nicholas R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44:35–41, 2001.

[22] N. H. Minsky and D. Rozenshtein. A law-based approach to object- oriented program-
ming. In Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications, OOPSLA’87, pages 482–493, New York, NY, 1987. ACM Press.

[23] N.H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and control
mechanism for heterogeneous distributed systems. ACM Transactions on Software
Engineering Methodologies, 9:273–305, 2000.

[24] T. Murata and N.H. Minsky. On monitoring and steering in large-scale multi-agent
systems. In The 2nd International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems, SELMAS’03, 2003.

[25] M. Esteva. Electronic Institutions: from specification to development. PhD thesis,
Institut d’Investigaci en Intelligncia Artificial, Catalonia, Spain, 2003.

[26] R. Paes, G. R. Carvalho, C.J.P. Lucena, P. S. C. Alencar, Almeida H.O., and V. T.
Silva. Specifying laws in open multi-agent systems. In ANIREM, AAMAS’05, 2005.

38

[27] R. B. Paes, G. R. Carvalho, M. A. C. Gatti, C.J.P. de Lucena, J.-P. BRIOT, and
R. Choren. Enhancing the Environment with a Law-Governed Service for Monitoring
and Enforcing Behavior in Open Multi-Agent Systems, volume 4389. Springer-Verlag,
Berlim, 2007.

[28] Hadeel Al-Zubaide and Ayman A. Issa. Ontbot: Ontology based chatbot. In Fourth In-
ternational Symposium on Innovation in Information and Communication Technology
(ISIICT’11), Jordan, 2011.

[29] A. Bordes and J. Weston. Learning end-to-end goal-oriented dialog. CoRR,
abs/1605.07683, 2016.

[30] H. Wright. Automatic utterance type detection using suprasegmental features. In
ICSLP’98, volume 4, page 1403, Sydney, Australia, 1998.

[31] N. Roy, J. Pineau, and S. Thrun. Spoken dialogue management using probabilistic
reasoning. In Proceedings of the 38th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’00, pages 93–100, Stroudsburg, PA, USA, 2000. Association
for Computational Linguistics.

[32] Peter Lee. Learning from tay’s introduction, 2016.

[33] Chunxi Liu, Puyang Xu, and Ruhi Sarikaya. Deep contextual language understanding
in spoken dialogue systems. ISCA - International Speech Communication Association,
September 2015.

[34] Iulian Vlad Serban, Ryan Lowe, Peter Henderson, Laurent Charlin, and Joelle Pineau.
A survey of available corpora for building data-driven dialogue systems. CoRR,
abs/1512.05742, 2015.

[35] Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C. Courville, and Joelle
Pineau. Hierarchical neural network generative models for movie dialogues. CoRR,
abs/1507.04808, 2015.

[36] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett, Yangfeng Ji, Margaret
Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. A neural network approach to
context-sensitive generation of conversational responses. CoRR, abs/1506.06714, 2015.

[37] S. Sukhbaatar, A Szlam, J. Weston, and R. Fergus. Weakly supervised memory net-
works. CoRR, abs/1503.08895, 2015.

[38] Hamid R. Chinaei, Brahim Chaib-draa, and Luc Lamontagne. Application of Hidden
Topic Markov Models on Spoken Dialogue Systems, pages 151–163. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[39] R. Higashinaka. Towards taxonomy of errors in chat-oriented dialogue systems. In Pro-
ceedings of the SIGDIAL 2015 Conference, Association for Computational Linguistics,
pages 87–95, Prague, Czech Republic, 2015.

[40] Caleb Meier, Puja Valiyil, Aaron Mihalik, and Adina Crainiceanu. Rya optimizations
to support real time graph queries on accumulo, 2015.

39

[41] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In In Interna-
tional Conference on Learning Representations (ICLR’2015), 2015.

[42] Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-speech tagset. In
IN arXiv:1104.2086, 2011.

[43] J. Nivre. Algorithms for deterministic incremental dependency parsing. Comput. Lin-
guist., 34(4):513–553, December 2008.

[44] FIPA. The foundation for intelligent physical agents, 2002.

[45] J. Armstrong. Erlang. Commun. ACM, 53(9):68–75, September 2010.

[46] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for artificial
intelligence. In Proceedings of the 3rd International Joint Conference on Artificial In-
telligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann
Publishers Inc.

[47] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,
1994. Template Method: pages 325–330.

[48] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia,
Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[49] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev, S. Petrov,
and M. Collins. Globally normalized transition-based neural networks. CoRR,
abs/1603.06042, 2016.

[50] F. Figueiredo, M. A. Vasconcelos, and C. Pinhanez. Does your link relate to my ques-
tion? Understanding question answering through links on social media. In Technical
Report, 2016.

[51] P. Cavalin, F. Figueiredo, M. Gatti de Bayser, L. Moyano, H. Candello, A. Appel and
R. Souza Building a question-answering corpus using social media and news articles. In
International Conference on the Computational Processing of the Portuguese Language,
PROPOR, Tomar, Portugal, 2016.

40

http://arxiv.org/abs/1104.2086

	1 Introduction
	2 Challenges on Chattering
	3 Conversational Systems
	3.1 Types of Interactions
	3.2 Types of Architectures
	3.3 Types of Intentions
	3.4 Types of Context Reasoning
	3.5 Platforms

	4 A Conceptual Architecture for Multiparty-Aware Chatbots
	4.1 Workflow
	4.1.1 Topic Classifier
	4.1.2 Dependency Parsing
	4.1.3 Frame Parsing
	4.1.4 Intent Classifier
	4.1.5 Speech Act Classifier
	4.1.6 Action Classifier
	4.1.7 Action Execution

	5 Architecture Implementation and Evaluation
	5.1 Speech-Act-based Intelligent Agents Framework
	5.1.1 Dependency Parsing
	5.1.2 Frame Parsing
	5.1.3 Intent Classifier
	5.1.4 Action Classifier
	5.1.5 Action Execution

	5.2 CognIA: A Cognitive Investment Advisor
	5.2.1 Instantiating SABIA to develop CognIA
	5.2.2 Topic Classifier
	5.2.3 Dependency Parsing
	5.2.4 Frame Parsing
	5.2.5 Speech Act Classifier
	5.2.6 Intention Classifier
	5.2.7 Action Classifier
	5.2.8 Action Execution

	5.3 Intention Classifier Accuracy
	5.4 Testing SABIA
	5.4.1 Test framework
	5.4.2 Test setup
	5.4.3 Results

	6 Conclusions and Future Work

