

SMARTER 2 WORKSHOP Structure elucidation by coMbining mAgnetic Resonance compuTation modEling and diffRactions

23-27 MAY, 2011

Ti₈O₈(OOCR)₁₆ A New Family of Titanium–Oxo Clusters: Complementarity of Solid State NMR and XRD

<u>G. LAURENT¹, T. FROT¹, S. COCHET²,</u> C. SASSOYE¹, M. POPALL², C. SANCHEZ¹, L. ROZES¹

1 : Chimie de la Matière Condensée de Paris, Paris, France 2 : Fraunhofer Institut für Silicatforschung (ISC), Würzburg, Germany

Outline

- Synthesis
- XRD characterization
- First NMR characterization
- Solvent exchange
- Functionalization
- NMR assignments

- Hybrid materials
- Bottom-up approach (NBU/SBU)

Synthesis

- Rich and versatile Ti chemistry
- Sol-gel route, soft conditions
- In situ water generation :
 - $Ti(OR)_4$ + R'COOH \rightarrow $Ti(OR)_3(OOCR')$ + ROH
 - ROH + R'COOH \rightarrow R'COOR + H₂O
- Hydrolysis : $H_2O + Ti(OR)_4 \rightarrow Ti(OR)_3(OH) + ROH$
- Condensation :
 - Ti-OH + RO-Ti \rightarrow Ti-O-Ti + ROH
 - Ti-OH + HO-Ti \rightarrow Ti-O-Ti + H₂O
- Low stability of alkoxo ligands Ti(OR)₄

Synthesis

- Ti(OⁱPr) + PhCOOH (excess)
- 5 days at 105°C (solvothermal) –
- Ti₈O₈(OOCPh)₁₆·(PhCOOH)₂·H₂O
- Crystalline pure oxo-carboxo cluster
- Needles
- Stable

Characterizations

XRD:

- 8-member ring vertex shared TiO₆ octahedra
- Bridging bidentate benzoates
- Body centered tetragonal with central ring inversed
- No pi-stacking

Internal diameter : 9 Å External diameter : 20 Å

Characterizations

XRD:

- 3 types of carboxy groups :
 - Equatorial (4+4)
 - Axial (4+4)
 - Trapped (1+1)
- Different thermal agitations

Aromatic ring	Ued (*10 ³ Å ²)	Occupancy
C _{eq}	35	1
C _{ax}	47	0.5 (2 sites)

 Difficulties to solve the structure : single crystal, 150 K, disorder

Characterizations

Trapping inside the pores

Ligand exchange

- To have new functionalities
- Structure is kept with acetate ligand
- Selectively functionalize axial or equatorial ?
- Need to assign carboxylate peaks

7 T, MAS 14 kHz, rotor 4 mm

¹³C IRCP measurement

- T_{IRCP} : time to inverse the magnetization
- $D_{CHn} \sim \langle n(\gamma_1.\gamma_2)/r^3 \rangle_t$
- $T_{CH2} < T_{CH} < T_{CH3} < T_{Cq}$
- No complete inversion

Carboxy	T ₂ * (ms)	T ₂ ' (ms)	T _{IRCP} (ms)	Assignment
C _{left}	5.3	26	0.75	C _{eq}
C _{right}	8.4	46	0.93	C _{ax}

<u>2DHETCOR</u>: 7 T, MAS 14 kHz, rotor 4 mm, t_{cp}=2 ms, 512 scans, 122 slices

¹H Broadening sources :

• ¹H : $D_{HH} > \Delta \delta > T_2$, CSA (MAS), D_{CH} (nat. ab.)

<u>2D HETCOR:</u>

Carboxy	T ₂ * (ms)	T ₂ ' (ms)	T _{IRCP} (ms)	Δδ(¹Η) (ppm)	Attribution	
C _{left}	5.3	26	0.75	5	C _{ax}	
C _{right}	8.4	46	0.93	8	C _{eq}	

- How can we explain the contradiction ?
- Different local field fluctuations between axial and equatorial carboxylates ? B²_{loc}

Conclusion

- High complementarity of XRD and NMR
 - XRD → structure at low T, disorder
 - NMR → Tamb, exchanges
- Axial and equatorial benzoates with different dynamics
- Different local field fluctuations ?

Further work

- $T_{1\rho}(^{1}H)$ and $T_{1\rho}(^{13}C)$
- T₂(¹H) via ¹³C
 - Check that H width is D_{HH} and not distribution
 - Spectral edition : only axial or equatorial benzoates
- MOF (collaboration with UVSQ) PhD
- Ti8 + terephtalic acid \rightarrow MIL125

Acknowledgements

All the lab for their help and friendchip

Thank you for your attention

Relaxation

Directed by local field fluctuation

J. Keeler, Understanding NMR spectroscopy, 2005, p260-261