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1 Introduction

The discovery of the Higgs boson has added a wealth of electroweak precision observables,

chief among them being its mass, which is remarkably known to within a few hundred MeV.

The combined data can be used to determine the fundamental lagrangian parameters of the

theory, such as the Higgs mass-squared parameter and quartic coupling, and then make

predictions for future measurements, such as the Higgs self-coupling; or to provide the

starting point for extrapolations of the potential to high energy scales to study unification

or vacuum stability.

In the context of theories beyond the Standard Model, the Higgs mass-squared param-

eter and also its mass are very sensitive to new particles, and can thus be used to constrain

new physics. However, precisely because of this sensitivity, the accuracy of the theoretical

calculation is typically much poorer than the experimental measurement, in particular for

supersymmetric field theories (which remain renormalisable up to high scales) and there

has therefore been a significant effort to improve these calculations.

Typically, a subset of the scalar mass-squared parameters in the lagrangian are deter-

mined from the tadpole equations, which are the (first) derivatives of the effective potential.

In the Standard Model the full effective potential was computed to two-loop order in [1],

with the 3-loop leading contributions involving the strong and Yukawa couplings found

in [2], and the 4-loop part at leading order in QCD in [3]. However, for general renormalis-

able theories the potential is only known to two-loop order1 via the expressions given in [6]

which were used in [7] to derive the tadpole equations (while the diagrams for the masses

were already given in [8]).

For reasons of calculational simplicity, the effective potential beyond one loop has been

calculated only in the Landau gauge, which means that the would-be Goldstone boson is

treated as an actual massless Goldstone boson. Unfortunately, this leads to a technical

problem known as the Goldstone Boson Catastrophe: the mass-squared lagrangian param-

eter of the Goldstone boson determined from the tadpole equations2 is small and can even

be negative (as opposed to the pole mass, which is always zero) and this causes the loop

integrals for the tadpoles to diverge or be complex. While this problem can in principle

be circumvented by dropping the complex parts and changing the renormalisation scale

to attempt to find non-negligible positive mass-squareds, this is not easy to implement

consistently.

A solution for the tadpoles was proposed in [9, 10] for the Standard Model and ap-

plied to the MSSM in [11] (see also [12–14] for recent related work): (a subset of) the

terms involving the Goldstone boson should be resummed to all orders, roughly speak-

ing replacing its mass-squared parameter (which appears in the loop functions) with the

equivalent parameter derived from the total effective potential (i.e. zero, since it is a Gold-

stone boson). In section 3 of this work we show how this can be extended to general

1Although note that results in the zero momentum approximation are available for the Higgs boson mass

in the Minimal Supersymmetric Standard Model (MSSM) up to partial three-loop order [4, 5].
2Note that we take the expectation values to be fixed and loop-correct the mass-squared terms rather

than vice versa.
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renormalisable theories. Note that this approach is related to the (symmetry-improved)

two-particle-irreducible potential approach pioneered in [15–17], where essentially all par-

ticle propagators are resummed — which is somewhat more difficult to automate.

In [9, 10] it was noted that the Goldstone resummation would not regulate diver-

gences in the second derivatives of the effective potential, and so to have a divergence-free

calculation of the neutral scalar (i.e. Higgs) masses it would be necessary to include the

external momentum in the self energies rather than using an effective potential approxima-

tion. This is particularly important because the zero momentum approximation is widely

used to calculate the Higgs mass [4, 5, 7, 18–43] — indeed there are few publicly avail-

able implementations of diagrammatic calculations of the Higgs mass beyond one loop in

theories beyond the Standard Model which do not use it (some momentum-dependent di-

agrammatic calculations are available for the MSSM [44–46]). While the Goldsone Boson

Catastrophe can be avoided in the MSSM in the gaugeless limit (where the Goldstone bo-

son does not couple to the Higgs, and so generates no divergences) it is of pressing concern

for more general theories, since the two-loop computation has recently become publicly

available through SARAH [7, 34, 47–52]; the Goldstone Boson Catastrophe as it affects that

implementation was discussed in [42, 53], and recently manifested itself in [54–56]. Indeed,

while the numerical impact of the problem in the Standard Model seems to be small (at

least away from the divergent points, simply neglecting the imaginary part of the potential

seems to give results close to those of the full solutions), in more complicated theories it

can cause divergent contributions to the masses for many regions of the parameter space;

in [54, 55] it was necessary to restrict to only the two-loop corrections proportional to the

strong gauge coupling for those regions in performing parameter scans.

In section 4, we shall show that the inclusion of external momentum in the scalar

self-energies does not by itself avoid all divergences. In fact, it is necessary to resum the

Goldstone boson contributions in the mass diagrams too — to cancel the divergences in a

class of diagrams which do not depend on momentum. We will also show that the resum-

mation can be implemented most easily to two loop order by using an “on-shell” scheme

for the Goldstone bosons. With these modifications, to cure the remaining divergences the

diagrammatic implementation in [7] could in principle be extended to include the external

momentum by changing the loop functions to those implemented in TSIL [57, 58]. How-

ever, analytic expressions for general loop functions with momenta are not known: they

are in general obtained by solving differential equations, which is numerically expensive.

Therefore, in appendix B we give a complete set of analytic expressions for expansions

of the necessary functions including all divergent and constant terms in an expansion of

the four-momentum-squared s around zero (neglecting those of O(s)). This allows fast

evaluation of a generalised effective potential approximation for the neutral scalar masses

— although for this part we shall be restricted to the gaugeless limit (setting the couplings

of all broken gauge groups to zero) since the mass diagrams are known only up to second

order in the gauge couplings.

Once the Goldstone Boson Catastrophe has been solved, using similar techniques it

was shown in [9–11] that it is also possible to improve the solution of the tadpole equations

for the other mass-squared parameters (not just the one corresponding to the tree-level

– 3 –
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Goldstone boson mass). In general, the same mass-squared parameters m2 appear both as

solutions of the tadpole equations, and in the loop functions, in the schematic form

m2 = m2
0 −

1

v

∂∆V (m2)

∂v

where m2
0 is the tree-level solution of the tadpole equation, v is some expectation value

and ∆V are the loop corrections to the effective potential. Although resummation is not

required for them (except perhaps for the Higgs boson, where the quantum corrections

are so large that they force its tree-level mass to become negative — we shall not discuss

such a case here), these other mass-squared parameters can be expanded perturbatively in

the loop functions so that the equations can be solved directly rather than iteratively. In

other words, we find only the tree-level values of the parameters on the right-hand side of

the equation, and the loop-corrected solution on the left (as opposed to the loop-corrected

value on both sides):

m2 = m2
0 −

1

v

∂∆V (m2
0)

∂v
− δ
(

1

v

∂∆V (m2
0)

∂v

)
;

we shall refer to these throughout as “self-consistent equations”. In section 5, we will show

how to carry out this procedure in general, showing that the formulae can be given in

simpler form than in, e.g., [11] for the MSSM case. We shall also go further and show how

this shifts the mass diagrams.

Finally, we have endeavoured to keep the paper as self-contained as possible, and for

that purpose we provide in appendix A a set of all of the loop functions used throughout.

2 The Goldstone Boson Catastrophe and resummation

2.1 Abelian Goldstone model

Let us begin by recalling the problem of the Goldstone Boson Catastrophe. For simplicity

we shall take the simplest abelian Goldstone model defined by a complex scalar field Φ

(and no gauge group) with potential

V = µ2|Φ|2 + λ|Φ|4 (2.1)

and expand around an expectation value v as Φ = 1√
2
(v + h+ iG) to obtain

V (0) =
v2

4
(λv2 + 2µ2) + hv(v2λ+ µ2) +

1

2
(3v2λ+ µ2)h2 +

1

2
(µ2 + λv2)G2

+ vλ(h3 + hG2) +
λ

4
(h4 + 2G2h2 +G4). (2.2)
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Defining m2
G ≡ µ2 + λv2,M2

h ≡ µ2 + 3v2λ, we can then compute the effective potential up

to two loops:

Veff(v) ≡ V (0)
∣∣
h,G=0

+
1

16π2
V (1) +

1

(16π2)2
V (2) + . . .

= V (0)
∣∣
h,G=0

+
1

16π2
(f(m2

G) + f(M2
h))

+
λ

(16π2)2

[
3

4
A(m2

G)2 +
1

2
A(m2

G)A(M2
h) +

3

4
A(M2

h)2

]
− λ2v2

(16π2)2

[
3I(M2

h ,M
2
h ,M

2
h) + I(M2

h ,m
2
G,m

2
G)

]
+ . . . (2.3)

where the one-loop functions f(x), A(x) and the two-loop function I(x, y, z) are defined

in the appendix, equations (A.3), (A.6), and (A.24). The potential is regular as mG → 0

but does contain terms of order m2
G logm2

G (where logx is also defined in the appendix

— eq. (A.2)) so that when we derive the tadpole equation and expand the derivative of

I(M2
h ,m

2
G,m

2
G) around m2

G = 0 we find

0 =
∂Veff

∂v
= m2

Gv +
2λv

16π2

[
1

2
A(m2

G) +
3

2
A(M2

h)

]
+

2λ2v

(16π2)2
logm2

G

[
3

2
A(m2

G) +
1

2
A(M2

h) +
2λv2

M2
h

A(M2
h)

]
+ other non-singular terms. (2.4)

The logm2
G terms on the second line are the manifestation of the Goldstone Boson Catas-

trophe: we cannot insert the tree-level solution m2
G = 0 into them, and will have a complex

potential if we find m2
G < 0. The solution proposed in [9, 10] is to resum the Goldstone

boson propagators — in the one-loop effective potential we make the substitution

V
(1)

eff ⊃ −
i

2
C

∫
ddk log(−k2 +m2

G)→ − i
2
C

∫
ddk log(−k2 +m2

G + ΠGG(k2))

→ − i
2
C

∫
ddk log(−k2 +m2

G + ΠGG(0)) + . . . (2.5)

where C is a constant defined in equation (A.1), and ΠGG(k2) is the Goldstone boson self

energy, given here at one loop by

ΠGG(k2) =
1

16π2

[
3λA(m2

G) + λA(M2
h)− 4λ2v2B(k2,m2

G,M
2
h)

]
. (2.6)

With zero external momentum, this becomes

ΠGG(0) =
1

16π2

[
λA(m2

G) + 3λA(M2
h)

]
. (2.7)

The term involving only the Goldstone mass-squared will not have a well-defined derivative,

and this also leads to divergences when we resum the effective potential at three loops and

above. The prescription of [10] is to drop it in favour of Πg = 1
16π2 Π

(1)
g + . . . where

Π(1)
g (0) = 3λA(M2

h) = λA(M2
h)− 4λ2v2B(0, 0,M2

h). (2.8)

– 5 –



J
H
E
P
1
2
(
2
0
1
6
)
0
5
6

Note that this does not correspond to dropping one particular class of diagrams (at one

loop it is a combination of the one- and two-propagator diagrams) but instead must be

defined in terms of dropping contributions from “soft” Goldstone bosons. Defining

∆ ≡ Πg(0) ≡ 1

16π2
∆1 +

1

(16π2)2
∆2 + · · · , (2.9)

we then should use instead the resummed potential

V̂eff ≡ Veff +
1

16π2

[
f(m2

G + ∆)−
l−1∑
n=0

∆n

n!

(
∂

∂m2
G

)n
f(m2

G)

]
(2.10)

where l is the loop order to which Veff has been calculated; the terms in square brackets

simply ensure that the potentials are identical up to l loops and only differ at higher orders.

Performing this procedure for the potential above we find

V̂eff = V (0) +
1

16π2
(f(m2

G + ∆) + f(M2
h)) +

λ

(16π2)2

[
3

4
A(m2

G)2 +
3

4
A(M2

h)2

]
− λ2v2

(16π2)2

[
3I(M2

h ,M
2
h ,M

2
h) + I(M2

h ,m
2
G,m

2
G) +

1

λv2
A(M2

h)A(m2
G)

]
. (2.11)

With the above procedure, we have resummed the leading divergences at two loops, i.e. the

terms of order m2
G logm2

G for small m2
G (we expect m2

G to be of order a one-loop quantity

at the minimum). If we are interested in the first derivative of the potential then this is

sufficient; to find the minimum to two-loop order we can expand the potential to order m2
G

with the help of eq. (A.54):

V̂eff = V (0) +
1

16π2
(f(m2

G + ∆) + f(M2
h)) +

λ

(16π2)2

[
3

4
A(M2

h)2

]
− λ2v2

(16π2)2

[
3I(M2

h ,M
2
h ,M

2
h) + I(M2

h , 0, 0)− 2RSS(0,M2
h)m2

G

]
+O(m4

G), (2.12)

making the regularity apparent, although note that the higher-order terms still contain a

m4
G logm2

G term. The tadpole equation, neglecting terms of three-loop order, is then

0 = v

(
m2
G +

1

16π2
∆1

)
+
λv + ∆′/2

16π2
A(m2

G + ∆) (2.13)

+
1

(16π2)2

{
λ

[
9λvA(M2

h) logM2
h

]
− 2λ2v

[
3I(M2

h ,M
2
h ,M

2
h) + I(M2

h , 0, 0)

]
+ λ2v2

[
6λv

(
9U0(M2

h ,M
2
h ,M

2
h ,M

2
h) + U0(M2

h ,M
2
h , 0, 0)

)
+ 4λvRSS(0,M2

h)

]}
.

Noting that the solution to the one-loop equation is m2
G + 1

16π2 ∆1 = 0, we see that we can

neglect the A(m2
G + ∆) term as it gives a correction of order three loops. We ought then

to find that we can identify the term in curly brackets with ∆2: for a Goldstone boson we

should find m2
G + ΠGG(0) = 0, so we expect that we should be able in general to identify

1
v
∂V (`)

∂v = Π
(`)
GG(0), and therefore for our modified potential we should expect

1

v

∂V̂ (`)

∂v
= Π(`)

g (0). (2.14)

– 6 –
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This leads to the prescription in [9, 11], which is somewhat simpler: we expand the potential

Veff as a series in m2
G:

V (2) = V (2)|m2
G=0 +

1

2
∆1A(m2

G) +
1

2
Ωm2

G +O(m4
G). (2.15)

We can then use this as the definition of ∆1 instead of equation (2.9). We then resum the

effective potential as

V̂eff = V (0) +
1

16π2

[
V (1)|m2

G=0 + f
(
m2
G + ∆

) ]
+

1

(16π2)2

[
V (2)|m2

G=0 +
1

2
Ωm2

G

]
. (2.16)

By doing this, we immediately find the expression in (2.12), with Ω ≡ 4λ2v2RSS(0,M2
h).

When we take the derivative and expand up to two-loop order then the minimum is at

m2
G + ∆ = 0 with

∆2 =

[
1

v

∂

∂v

(
V (2)|m2

G=0

)
+ λΩ

]
. (2.17)

We shall follow this second procedure to find the minimum condition in general renormal-

isable field theories at two loop order.

We shall also consider a hybrid approach, which is to adopt an on-shell condition for

the Goldstone boson: we define

(m2
G)run. ≡ (m2

G)OS −ΠGG((m2
G)OS) = −ΠGG(0). (2.18)

This is particularly effective at two loops, where we only need Π
(1)
GG; furthermore, since

(m2
G)OS = 0, at this loop order there is no difference between ΠGG and Πg. Making the

above substitution in the potential we find exactly the same result as our resummed version

in equation (2.12). However, we also have the advantage that we can make this substitution

directly in the tadpole equation:

0 = v(m2
G)run. +

λv

16π2
A((m2

G)run.) +
3λv

16π2
A(M2

h) +
1

(16π2)2

∂V (2)

∂v
(2.19)

= v(m2
G)run. +

3λv

16π2
A(M2

h) +
1

(16π2)2

× lim
(m2

G)OS→0

[
∂V (2)

∂v
((m2

G)OS)− 3λ2vA(M2
h) log((m2

G)OS)

]
,

which gives exactly the expression that we found above in (2.13). We shall find in the

following that this simple approach is also exactly what we need for the mass diagrams.

However, we must first introduce some notation and formalism to handle the general case

when (potentially several) Goldstone bosons and neutral scalars can mix.

2.2 Notation for general field theories

In the previous subsection we considered the simplest possible model where there were only

two real scalars which cannot mix. Once we consider more general theories, there can be

– 7 –
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more Goldstone bosons and, even when they have been identified at tree level, they can in

general mix with other scalars (only pseudoscalars in the case of CP conservation) once loop

corrections are included. This problem does not arise in the Standard Model as treated in

references [9, 10], because all of the pseudoscalars are would-be Goldstone bosons and the

neutral and charged Goldstones cannot mix, so can be treated as two separate sectors. In

the MSSM, there are additional scalars and pseudoscalars, but in the CP-conserving case

considered in [11] the mixing is at most among pairs of fields, and could be written in each

case in terms of mixing angles and 2 × 2 matrices. Furthermore, the same applies for all

of the scalars treated so far in those references: at most pairs of fields could mix. These

complications are particularly important because in the previous cases the simplest way

to derive the tadpole equations was to write down the potential and take the derivatives;

once we consider more complicated cases this is no longer true and we will want to be able

to directly write down expressions for the derivatives as in [7].

Starting with the scalar sector, since we will need to take the derivatives of the potential

with respect to scalar fields, we shall follow the procedure in [7]. We introduce first the

unrotated scalar potential in terms of real scalar fields ϕ0 and their fluctuations around

expectation values vi such that ϕ0
i ≡ vi + φ0

i :

V (0)({ϕ0
i }) = V (0)(vi) +

1

2
m̂2

0,ijφ
0
iφ

0
j +

1

6
λ̂ijk0 φ0

iφ
0
jφ

0
k +

1

24
λ̂ijkl0 φ0

iφ
0
jφ

0
kφ

0
l . (2.20)

Here m̂2
0,ij satisfies the tree-level tadpole equations. From this we can define the field-

dependent masses and couplings,

m̂2
ij(φ

0) ≡ ∂2V (0)

∂φ0
i ∂φ

0
j

= m̂2
0,ij + λ̂ijk0 φ0

k +
1

2
λ̂ijkl0 φ0

kφ
0
l , (2.21)

λ̂ijk(φ0) ≡ ∂3V (0)

∂φ0
i ∂φ

0
j∂φ

0
k

= λ̂ijk0 + λ̂ijkl0 φ0
l , (2.22)

λ̂ijkl(φ0) ≡ ∂4V (0)

∂φ0
i ∂φ

0
j∂φ

0
k∂φ

0
l

= λ̂ijkl0 . (2.23)

We then introduce a new basis {φ̃i} and an orthogonal matrix R̃ to diagonalise the tree-level

mass matrix as

φ0
i = R̃ijφ̃j , (2.24)

and obtain the new masses and couplings

m̃2
i δij = m̂2

klR̃kiR̃lj (2.25)

λ̃ijk = λ̂lmnR̃liR̃mjR̃nk (2.26)

λ̃ijkl = λ̂mnpqR̃miR̃njR̃pkR̃ql. (2.27)

Next we need to define what happens when we introduce the loop corrections to the

effective potential ∆V and modify the tadpole equations. We shall take the expectation

values vi to be fixed (i.e. they are the true values at the minimum of the full quantum-

corrected potential) and instead correct the mass-squared parameters in the lagrangian,
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passing from m̂2
0,ij (which satisfy the tree-level tadpole equations) to new quantities m2

ij .

Using the minimisation conditions, the relationship between them is

m2
ijvj = m̂2

0,ijvj −
∂∆V

∂φ0
i

∣∣∣∣
φ0i =0

. (2.28)

Diagonalising these requires the introduction of a new basis via φ0
i = Rijφj , having masses

mi and couplings λijk, λijkl.

For the couplings involving fermions and scalars, we shall use the notation for a general

renormalisable field theory used in [6, 8]; we repeat here the scalar, scalar-fermion and

scalar-gauge-boson interactions:

LS = −1

6
λijkφiφjφk −

1

24
λijklφiφjφkφl,

LSF = −1

2
yIJkψIψJφk + c.c.,

LSV = −1

2
gabiAaµA

µbφi −
1

4
gabijAaµA

µbφiφj − gaijAaµφi∂µφj . (2.29)

The fermions here are in Weyl notation and are supposed to be defined in a basis where

the masses of all fields are diagonal.

2.3 Goldstone bosons in general field theories

To deal with Goldstone boson mixing in general theories, we will need some notation and

simple results. We start from a theory with a global symmetry such that the scalars

transform under a set of infinitesimal shifts as φi → φi + εGαGi . Then the standard result

is to expand V (φi + εGαGi ) = V (φi) and differentiate the relation once:

εGαGi
∂V

∂φ0
i

= 0,
∂(εGαGi )

∂φ0
j

∂V

∂φ0
i

+ εGαGi
∂2V

∂φ0
i ∂φ

0
j

= 0. (2.30)

When we sit at the minimum of the potential ∂V
∂φ0i

= 0 but for a spontaneously broken

symmetry αGi is not zero for all i, and thus we have a null eigenvector of the scalar mass

matrix — i.e. the Goldstone boson. For more than one symmetry broken then there will

be multiple null eigenvectors and these should be formed into an orthonormal set. Let us

write the symmetry shifts as linear coefficients αGi = aGijφ
0
j after this has been performed

so that
∑

i α
G
i α

G′
i = δGG

′
and then

GG = φG = RjGφ
0
j , where RjG = αGj . (2.31)

We use the index “G” now to refer to the Goldstone boson(s) in the diagonal basis. The

first identity that we need arises from taking a further derivative of the above equations

to give

εGαGi
∂3V

∂φ0
i ∂φ

0
j∂φ

0
k

+
∂2(εGαGi )

∂φ0
j∂φ

0
k

∂V

∂φ0
i

+
∂(εGαGi )

∂φ0
j

∂2V

∂φ0
i ∂φ

0
k

+
∂(εGαGi )

∂φ0
k

∂2V

∂φ0
i ∂φ

0
j

= 0

→ αGi α
G′
j α

G′′
k

∂3V

∂φ0
i ∂φ

0
jφ

0
k

∣∣∣∣
φ0i =0

= 0, (2.32)

i.e. there are no three-Goldstone couplings.
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If we were able to work at the true minimum of the potential and with self-consistent

values of all the parameters then this would be sufficient. However, we must use the

minimum conditions to determine the parameters — a subset of the mass-squared param-

eters, in our case — and this means that the above equations will be violated by loop

corrections. In particular, the mass-squared parameter — in the diagonal basis — for the

would-be Goldstone boson is no longer zero. To see this, let us define the loop tadpoles

δi ≡
1

vi

∂∆V

∂φ0
i

∣∣∣∣
φ0i =0

(2.33)

so that we can solve (2.28) with the commonly-made choice of

m2
ij = −δiδij + m̂2

0,ij . (2.34)

Note that this is the value at the minimum of the potential — so δi is not regarded as a

function of {φ0
i } when we take derivatives below. Now

m2
G = (RTm2R)GG = −

∑
i

R̃2
iGδi +O(2 loops), (2.35)

i.e. we can use the tree-level rotation matrices to obtain the Goldstone mass from the loop

tadpoles up to corrections of two-loop order, which is all we shall require in the following.

This generalises, for example, equations (2.26) and (2.27) of [11].

Following equation (2.32) above, we then see that

λ̃GG
′G′′

= 0, λGG
′G′′

= O(1 loop) (2.36)

in general. This is a crucial result in the following, even if in theories that preserve CP

both couplings are zero to all orders. For theories breaking CP that could generate such a

term at one or two loops, when we expand the potential as a series in m2
G as in section 2.1

(justified by it being a one-loop quantity) we shall also implicitly expand the Goldstone

self-coupling λGG
′G′′

for the same reason; implicitly because we shall not need the higher-

order terms and this just corresponds to setting λGG
′G′′

= 0 everywhere. Note that this

is automatic once we also employ re-expansion of the tadpoles and masses in terms of

tree-level parameters to obtain consistent tadpole equations in section 5.

In practice when we are considering the broken gauge groups to be SU(2) × U(1)Y
the unbroken U(1)QED allows the Goldstones to be separated into one neutral and one

(complex) charged Goldstone that cannot mix. Hence in the following to simplify the

notation we will restrict to a single neutral Goldstone boson and drop the lower index G,

but the treatment of the charged Goldstone is identical. In this case we can also write

εGαGi → aijφ
0
j and thus RjG =

aijvj√
aijaikvjvk

(where we now allow the normalisation of aijvj

to be arbitrary) for the linearly realised symmetries considered here.

2.4 Small m2
G expansion of the effective potential for general theories

To close this section we can now apply the notation and machinery from the previous

subsections to resum the general effective potential at two loops, generalising the procedure

of [9, 10].
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The total potential up to two loops expands as

Veff = V (0) +
1

16π2
V (1) +

1

(16π2)2
V (2). (2.37)

For use in the elimination of the infrared divergences in the derivatives of the effective

potential, we expand Veff for small m2
G. More precisely, we want to write the two-loop part

of Veff as

V (2) = V (2)|mG=0 +
1

2
A(m2

G)∆1 +
1

2
m2
GΩ +O(m4

G), (2.38)

where the quantities ∆1 and Ω are to be determined.

The two-loop potential splits into contributions [6]:

V (2) = V
(2)
SSS+V

(2)
SS +V

(2)
FFS+V

(2)

FFS
+V

(2)
SSV +V

(2)
SV +V

(2)
V V S+

(
V

(2)
FFV +V

(2)

FFV
+V (2)

gauge

)
(2.39)

where the subscripts denote the propagators in the loops as scalar, fermion or vector (gauge

sector). The terms in the brackets will not be resummed (since they contain no scalars)

and so can be taken to be unchanged from the expressions in [6]. The loop functions

appearing in the other terms are recalled in the MS and DR
′

schemes and Landau gauge

in appendix A.1.2.

First, the scalar contributions to the effective potential at two-loop order V
(2)
S ≡ V (2)

SSS+

V
(2)
SS read

V
(2)
SSS ≡

1

12
(λijk)2fSSS(m2

i ,m
2
j ,m

2
k), (2.40)

V
(2)
SS ≡

1

8
λiijjfSS(m2

i ,m
2
j ), (2.41)

and these functions can be expanded using formulae (3.7), (3.8) of [11]. Separating terms

with one or more Goldstone bosons from the terms without any, and using the fact that

λGGG vanishes at leading order — see the discussion around equation (2.36) — we find the

expansion of V
(2)
S :

V
(2)
S = V

(2)
S |no GB +

∑
j,k 6=G

1

4
(λGjk)2fSSS(0,m2

j ,m
2
k) +

∑
k 6=G

1

4
(λGGk)2fSSS(0, 0,m2

k)

+A(m2
G)

 ∑
j,k 6=G

1

4
(λGjk)2PSS(m2

j ,m
2
k) +

∑
j 6=G

1

4
λGGjjA(m2

j ) +
∑
k 6=G

1

2
(λGGk)2PSS(0,m2

k)


+m2

G

 ∑
j,k 6=G

1

4
(λGjk)2RSS(m2

j ,m
2
k) +

∑
k 6=G

1

2
(λGGk)2RSS(0,m2

k)

+O(m4
G), (2.42)

from which we can identify the scalar part of ∆1 and Ω

(∆1)S =
∑
j,k 6=G

1

2
(λGjk)2PSS(m2

j ,m
2
k) +

∑
j 6=G

1

2
λGGjjA(m2

j ) +
∑
k 6=G

(λGGk)2PSS(0,m2
k),

ΩS =
∑
j,k 6=G

1

2
(λGjk)2RSS(m2

j ,m
2
k) +

∑
k 6=G

(λGGk)2RSS(0,m2
k). (2.43)
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Next, the terms in V (2) involving fermions and scalars are

V
(2)
FFS ≡

1

2
yIJkyIJkfFFS(m2

I ,m
2
J ,m

2
k), (2.44)

V
(2)

FFS
≡ 1

2
Re

[
yIJkyI

′J ′kM∗II′M
∗
JJ ′

]
fFFS(m2

I ,m
2
J ,m

2
k). (2.45)

Here, there are only two cases to consider, either k 6= G or k = G, and for the latter case,

we can use eqs. (3.9) and (3.10) from [11] to expand the loop functions for small m2
G. We

then obtain for (∆1)FS and ΩFS

(∆1)FS = yIJGyIJGPFF (m2
I ,m

2
J) + Re

[
yIJGyI

′J ′GM∗II′M
∗
JJ ′

]
PFF (m2

I ,m
2
J), (2.46)

ΩFS = yIJGyIJGRFF (m2
I ,m

2
J) + Re

[
yIJGyI

′J ′GM∗II′M
∗
JJ ′

]
RFF (m2

I ,m
2
J). (2.47)

Finally, the terms with scalars and gauge bosons read

V
(2)
SSV =

1

4
(gaij)2fSSV (m2

i ,m
2
j ,m

2
a), (2.48)

V
(2)
V S =

1

4
gaaiifV S(m2

a,m
2
i ), (2.49)

V
(2)
V V S =

1

4
(gabi)2fV V S(m2

a,m
2
b ,m

2
i ). (2.50)

As previously, we can expand these terms and separate the contributions of the Goldstone

boson, and we find

(∆1)V S =
3

2
gaaGGA(m2

a) +
1

2
(gabG)2PV V (m2

a,m
2
b), (2.51)

ΩV S = (gaGj)2RSV (m2
j ,m

2
a) + (gaGG)2RSV (0,m2

a) +
1

2
(gabG)2RV V (m2

a,m
2
b). (2.52)

The expansion (2.38) of V (2) enables us to rewrite the two-loop effective potential after

resummation of the leading Goldstone boson contributions as

V̂eff = V (0)+
1

16π2

(
V (1)|m2

G=0+f(m2
G + ∆G)

)
+

1

(16π2)2

(
V (2)|m2

G=0 +
1

2
Ωm2

G

)
,

Ω = ΩS + ΩFS + ΩV S ,

∆G ≡
∑
i

R2
iG

1

vi

∂V̂eff

∂φ0
i

=
1

16π2

[
(∆1)S + (∆1)FS + (∆1)V S

]
+O(2 loop). (2.53)

The minimum of this potential will be found at m2
G+∆G = 0 (along with the minimisation

conditions for the additional scalars) and clearly contains no logarithmic divergences for

small m2
G.

The above expression could now be used for studies of general theories: the simplest

would be for numerical studies where the potential is evaluated as a function of the expec-

tation values and the derivatives taken numerically, as performed for the MSSM in [28, 29]

and implemented generally in [34]. However, there are potential numerical instabilities
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when the expectation values of additional scalars are small, and for complicated models

many evaluations of the potential are required which can be slow: it is therefore useful to

have explicit expressions for the tadpoles, as were derived at two loops in [7]. In the next

section we shall compute these for the resummed potential.

3 Removing infra-red divergences in the minimum condition

In the previous section we derived the resummed two-loop effective potential expanded

in m2
G that explicitly contains no infra-red divergences in its derivatives. In this section

we shall present these derivatives. However, we shall also present a new approach to the

problem which allows us to calculate the derivatives simply, and so we shall also give our

derivations. For the scalar-only diagrams we do this by three methods:

(i) The first method is to generalise the approach of [9, 11], and simply take the deriva-

tives of the resummed potential (2.53). However, this has the disadvantage of requir-

ing us to compute the derivative of the rotation matrix elements
∂Rij

∂φ0r

∣∣∣
ϕ=v

and proves

to be cumbersome: there are dramatic simplifications in the final result.

(ii) To avoid the derivatives of rotation matrix elements, we instead take the derivatives

of V̂eff before diagonalising the mass matrix and singling out the Goldstone boson

and expanding the potential in m2
G. This leads to a simpler derivation of the results.

(iii) For our third method, we introduce a new approach: we set the Goldstone boson

mass “on-shell” in the (non-resummed) effective potential. We shall show that this

gives the same result as the other methods but (much) more simply, and does not

suffer from the problem of needing to exclude Goldstone self interactions by hand.

Furthermore, in the next section we shall employ this approach to compute the mass

digrams, which would be more complicated using the alternative methods.

3.1 All-scalar diagrams

3.1.1 Elimination of the divergences by method (i)

Generalising the approach of [11] to extract the tadpoles we take the derivatives of equa-

tion (2.42). Starting with the one-loop potential, we note that, since m2
G + ∆G = 0 at the

minimum, the derivative of f(m2
G + ∆G) will vanish. Hence we only require

∂V̂
(1)
S

∂φ0
r

=
∑
i 6=G

1

2
A(m2

i )λ
iikRrk. (3.1)

Note that throughout we shall adopt the Einstein convention for summing repeated indices

when all indices are to be summed over; when there is an index that is summed over only a

subset (i.e. excluding the Goldstone boson indices) we shall write an explicit sum symbol.
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For the two-loop terms, recall the scalar part

V̂
(2)
S = V

(2)
SSS |no GB +

∑
j,k 6=G

1

4
(λGjk)2fSSS(0,m2

j ,m
2
k) +

∑
k 6=G

1

4
(λGGk)2fSSS(0, 0,m2

k)

+ V
(2)
SS |m2

G=0 +
1

2
ΩSm

2
G. (3.2)

Treating each of these pieces in turn we find:

∂V
(2)
SSS |no GB

∂φ0
r

=
∑

i,j,k 6=G

[
1

4
λiilRrl(λ

ijk)2f
(1,0,0)
SSS (m2

i ,m
2
i ;m

2
j ,m

2
k)+

1

2
λijkλi

′jk(RT∂rR)i′ifSSS(m2
i ,m

2
j ,m

2
k)

+
1

6
λijkλii

′jkRri′fSSS(m2
i ,m

2
j ,m

2
k)

]
= Rrl

∑
i,j,k 6=G

[
1

4
λijkλi

′jkλii
′lU0(m2

i ,m
2
i′ ;m

2
j ,m

2
k)−

1

6
λijkλiljkI(m2

i ,m
2
j ,m

2
k)

]
(3.3)

and similarly we see

∂

∂φ0
r

∑
j,k 6=G

1

4
(λGjk)2fSSS(0,m2

j ,m
2
k) = Rrl

∑
j,k 6=G

[
− 1

2
λGjkλGljkI(0,m2

j ,m
2
k)

+
1

4
λGjkλGj

′kλjj
′lU0(m2

j ,m
2
j′ ; 0,m2

k)

]
, (3.4)

∂

∂φ0
r

∑
k 6=G

1

4
(λGGk)2fSSS(0, 0,m2

k) = Rrl
∑
k 6=G

[
− 1

2
λGGkλGGlkI(0, 0,m2

k)

+
1

4
λGGkλGGk

′
λkk

′lU0(m2
k,m

2
k′ ; 0, 0)

]
. (3.5)

Putting this all together we see that they combine to give the compact expression

∂V
(2)
SSS |m2

G=0

∂φ0
r

(3.6)

= Rrl
∑

i 6=G,j,k

[∑
i′

1

4
λijkλi

′jkλii
′lU0(m2

i ,m
2
i′ ;m

2
j ,m

2
k)−

1

6
λijkλiljkI(m2

i ,m
2
j ,m

2
k)

] ∣∣∣∣
m2

G→0

.

Next we turn to the SS terms:

∂V
(2)
SS |m2

G=0

∂φ0
r

= Rrl
∑
i,j 6=G

[
− 1

4
λiijjλiilB(0,m2

i ,m
2
i )A(m2

j )+
1

2
λii

′jj(RT∂rR)i′iA(m2
i )A(m2

j )

]
=

1

4
Rrl

∑
i,j 6=G

λii
′jjλii

′lPSS(m2
i ,m

2
i′)A(m2

j )
∣∣
m2

G=0
, (3.7)

where the two terms again combine into a single compact expression. The final piece is

1

2
ΩS

∂m2
G

∂φ0
r

= λGGlRGl
∑

(j,k) 6=(G,G)

1

4
(λGjk)2RSS(m2

j ,m
2
k)
∣∣
m2

G=0
, (3.8)
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using the expression of ΩS from eq. (2.43). The total scalar tadpole is then the sum of

equations (3.6), (3.7) and (3.8). Clearly the simplicity of the final result compared to the

intermediate expressions implies that there should be a simpler way of deriving it — as

indeed we shall show.

3.1.2 Elimination of the divergences by method (ii)

From inspection it is clear that the one-loop tadpole is not divergent when we send m2
G →

0. However, at two loops we found that the process of isolating the divergences in the

potential, expanding it in the Goldstone mass, and then taking the derivatives was rather

cumbersome due to the derivatives of the mixing matrix elements Rij . Instead we could

consider taking the derivatives before having cancelled out the divergent parts, and then

ensure the cancellations later. Hence we rewrite the resummed effective potential as

V̂eff = Veff +
1

16π2

(
f
(
m2
G + ∆G

)
− f(m2

G)
)
− 1

16π2

1

2
A(m2

G)∆G, (3.9)

using formulae (2.38) and (2.53). We expect the terms from the derivative of −1
2A(m2

G)∆G

to cancel off the IR divergences in the derivatives of Veff. To show this, we use the expression

of ∆G derived in eq. (2.43). The relevant contribution to the minimum condition at two-

loop order is

16π2 ∂

∂φ0
r

(
−1

2
A(m2

G)∆G

)∣∣∣∣
ϕ=v

⊃ −1

2

∂m2
G

∂φ0
r

∣∣∣∣
ϕ=v

logm2
G(∆1)S

= −1

2
Rrpλ

GGp logm2
G

 ∑
(j,k) 6=(G,G)

1

2
(λGjk)2PSS(m2

j ,m
2
k) +

∑
j 6=G

1

2
λGGjjA(m2

j )

. (3.10)

The purely scalar contribution to the non-resummed tadpoles is, at one-loop order

∂V
(1)
S

∂φ0
r

∣∣∣∣∣
ϕ=v

=
1

2
Rrkλ

iikA(m2
i ) (3.11)

and at two loops

∂V
(2)
S

∂φ0
r

∣∣∣∣∣
ϕ=v

= Rrp
(
T pSS + T pSSS + T pSSSS

)
, (3.12)

where [7]

T pSS =
1

4
λjkllλjkpf

(1,0)
SS (m2

j ,m
2
k;m

2
l ) =

1

4
λjkllλjkpPSS(m2

j ,m
2
k)A(m2

l ), (3.13)

T pSSS =
1

6
λpjklλjklfSSS(m2

j ,m
2
k,m

2
l ) = −1

6
λpjklλjklI(m2

j ,m
2
k,m

2
l ), (3.14)

T pSSSS =
1

4
λpjj

′
λjklλj

′klf
(1,0,0)
SSS (m2

j ,m
2
j′ ;m

2
k,m

2
l ) =

1

4
λpjj

′
λjklλj

′klU0(m2
j ,m

2
j′ ;m

2
k,m

2
l ),

(3.15)

with the notation f
(1,0,0)
α defined in eq. (A.40).
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In these formulae, we can then consider separately the Goldstone contributions and

investigate the divergent terms. We find two types of divergent terms in eq. (3.12):

• The first type of divergent term comes from TSS , for j = k = G, and3 l 6= G, and

reads

∂V
(2)
S

∂φ0
r

∣∣∣∣∣
ϕ=v

⊃ −1

4
Rrp

∑
l 6=G

λGGllλGGpB0(m2
G,m

2
G)A(m2

l )

=
1

4
Rrp

∑
l 6=G

λGGllλGGp logm2
GA(m2

l ) (3.16)

• The other divergent terms, coming from T pSSSS with j = j′ = G, are

∂V
(2)
S

∂φ0
r

∣∣∣∣∣
ϕ=v

⊃ 1

4
Rrpλ

pGGλGklλGkl logm2
GPSS(m2

k,m
2
l ) (3.17)

• A potentially more dangerous element of those terms, for the particular case k = l =

G is not present as λGGG = 0 (at least up to terms of one-loop order).

All the other terms in
∂V

(2)
S

∂φ0r

∣∣∣∣
ϕ=v

are regular in the limit m2
G → 0.

After relabelling of the indices in the sums, we observe that the logm2
G divergences

from the terms in eqs. (3.16) and (3.17) cancel out perfectly with the ones from eq. (3.10).

We can then take the limit m2
G → 0 in the one-loop and two-loop parts of the minimum

condition: this limit is regular in the one-loop tadpole (3.11) so we recover eq. (3.1), while

we find

∂V̂
(2)
S

∂φ0
r

∣∣∣∣∣
ϕ=v

=
1

4
Rrp

 ∑
j,k,l 6=G

λjkllλjkpPSS(m2
j ,m

2
k)A(m2

l )

+ 2
∑
k,l 6=G

λGkllλGkpPSS(0,m2
k)A(m2

l )


+

1

6
Rrpλ

pjklλjkl fSSS(m2
j ,m

2
k,m

2
l )
∣∣
m2

G→0

+
1

4
Rrp

 ∑
(j,j′) 6=(G,G)

λpjj
′
λjklλj

′kl U0(m2
j ,m

2
j′ ,m

2
k,m

2
l )
∣∣
m2

G→0

+
∑

(k,l) 6=(G,G)

λpGG(λGkl)2 RSS(m2
k,m

2
l )
∣∣
m2

G→0

 , (3.18)

at two-loop order. It is important to notice that all three functions fSSS , U0 and RSS are

regular when one of their arguments goes to zero, hence the result we find is indeed free of

infrared divergences.

3The term with l = G is proportional to logm2
GA(m2

G), which tends to zero when m2
G → 0.
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3.1.3 Elimination of the divergences by setting the Goldstone boson on-shell

Here we shall introduce a new approach to the Golstone Boson Catastrophe: we shall treat

the Goldstone boson mass as an on-shell parameter and enforce that it is identically zero.

This means replacing the dimensionally regularised (DR
′

or MS) Goldstone mass by the

on-shell (or pole) mass in the following way

(m2
G)run. ≡ (m2

G)OS −Π
(1)
GG

(
(m2

G)OS
)

= −Π
(1)
GG

(
0
)

(3.19)

where the pole mass is (m2
G)OS = 0. Note that we only need the one-loop relation here,

so any mixing in the mass terms between the Goldstone boson and other (pseudo-)scalars

is irrelevant — it would be proportional to (Π
(1)
iG )2 and thus a two-loop effect. When we

write the effective potential in terms of the on-shell Goldstone boson mass we should find

that it is free of divergences. To do this, we shall start from the dimensionally regularised

potential and substitute the Goldstone boson mass in equation (3.19), expanding out to

the appropriate loop order; this gives the result that we would obtain by performing the

calculation using the on-shell mass with the appropriate counterterms. For our case, we

only need to use the one-loop self-energy in the one-loop tadpole; the scalar contribution

to the Goldstone boson self-energy at one-loop order is

Π
(1),S
GG

(
p2
)

=
1

2
λGGjjA(m2

j )−
1

2
(λGjk)2B(p2,m2

j ,m
2
k) (3.20)

where we again require the result λGGG = 0 to leading order — although in this case we

could (if desired) make it an on-shell condition. Applying the above relation to the tadpole

in eq. (3.11) we obtain the following shift to the two-loop tadpole:

1

2
Rrpλ

GGpA(m2
G) =

1

2
Rrpλ

GGpA((m2
G)OS)− 1

2
Rrpλ

GGp log(m2
G)OSΠ

(1)
GG((m2

G)OS)

+O(3− loop)

→
∂V

(2)
S

∂φ0
r

((m2
G)OS) =

∂V
(2)
S

∂φ0
r

∣∣∣∣∣
m2

G→(m2
G)OS

− 1

4
Rrpλ

GGp log(m2
G)OS

×
(
λGGjjA(m2

j )− (λGjk)2B(0,m2
j ,m

2
k)
)
. (3.21)

Since B(0,m2
j ,m

2
k) = −PSS(m2

j ,m
2
k), these shifts correspond exactly to the divergent terms

we saw in equations (3.16) and (3.17) and so when we formally take the limit (m2
G)OS → 0

we find exactly the same tadpole given explicitly in (3.18) that we found by the two other

methods. This derivation is certainly much faster than the first method, but note that the

principle is different to the previous calculations: there is no ad-hoc resummation, nor are

we required to expand the potential as a series in m2
G. However, perhaps remarkably, we

find exactly the same result for the tadpole that remains, implying that, at least at two

loops, the two approaches are equivalent. This new approach will prove to be simpler than

both previous methods when we turn our attention to mass diagrams; for now we shall

simply complete the set of tadpole equations.

Before moving on to diagrams with fermions, we shall comment on the prescription to

follow when there is more than one Goldstone boson. In that case, since the Goldstone
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bosons are all degenerate the mutual mixing between them becomes a leading-order effect

and we must diagonalise the self-energies ΠGG′ on the subspace of indices G,G′ which run

over all Goldstones. However, we can also easily write this in the non-diagonalised basis

as a generalisation of (3.19):

(m2
GG′)run. ≡ (m2

G)OS −Π
(1)
GG′
(
(m2

G)OS
)

= −Π
(1)
GG′
(
0
)
, (3.22)

where formally all Goldstone bosons have the same mass m2
G which we set to zero. Then

we can rewrite the tadpole as

1

2
Rrpλ

GG′pA(m2
GG′) =

∑
G

1

2
Rrpλ

GGpA((m2
G)OS) (3.23)

−
∑
G,G′

1

2
Rrpλ

GG′p log(m2
G)OSΠ

(1)
GG′((m

2
G)OS) +O(3− loop).

If the gauge group of the model of interest is just that of the Standard Model, then clearly

the charged and neutral Goldstone bosons cannot mix, so this becomes trivial — hence

in the following we shall restrict for clarity to the one-Goldstone case. However, we shall

later write the full result in the general case.

3.2 Diagrams with scalars and fermions

The one-loop tadpoles involving fermions are

∂V
(1)
F

∂φ0
r

∣∣∣∣∣
ϕ=v

= RrpT
p
F = −RrpRe[yKLpMKL]

(
A(m2

K) +A(m2
L)
)

(3.24)

and these do not present any divergence in the limit of vanishing Goldstone boson mass.

The two-loop contributions are [7],

∂V
(2)
FS

∂φ0
r

∣∣∣∣∣
ϕ=v

= Rrp
(
T pSSFF + T pFFFS

)
, (3.25)

where

T pSSFF =
1

2
yIJkyIJlλ

klpf
(0,0,1)
FFS (m2

I ,m
2
J ;m2

k,m
2
l )

− Re

[
yIJkyI

′J ′kM∗II′M
∗
JJ ′

]
λklpU0(m2

k,m
2
l ,m

2
I ,m

2
J), (3.26)

T pFFFS = 2Re[yIJpyIKny
KLnM∗JL]TFFFS(m2

I ,m
2
J ,m

2
K ,m

2
n)

+ 2Re[yIJpy
IKnyJLnM∗KL]TFFFS(m2

I ,m
2
J ,m

2
K ,m

2
n)

− 2Re[yIJpyKLnyMPnM∗IKM
∗
JMM

∗
LP ]TFFFS(m2

I ,m
2
J ,m

2
L,m

2
n), (3.27)

with the loop functions from eq. (II.38) of [7].

The second term TFFFS is regular when m2
G → 0, because the loop functions, B0, I,

U0, that appear in its expression are all regular when only one of their argument goes to
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zero. However, the k = l = G terms in TSSFF are divergent:

T pSSFF ⊃
1

2
yIJGyIJGλ

GGp logm2
GPFF (m2

I ,m
2
J)

+
1

2
Re

[
yIJGyI

′J ′GM∗II′M
∗
JJ ′

]
λGGp logm2

GPFF (m2
I ,m

2
J). (3.28)

After either resummation or setting the Goldstone boson on-shell we find the total, finite,

two-loop contribution T pSSFF in equation (3.41) and note that T pFFFS is not modified from

eq. (3.27).

3.3 Diagrams with scalars and gauge bosons

The one-loop tadpole involving (massive) gauge bosons is

∂V
(1)
V

∂φ0
r

∣∣∣∣∣
ϕ=v

= RrpT
p
V =

1

2
Rrpg

aapA(m2
a), (3.29)

which contains no scalar propagators so has no divergences in the Goldstone boson mass.

However, the gauge boson contribution to the one-loop scalar self-energy in Landau

gauge is [8]:

Π
(1,V )
ij = gaikgajkBSV (m2

k,m
2
a) +

1

2
gaaijAV (m2

a) +
1

2
gabigabjBV V (m2

a,m
2
b), (3.30)

where the loop functions are given in [8, 57] but simplify for zero momentum in Landau

gauge to

BSV (x, y)|p2=0 = 0,

AV (x)|p2=0 = 3A(x) + 2xδMS,

BV V (x, y)|p2=0 = 3PSS(x, y) + 2δMS. (3.31)

Recall that there are six scalar-gauge boson contributions to the two-loop tadpole [7]:

T pSSV =
1

2
gaijgakjλikpf

(1,0,0)
SSV (m2

i ,m
2
k;m

2
j ,m

2
a) +

1

4
gaijgbijgabpf

(0,0,1)
SSV (m2

i ,m
2
j ;m

2
a,m

2
b)

(3.32)

T pV S =
1

4
gabiigabpf

(1,0)
V S (m2

a,m
2
b ;m

2
i ) +

1

4
gaaikλikpf

(0,1)
V S (m2

a;m
2
i ,m

2
k) (3.33)

T pV V S =
1

2
gabigcbigacpf

(1,0,0)
V V S (m2

a,m
2
c ;m

2
b ,m

2
i ) +

1

4
gabigabjλijpf

(0,0,1)
V V S (m2

a,m
2
b ;m

2
i ,m

2
j ).

(3.34)

Of these only three are potentially singular — f
(1,0,0)
SSV , f

(0,1)
V S and f

(0,0,1)
V V S ; from shifting the

tadpoles we obtain

∆T pSV

= −1

2
λGGr logm2

G

[
gaGkgaGkBSV (m2

k,m
2
a) +

1

2
gaaGGAV (m2

a) +
1

2
gabGgabGBV V (m2

a,m
2
b)

]
≡ λGGrgaGkgaGk∆f (1,0,0)

SSV (m2
G,m

2
G;m2

k,m
2
a)

+ λGGrgaaGG∆f
(0,1)
V S (m2

a,m
2
G,m

2
G) + λGGrgabGgabG∆f

(0,0,1)
V V S (m2

a,m
2
b ;m

2
G,m

2
G) (3.35)
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i.e. they correspond exactly to the potentially singular terms. However, note that BSV
term is zero — and indeed we find that f

(1,0,0)
SSV (m2

G,m
2
G;m2

k,m
2
a) is non-singular; we find

f
(1,0,0)
SSV (m2

G,m
2
G;x, y) = −RSV (x, y) +O(m2

G)

f
(0,1)
V S (x,m2

G,m
2
G) = (3A(x) + 2xδMS) logm2

G +O(m2
G)

f
(0,0,1)
V V S (y, z;m2

G,m
2
G) = −

(
3PSS(y, z) + δMS

)
logm2

G −RV V (y, z) +O(m2
G). (3.36)

We give the final finite tadpoles in equation (3.43).

3.4 Total tadpole

Here we gather the results of the previous subsections and rewrite them for the most general

case, that of multiple Goldstone bosons. The total tadpole, after curing the Goldstone

boson catastrophe and taking m2
G → 0 everywhere, is

∂V̂ (2)

∂φ0
r

∣∣∣∣∣
ϕ=v

= Rrp

[
T
p
SS + T

p
SSS + T

p
SSSS + T

p
SSFF + T

p
FFFS + T

p
SSV

+ T
p
V S + T

p
V V S + T

p
FFV + T

p

FFV
+ T

p
gauge

]
. (3.37)

The all-scalar diagrams are

T
p
SS =

1

4

∑
j,k,l 6=G

λjkllλjkpPSS(m2
j ,m

2
k)A(m2

l )+
1

2

∑
k,l 6=G

λGkllλGkpPSS(0,m2
k)A(m2

l ), (3.38)

T
p
SSS =

1

6
λpjklλjklfSSS(m2

j ,m
2
k,m

2
l )
∣∣
m2

G→0
, (3.39)

T
p
SSSS =

1

4

∑
(j,j′) 6=(G,G′)

λpjj
′
λjklλj

′klU0(m2
j ,m

2
j′ ,m

2
k,m

2
l )

+
1

4

∑
(k,l) 6=(G,G′)

λpGG
′
λGklλG

′klRSS(m2
k,m

2
l ), (3.40)

where by (j, j′) 6= (G,G′) we mean that j, j′ are not both Goldstone indices. The fermion-

scalar diagrams are

T
p
SSFF =

∑
(k,l) 6=(G,G′)

{
1

2
yIJkyIJlλ

klpf
(0,0,1)
FFS (m2

I ,m
2
J ;m2

k,m
2
l )

− Re

[
yIJkyI

′J ′kM∗II′M
∗
JJ ′

]
λklpU0(m2

k,m
2
l ,m

2
I ,m

2
J)

}
+

1

2
λGG

′pyIJGyIJG′
(
−I(m2

I ,m
2
J , 0)− (m2

I +m2
J)RSS(m2

I ,m
2
J)
)

− λGG′pRe

[
yIJGyI

′J ′G′
M∗II′M

∗
JJ ′

]
RSS(m2

I ,m
2
J), (3.41)

T
p
FFFS = T pFFFS

∣∣
m2

G→0
, (3.42)
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while the gauge boson-scalar tadpoles are

T
p
SSV = T pSSV

∣∣
m2

G→0
,

T
p
V S =

1

4
gabiigabpf

(1,0)
V S (m2

a,m
2
b ;m

2
i )
∣∣
m2

G→0
+

∑
(i,k) 6=(G,G′)

1

4
gaaikλikpf

(0,1)
V S (m2

a;m
2
i ,m

2
k),

T
p
V V S =

1

2
gabigcbigacpf

(1,0,0)
V V S (m2

a,m
2
c ;m

2
b ,m

2
i )
∣∣
m2

G→0

+
∑

(i,j) 6=(G,G′)

1

4
gabigabjλijpf

(0,0,1)
V V S (m2

a,m
2
b ;m

2
i ,m

2
j )

− 1

4
gabGgabG

′
λGG

′pRV V (m2
a,m

2
b). (3.43)

Finally the gauge boson-fermion and gauge diagrams are not affected by the Goldstone

boson catastrophe, as scalar masses do not appear in them, and can be found in the

appendix C.2 of [7]

T
p
FFV = 2gaJI gKbJRe[MKI′y

I′Ip]f
(1,0,0)
FFV (m2

I ,m
2
K ;m2

J ,m
2
a)

+
1

2
gaJI gIbJg

abpf
(0,0,1)
FFV (m2

I ,m
2
J ;m2

a,m
2
b), (3.44)

T
p

FFV
= gaJI gaJ

′
I′ Re[yII

′pM∗JJ ′ ]
[
fFFV (m2

I ,m
2
J ,m

2
a) +M2

I f
(1,0,0)

FFV
(m2

I ,m
2
I′ ;m

2
J ,m

2
a)
]

+ gaJI gaJ
′

I′ Re[M IK′
MKI′M∗JJ ′yKK′p]f

(1,0,0)

FFV
(m2

I ,m
2
I′ ;m

2
J ,m

2
a)

+
1

2
gaJI gbJ

′
I′ g

abpM II′M∗JJ ′f
(0,0,1)

FFV
(m2

I ,m
2
J ;m2

a,m
2
b), (3.45)

T
p
gauge =

1

4
gabcgdbcgadpf (1,0,0)

gauge (m2
a,m

2
d;m

2
b ,m

2
c). (3.46)

4 Mass diagrams in the gaugeless limit

As discussed in the introduction, the scalar masses are among the most interesting elec-

troweak precision observables, and their calculation also suffers from the Goldstone Boson

Catastrophe. Earlier literature pointed out that the calculation in the effective potential

approximation contains more severe divergences that cannot be solved by resummation,

and thus the inclusion of the external momentum is necessary. However, we shall find that

there are also divergences that are not regulated by external momentum — and thus both

setting the Goldstone boson on-shell and external momentum are required to obtain finite,

accurate results.

On the other hand, the effective potential approximation is still useful and has ad-

vantages over a full momentum-dependent result, chief among these being simplicity and

speed of calculation. In particular, the evaluation of the loop functions at arbitrary external

momentum requires the numerical solution of differential equations [57] which, although

implemented in the fast package TSIL [58], is still much slower than the zero-momentum

functions, and when the functions must be repeatedly called can lead to times orders of

magnitude longer for complicated models. Hence we shall consider expanding the two-loop
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self-energies as a series in s ≡ −p2 (for metric signature (−,+,+,+)) as

Π
(2)
ij (s) =

log(−s)
s

Π
(2)
−1 l,ij +

1

s
Π

(2)
−1,ij + Π

(2)
l2,ij

log
2
(−s) + Π

(2)
l,ij log(−s) + Π

(2)
0,ij +

∞∑
k=1

Π
(2)
k,ij

sk

k!

(4.1)

and we shall neglect terms of O(s), giving a “generalised effective potential” approximation:

for loop functions where the singular terms Π
(2)
−1 l,ij ,Π

(2)
−1,ij ,Π

(2)
l2,ij

,Π
(2)
l,ij vanish the result is

identical to the second derivative of the effective potential. This approximation is par-

ticularly good when the mass of the scalars considered is smaller than the scale of other

particles that they couple to; but even when they are similar we find that typically the

difference is only a few percent. This should then be within other uncertainties in the

calculation for most purposes.

We shall perform our calculations using our procedure of taking the Goldstone boson

mass(es) on-shell as before, working in the general case now of allowing multiple Goldstone

bosons throughout. We shall make heavy use of the existing expressions for two-loop scalar

self energies from [8]; however, these are only available up to second order in the gauge

coupling. Hence we shall be restricted to work in the very popular “gaugeless limit” where

we neglect the gauge couplings of broken gauge groups (including electromagnetism, since

hypercharge and weak SU(2) are both broken so their gauge couplings are neglected). The

two-loop self-energy in this limit can be decomposed as follows:

Π
(2)
ij = ΠS

ij + Π
SF (W )
ij + Π

SF4(M)
ij + Π

S2F3(M)
ij + Π

S3F2(V )
ij + Π

SF4(V )
ij + ΠSV

ij + ΠFV
ij . (4.2)

This consists of scalar-only propagators, diagrams with scalar and fermion propagators, di-

agrams with scalar and vector propagators, and fermions and vectors. We find that Π
SF4(M)
ij

and Π
SF4(V )
ij are nonsingular as m2

G → 0 and s→ 0, so the relevant formulae in that limit

are equations (B.15) and (B.28) of [7]. Furthermore, in the gaugeless limit the Goldstone

bosons do not couple to the vectors, so ΠSV
ij and ΠFV

ij are unchanged from (B.36) and

(B.41) of [7]. However, the remaining diagrams require regulation: our new expressions for

ΠS
ij are presented in section 4.1; Π

SF (W )
ij ,Π

S2F3(M)
ij and Π

S3F2(V )
ij are derived in section 4.2.

4.1 All-scalar terms

The two-loop scalar self-energy contribution with only scalar propagators is given by [8]:

ΠS
ij =

1

4
λijklλkmnλlmnWSSSS(m2

k,m
2
l ,m

2
m,m

2
n) +

1

4
λijklλklmmXSSS(m2

k,m
2
l ,m

2
m)

+
1

2
λiklλjkmλlmnnYSSSS(m2

k,m
2
l ,m

2
m,m

2
n)

+
1

4
λiklλjmnλklmnZSSSS(m2

k,m
2
l ,m

2
m,m

2
n) +

1

6
λiklmλjklmSSSS(m2

k,m
2
l ,m

2
m)

+
1

2

(
λiklλjkmn + λjklλikmn

)
λlmnUSSSS(m2

k,m
2
l ,m

2
m,m

2
n)

+
1

2
λiklλjkmλlnpλmnpVSSSSS(m2

k,m
2
l ,m

2
m,m

2
n,m

2
p)

+
1

2
λikmλjlnλklpλmnpMSSSSS(m2

k,m
2
l ,m

2
m,m

2
n,m

2
p). (4.3)

The loop integral functions are recalled in (A.52).
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When at most one of the propagators is a Goldstone boson, we can set m2
G → 0, s→ 0

and use the simplified expressions below (B.2) of [7]. However, for cases including more

Goldstone bosons we must look for singularities since, in general, only the SSSS term is

regular. Furthermore, we can divide the functions into those regulated by the momentum

and those that are not. In particular, by inspection we see that for two or more Goldstone

bosons W,X, Y, V can be divergent as m2
G → 0, even for finite momentum ; this means

those terms must be regulated by resummation — or, in our case, by shifts from the one-

loop self energy by putting the Goldstone bosons on shell. On the other hand, the terms

U,M and Z must be regulated by including finite momentum.

It should be noted that the divergences that are not regulated by momentum all involve

a Goldstone boson self-energy as a subdiagram. It is then logical to consider how they

relate to the divergent terms in the tadpole graphs. If we consider the effective potential

approximation and take the derivatives of the tadpoles as in [7], then we see that the

topologies X,Y, Z descend from the TSS graphs; S,U arise from TSSS ; and M,V,W from

TSSSS . Then it is clear that, since the TSSS graphs contain no divergences, resummation

is irrelevant for S and U , while TSS and TSSSS are both divergent when there is part of

a Goldstone boson self-energy as a subdiagram. We also see that W and X topologies

arise from TSSSS and TSS respectively by replacing a three-point vertex with a four-point

one, and likewise V and Y arise by adding a leg connected directly by a propagator to the

other leg; we illustrate this whole discussion in figure 1. Hence we expect that these special

divergences should follow the same pattern as the tadpoles, and be cured in the same way.

However, we shall also find below some subtleties remain in the V topology.

4.1.1 Goldstone shifts

To determine the effect on the mass diagrams, let us make the shifts using the method of

an on-shell Goldstone boson. Recall that the contribution to the one-loop self-energy is

Π
(1),S
ij (s) =

1

2
λijkkA(m2

k)−
1

2
λiklλjklB(s,m2

k,m
2
l ) (4.4)

so we can write ΠS
ij → ΠS

ij + ∆ΠS
ij where

∆ΠS
ij = −1

2
λijGG

′
logm2

GΠ
(1),S
GG′ (0) + λiGlλjG

′lB′(s,m2
G,m

2
l )Π

(1),S
GG′ (0) (4.5)

≡ 1

4
λijGG

′
λGG

′kk∆XSSS(m2
G,m

2
G,m

2
k)

+
1

4
λijGG

′
λGmnλG

′mn∆WSSSS(m2
G,m

2
G,m

2
m,m

2
n)

+
1

2
λiGkλjG

′kλGG
′nn∆YSSSS(m2

k,m
2
G,m

2
G,m

2
n)

+
1

2
λikGλjkG

′
λGnpλG

′np∆VSSSSS(m2
k,m

2
G,m

2
G,m

2
n,m

2
p)
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Figure 1. Divergent scalar-only diagrams that require regulation (by resummation or using our

on-shell scheme), even in the presence of external momentum. The light blue dashed lines marked

with a small red “G” denote Goldstone boson propagators. The dark blobs in the diagrams on the

right-hand side represent full one-loop one-particle-irreducible corrections inserted on the line. On

the top line we show the tadpoles (with their clear relation to the sunset and figure-eight diagrams

in the potential); on the lower two we show the corrections to the self-energies, which clearly follow

the same pattern.

where B′ is defined in eq. (A.13), and

∆XSSS(m2
G,m

2
G,m

2
k) ≡ −A(m2

k) logm2
G = −XSSS(m2

G,m
2
G,m

2
k)

∆WSSSS(m2
G,m

2
G,m

2
m,m

2
n) ≡ B(0,m2

m,m
2
n) logm2

G

∆YSSSS(m2
k,m

2
G,m

2
G,m

2
n) ≡ B′(s,m2

G,m
2
k)A(m2

n) = −YSSSS(m2
k,m

2
G,m

2
G,m

2
n)

∆VSSSSS(m2
k,m

2
G,m

2
G,m

2
n,m

2
p) ≡ −B′(s,m2

G,m
2
k)B(0,m2

n,m
2
p)

= B′(s,m2
G,m

2
k)PSS(m2

n,m
2
p). (4.6)

These exactly cancel the divergent parts in the mass diagrams. In the case of the X and Y

diagrams, they go further and leave no finite parts; for the W diagrams, what remains is

WSSSS(m2
G,m

2
G,m

2
m,m

2
n) + ∆WSSSS(m2

G,m
2
G,m

2
m,m

2
n)

= U0(m2
G,m

2
G,m

2
m,m

2
n) + ∆WSSSS(m2

G,m
2
G,m

2
m,m

2
n)

= RSS(m2
m,m

2
n). (4.7)

We have no further divergences in W (in particular, U0(x, y, 0, 0) is non-singular).
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In the V diagrams there is also a finite piece that remains, since

VSSSSS(m2
k,m

2
G,m

2
G,m

2
n,m

2
p)

= −V (m2
k,m

2
G,m

2
n,m

2
p)

= −V (m2
k,m

2
n,m

2
p) +

[PSS(m2
n,m

2
p) logm2

G +RSS(m2
n,m

2
p)]

s−m2
k

+O(m2
G). (4.8)

Now, using

B′(s,m2
G,m

2
k) (4.9)

= − 1

s−m2
k

logm2
G −

1

(s−m2
k)

2

[
(m2

k + s)(B(s, 0,m2
k)− 2) + 2m2

k logm2
k

]
+O(m2

G)

we find that

VSSSSS(m2
k,m

2
G,m

2
G,m

2
n,m

2
p) + ∆VSSSSS(m2

k,m
2
G,m

2
G,m

2
n,m

2
p)

= −V (m2
k,m

2
n,m

2
p) +

1

(s−m2
k)

[
RSS(m2

n,m
2
p) +

PSS(m2
n,m

2
p)

s−m2
k

×
(

(m2
k + s)(B(s, 0,m2

k)− 2) + 2m2
k logm2

k

)]
+O(m2

G). (4.10)

Now we can look at what divergences might remain and need regulating by the momentum.

For future reference let us define

VSSSSS(m2
k,m

2
G,m

2
G,m

2
n,m

2
p) +B′(s,m2

G,m
2
k)PSS(m2

n,m
2
p) ≡ Ṽ (m2

k,m
2
n,m

2
p). (4.11)

Since we take λGGG = 0, we never have a divergence from n = p = G. On the other

hand, when k = G we do have a divergence that needs regulating by the momentum;

recalling B(s, 0, 0) = −log(−s) + 2 we can write

Ṽ (m2
G,m

2
n,m

2
p) = VSSSSS(m2

G,m
2
G,m

2
G,m

2
n,m

2
p) + ∆VSSSSS(m2

G,m
2
G,m

2
G,m

2
n,m

2
p)

= −V (0,m2
n,m

2
p) +

1

s

[
RSS(m2

n,m
2
p)− PSS(m2

n,m
2
p)log(−s)

]
+O(m2

G).

(4.12)

For the other cases we can set s = 0 and write

Ṽ (m2
k,m

2
n,m

2
p) = VSSSSS(m2

k,m
2
G,m

2
G,m

2
n,m

2
p) + ∆VSSSSS(m2

k,m
2
G,m

2
G,m

2
n,m

2
p)

k 6=G
= −V (m2

k,m
2
n,m

2
p) +

1

k

[
RSS(m2

n,m
2
p)− PSS(m2

n,m
2
p)[logm2

k − 1]

]
+O(m2

G). (4.13)

4.1.2 Momentum-regulated diagrams

There are other VSSSSS diagrams that are not regulated by the Goldstone boson shifts.

While VSSSSS(x, y, z, 0, 0), VSSSSS(0, x, y, 0, z), VSSSSS(0, x, y, 0, 0), VSSSSS(x, 0, y, 0, 0)
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are all regular, the diagrams VSSSSS(0, 0, x, y, z) and VSSSSS(0, 0, x, 0, y) are divergent,

and their expression may be found simply by using those for U(0, 0, x, y) and U(0, 0, 0, x)

given in appendix B:

VSSSSS(0, 0, x, y, z) =
1

x

[
U0(0, x, y, z)− U(0, 0, y, z)

]
. (4.14)

All other VSSSSS diagrams are either regular or vanish due to the prefactor λGGG.

The remining functions USSSS ,MSSSSS and ZSSSS require regulation by momentum:

we give expressions for the expansion of these in appendix B.

4.2 Fermion-scalar diagrams

The potentially singular mass diagrams are Π
SF (W )
ij ,Π

S2F3(M)
ij and Π

S3,F2(V )
ij , but among

these there are only a subset once more that are regulated by the Goldstone boson shifts;

indeed, as in the purely scalar case we find that the topology M is purely regulated by

momentum for which all of the limits of the loop functions are provided in appendix B.

For the other two, there are exactly four diagrams to regulate, which will match exactly.

They have the form [8]:

Π
SF (W )
ij =

1

2
λijklRe

[
yMNkyM

′N ′lMMM ′MNN ′
]
WSSFF (m2

k,m
2
l ,m

2
M ,m

2
N )

+
1

2
λijklyMNkyMNlWSSFF (m2

k,m
2
l ,m

2
M ,m

2
N ), (4.15)

Π
S3F2(V )
ij = λiklλjkm

(
Re
[
yNPlyN

′P ′mMNN ′MPP ′
]
VSSSFF (m2

k,m
2
l ,m

2
m,m

2
N ,m

2
P )

+ Re
[
yNPlyNPm

]
VSSSFF (m2

k,m
2
l ,m

2
m,m

2
N ,m

2
P )
)
, (4.16)

and the loop functions are defined in section A.1.2.

As in the scalar case, we look at the shift in the one-loop scalar mass contribution

involving Goldstone bosons:

∆ΠSF
ij =

[
− 1

2
λijGG

′
logm2

G + λiGlλjG
′lB′(s,m2

G,m
2
l )

]
×
[
Re(yKLGyKLG′)ΠFF (m2

K ,m
2
L) + 2Re(yKLGyK

′L′G′
MKK′MLL′)ΠFF

]
≡ λijGG′

Re(yKLGyKLG′)∆WSSFF + λijGG
′
Re(yKLGyK

′L′G′
MKK′MLL′)∆WSSFF

+ λiGlλjG
′lRe(yKLGyKLG′)∆VSSSFF

+ λiGlλjG
′lRe(yKLGyK

′L′G′
MKK′MLL′)∆VSSSFF (4.17)

where

ΠFF (x, y) ≡ −
[
(x+ y)PSS(x, y) +A(x) +A(y)

]
,

ΠFF (x, y) ≡ −PSS(x, y), (4.18)
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and compare to the relevant expressions for the loop functions:

WSSFF (m2
G,m

2
G, x, y) = −2U0(m2

G,m
2
G, x, y), (4.19)

WSSFF (m2
G,m

2
G, x, y) = −(x+ y −m2

G)U0(m2
G,m

2
G, x, y)− I(0, x, y)

− logm2
G(A(x) +A(y)),

VSSSFF (k,m2
G,m

2
G, x, y) = −2VSSSSS(k,m2

G,m
2
G, x, y),

VSSSFF (k,m2
G,m

2
G, x, y) = −(x+ y −m2

G)VSSSSS(k,m2
G,m

2
G, x, y) + U(k,m2

G, x, y)

+B′(s,m2
G, k)(A(x) +A(y)).

We should deal with each of these in turn. Firstly for the W topology:

WSSFF (m2
G,m

2
G, x, y)+∆WSSFF (m2

G,m
2
G, x, y)→ −I(0, x, y)−(x+y)RSS(x, y), (4.20)

WSSFF (m2
G,m

2
G, x, y) + ∆WSSFF (m2

G,m
2
G, x, y)→ −2RSS(x, y). (4.21)

For topology V , the first combination is proportional to the scalar case in equa-

tions (4.12) and (4.13):

VSSSFF (k,m2
G,m

2
G, x, y) + ∆VSSSFF (k,m2

G,m
2
G, x, y)

= −2VSSSSS(k,m2
G,m

2
G, x, y)− 2B′(s,m2

G, k)PSS(x, y)

→ −2Ṽ (k, x, y), (4.22)

while the second also contains an additional U function:

VSSSFF (k,m2
G,m

2
G, x, y)+∆VSSSFF (k,m2

G,m
2
G, x, y)→ −(x+y)Ṽ (k, x, y)+U(k,m2

G, x, y).

(4.23)

For this case, when k 6= m2
G it is non-singular as in the scalar case, and when k = m2

G

we require the expansions with finite s from equation (4.12) and for U(0, 0, x, y) from

appendix B.

5 Self-consistent solution of the tadpole equations

We have shown how to avoid the Goldstone Boson Catastrophe in general renormalisable

field theories, and how this can be applied to calculating neutral scalar masses in the

gaugeless limit in a generalised effective potential approximation. However, as they have

been formulated the tadpole equations still require an iterative solution, because the same

masses appear in the loop functions as we are solving for: recall in equation (2.34) that

m2
ij = −δiδij + m̂2

0,ij but the m2
ij appear in the δi. We cannot do the same as we did

for the Goldstone boson and put the other scalars on shell; however, we can follow [11]

and use (2.34) to re-expand the masses to one-loop order in the one-loop tadpole, then we

use the tree-level masses in the loop functions and solve the tadpole equations perturba-

tively instead of iteratively as described in the introduction. Let us define a set of masses

m̄2 = {m2
G, m̃

2
i 6=G} i.e. we use the on-shell mass for the Goldstone, and the tree-level masses

for the other scalars. To single out the Goldstone boson we use the tree-level mixing matrix

R̃kG which in any case should correspond to the all-loop expression, depending as it does
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only on the symmetries and vevs. Then we can define the pertubation to the tree-level

mass-matrix to be

∆ij ≡ −R̃kiR̃kjδk (5.1)

and we can expand as usual in perturbation theory using ∆ij = 1
16π2 ∆

(1)
ij + 1

(16π2)2
∆

(2)
ij + . . .

to find that we should shift the tadpoles according to

∂V̂ (2)

∂φ0
r

(m2) =
∂V̂ (2)

∂φ0
r

(m̄2) +
1

2

∑
(i,i′) 6=(G,G′)

R̃rlλ̃
ii′l∆

(1)
ii′ PSS(m̄2

i , m̄
2
i′). (5.2)

By (i, i′) 6= (G,G′) we mean that the sum over (i, i′) excludes the cases where both i and i′

are Goldstone boson indices. This allows us to express the δi entirely in terms of the tree-

level m̃2 parameters and obtain a perturbative expansion for m2 — note that we should

also replace all of the couplings λijk, λijkl etc and rotation matrices Rij with their tree-level

values λ̃ijk, λ̃ijkl, R̃ij (we already implicitly used this to disregard the λGGG terms). The

only subtlety occurs when m̃2
i = m̃2

j for some i, j which is not ensured by a symmetry so

that ∆ii 6= ∆jj ; in that case as usual the R̃ matrix must be modified to diagonalise ∆
(1)
ij

on those indices. However the expression above is still valid in that case. Note that the

shift only occurs for scalar propagators in the one-loop diagrams, which is why there is no

modification of the fermionic or vector tadpole diagrams.

We can apply the same procedure to use the tree-level masses in the mass diagrams:

after some algebra we find (in the gaugeless limit — otherwise we will have some additional

shifts from scalar-vector diagrams) that

Π
(2)
ij (s,m2) = Π

(2)
ij (s, m̄2) +

∑
(k,k′) 6=(G,G′)

(
1

2
λ̃ijkk

′
∆

(1)
kk′PSS(m̄2

k, m̄
2
k′) (5.3)

− λ̃iklλ̃jk
′l∆

(1)
kk′C(s, s, 0, m̄2

k, m̄
2
l , m̄

2
k′)

)
where we used the usual C function defined in eq. (A.17). These together then allow us to

determine the scalar masses to be the values of s that give solutions to:

0 = Det

[
sδij −m2

0,ij + δi(m̄
2)δij −

Π
(1)
ij (s, m̄2)

16π2
−

Π
(2)
ij (s, m̄2)

(16π2)2
(5.4)

− δij
2

1

(16π2)2

∑
(j,j′) 6=(G,G′)

R̃ilλ̃
jj′l∆

(1)
jj′PSS(m̄2

j , m̄
2
j′)

−
R̃ii′R̃jj′

(16π2)2

∑
(k,k′) 6=(G,G′)

(
1

2
λ̃i

′j′kk′∆
(1)
kk′PSS(m̄2

k, m̄
2
k′)−λ̃i

′klλ̃j
′k′l∆

(1)
kk′C(s, s, 0, m̄2

k, m̄
2
l , m̄

2
k′)

)]
.

Typically in spectrum generators the two-loop corrections are computed at fixed momentum

and then the eigenvalues of the above matrix computed iteratively. Since we have given the

expansion of all the loop functions relevant for the two-loop corrections up to terms of order
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O(s), this could be generalised to include our simple momentum dependence for the two-

loop part as in equation (4.1) without significant loss of speed since the computationally

expensive parts of the two-loop functions would only need to be evaluated once. However,

since all of the expansions are strictly valid only up to two-loop order, the equation above

could be solved perturbatively itself with no significant loss of accuracy.

6 Conclusions

We have presented a solution to the Goldstone Boson Catastrophe in general renormalisable

theories to two-loop order. We showed that the approach of Goldstone boson resummation

is equivalent (at least at two-loop order) to an on-shell scheme for the Goldstone boson(s),

the latter being much more convenient calculationally. We then showed how there are a

set of self-energy diagrams that also exhibit the Goldstone Boson Catastrophe even when

external momentum is included — but that our solution naturally avoids those singularities.

We were then able to give expressions for a “generalised effective potential approximation”

for neutral scalar masses in the gaugeless limit, that are free of infra-red divergences and

give a good approximation to the full momentum-dependent result. This also included

the re-expansion of the masses in terms of the values obtained from the tree-level tadpole

equations, allowing a self-consistent solution of the tadpole equations (i.e. equations where

no terms to be solved for appear on both left and right hand sides).

The expressions contained in this paper should now allow simple infra-red safe calcula-

tions in a wide variety of theories. Most practically, it would be simple to implement them

in a package such as SARAH, to enable automated calculations for any model and avoid the

problems seen, for example, in [42, 53, 56], with the existing implementation. This should

also enable more reliable and accurate explorations of the parameter space of many models;

in particular for non-supersymmetric models (such as the two-Higgs-doublet model), where

the existing “solution”4 to the Goldstone Boson Catastrophe is not particularly successful,

relying as it does on there being a gauge-coupling dependent part of the scalar potential

(as in supersymmetric theories).

However, it would also be interesting to explore further many aspects of the prob-

lem more generally: the two-loop mass-diagram calculation to quartic order in the gauge

couplings; the link between resummation and our on-shell scheme; and also the exten-

sion to higher orders. Indeed, these three topics are linked: in [10], it was shown that

the momentum dependence of the self-energy in the resummation was necessary for the

resummation of certain subleading divergences. By reorganising the expansion in terms

of M̃2
G ≡ m2

G + Πg(0), they showed that the one-loop resummed potential (2.5) — which

contributes the most divergent parts — can be rewritten as

V
(1)

eff = − i
2
C

∫
ddk

(
log(−k2 + M̃2

G)−
∞∑
L=2

1

(L− 1)

[
−[Πg(k

2)−Πg(0)]

M̃2
G − k2

]L−1
)

=
1

4
f(M̃2

G) +O(M̃4
G log M̃2

G).

4See [34], appendix 2b of [53] and especially section 2 of [42] for a description of the approach in SARAH.
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This shows that the momentum dependence cannot contribute a more divergent term than

O(M̃4
G log M̃2

G). Hence if we rewrite the diagrams in terms of M̃2
G — similar to our on-

shell scheme — then the momentum dependence of the self-energy will disappear from the

tadpole condition; indeed, [9] did not require momentum dependence. This also shows

that for higher-order contributions it may be most efficient to perform the calculations

directly in such a scheme, rather than work in a pure minimal subtraction scheme and

then apply the shifts. On the other hand, it could be relevant for the mass diagrams: [10]

showed that a term of order M̃4
G log M̃2

G in the two-loop potential arising from a diagram

with a W-boson, charged Goldstone boson and photon could be resummed by including

the momentum dependence in the self-energy; the masslessness of the photon giving rise

to additional infra-red divergences. This issue did not arise here because we worked up

to two-loop order, and in the gaugeless limit for the mass diagrams (so that the photon

cannot contribute, and its contribution to the tadpoles is benign). It would certainly be

interesting to explore this in the future.
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A Loop functions

Throughout our work, we have followed closely the notations of [57], however we present

in this appendix the loop functions and the notations that were used. These definitions of

loop functions use Euclidean momentum integrals in dimensional reduction to d = 4 − 2ε

dimensions, and involve the loop factor

C = 16π2 µ2ε

(2π)d
. (A.1)

We also recall the following shorthand notations

logx ≡ log
x

Q2
, (A.2)

where Q2 = 4πe−γEµ2 is the renormalisation scale squared.

A.1 Definition of loop functions

A.1.1 One-loop functions

In the expression of the one-loop effective potential, we make use of the function f defined as

f(x) ≡ x2

4

(
logx− 3

2

)
(A.3)
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Two important one-loop functions that will appear in the expression of the effective

potential, of its derivatives and in the self-energies are the finite parts of

A(x) ≡ C
∫

ddk

k2 + x
(A.4)

B(p2, x, y) ≡ C
∫

ddk

(k2 + x)((p− k)2 + y)
, (A.5)

namely

A(x) ≡ lim
ε→0

(
A(x) +

x

ε

)
= x(logx− 1) = 2

d

dx
f(x), (A.6)

B(p2, x, y) ≡ lim
ε→0

(
B(p2, x, y)− 1

ε

)
= − log p2 − fB(x+)− fB(x−), (A.7)

where

fB(x) = log(1− x)− x log

(
1− 1

x

)
− 1, (A.8)

and

x± =
p2 + x+ y ±

√
(p2 + x+ y)2 − 4p2x

2p2
. (A.9)

In two-loop order expressions, the function J is sometimes used, although it is equal to A

J(x) = A(x). (A.10)

A limit of particular interest of B is the limit of vanishing external momentum, that we

denote B0, and is related to the PSS function we have used

B(p2, x, y) −→
p2→0

B0(x, y) = −PSS(x, y) ≡ −A(x)−A(y)

x− y
. (A.11)

and furthermore, we have that

B0(x, x) = − logx⇔ PSS(x, x) = logx (A.12)

The derivative of the B function with respect to one of the mass arguments is also used,

with the notation

B′(p2, x, y) =
∂

∂x
B(p2, x, y). (A.13)

For the fermion and gauge boson contributions to the scalar self-energy we also use

the functions PFF , PFF and PV V related to A and PSS as

PFF (x, y) ≡ −2
xA(x)− yA(y)

x− y
= −A(x)−A(y)− (x+ y)PSS(x, y), (A.14)

PFF (x, y) ≡ −2PSS(x, y), (A.15)

PV V (x, y) ≡ 3PSS(x, y). (A.16)

In the context of the reexpansion of the mass diagrams, we also make use of the one-

loop three-point function C(p2
1, p

2
2, (p1+p2)2, x, y, z), which is the finite part of the following

integral

C(p2
1, p

2
2, (p1 + p2)2, x, y, z) ≡ −C

∫
ddk

(k2+x)((k−p1)2+y)((k−p1−p2)2 + z)
. (A.17)
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A.1.2 Two-loop functions

We recall the definition of the following two-loop integrals

S(x, y, z) ≡ C2

∫
ddk

∫
ddq

1

(k2 + x)(q2 + y)((k + q − p)2 + z)
, (A.18)

U(x, y, z, u) ≡ C2

∫
ddk

∫
ddq

1

(k2+x)((k−p)2+y)(q2+z)((k+q−p)2+u)
, (A.19)

M(x, y, z, u, v) ≡ C2

∫
ddk

∫
ddq

1

(k2+x)(q2+y)((k−p)2+z)((q−p)2+u)((k−q)2+v)
.

(A.20)

of which we take the finite parts

S(x, y, z) = lim
ε→0

[S(x, y, z)− (A(x) + A(y) + A(z))/ε− (x+ y + z)/

2ε2 − (p2/2− x− y − z)/2ε],

U(x, y, z, u) = lim
ε→0

[U(x, y, z, u)−B(p2, x, y)/ε+ 1/2ε2 − 1/2ε], (A.21)

U0(x, y, z, u) ≡ U(x, y, z, u)|p2=0 =
I(x, z, u)− I(y, z, u)

y − x
, (A.22)

M(x, y, z, u, v) = lim
ε→0

M(x, y, z, u, v). (A.23)

We also require the related functions (where V differs slightly from [8])

I(x, y, z) ≡ S(x, y, z)|p2=0, (A.24)

V (x, y, z, u) ≡ − ∂

∂y
U(x, y, z, u), (A.25)

V (x, y, z) ≡ lim
u→0

[
V (x, u, y, z)− 1

s− x
∂

∂u
I(u, y, z)

]
. (A.26)

The integral I is symmetric on all three indices, and thus U0 is symmetric on x ↔ y and

z ↔ u separately etc; the I integral is fundamental for the two-loop effective potential, all

other functions being obtained from it and A(x). It can be written explicitly although the

expression is rather involved; it can be found in equations (D1) to (D3) of [33] although it

was first derived in [1]. Here we note the useful limiting cases

I(x, y, 0) =
1

2

(
− 5x− 5y + (−x+ y) log

2
x+ 4y log y

+ logx(4x− 2y log y)− 2(x− y)Li2(1− y/x)

)
,

I(x, x, x) =
3

2
x(−5 + 4 logx− log

2
x+ cxxx),

I(x, x, 0) = x(−5 + 4 logx− log
2
x),

I(x, 0, 0) = −x
(

1

2
log

2
x+ 2 logx− 5

2
− π2

6

)
, (A.27)

where cxxx ≈ 2.3439 is a constant.
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The two-loop functions appearing in the effective potential were defined in [6] and read

fSSS(x, y, z) = −I(x, y, z), (A.28)

fSS(x, y) = J(x, y), (A.29)

fFFS(x, y, z) = J(x, y)− J(x, z)− J(y, z) + (x+ y − z)I(x, y, z), (A.30)

fFFS(x, y, z) = 2I(x, y, z), (A.31)

fSSV (x, y, z) =
1

z

[
(−x2 − y2 − z2 + 2xy + 2xz + 2yz)I(x, y, z) + (x− y)2I(0, x, y)

+ (y − x− z)J(x, z) + (x− y − z)J(y, z) + zJ(x, y)

]
+ 2

(
x+ y − z

3

)
J(z), (A.32)

where

J(x, y) ≡ J(x)J(y) = A(x)A(y). (A.33)

To these functions we must also add the scheme dependent functions fV S , fV V S , fFFV ,

fFFV and fgauge that we give for the DR
′

and MS schemes (slightly modifying the nota-

tion of [6])

fV S(x, y) = 3J(x, y) + δMS2xJ(y), (A.34)

fV V S(x, y, z) =
1

4xy

[
(−x2 − y2 − z2 − 10xy + 2xz + 2yz)I(x, y, z)

+ (x− z)2I(0, x, z) + (y − z)2I(0, y, z)− z2I(0, 0, z)

+ (z − x− y)J(x, y) + yJ(x, z) + xJ(y, z)

]
+

1

2
J(x) +

1

2
J(y) + δMS

(
2J(z)− x− y − z

)
, (A.35)

fFFV (x, y, z) =
1

z

[
(x2 + y2 − 2z2 − 2xy + xz + yz)I(x, y, z)− (x− y)2I(0, x, y)

+ (x− y − 2z)J(x, z) + (y − x− 2z)J(y, z) + 2zJ(x, y)

]
+ 2

(
−x−y+

z

3

)
J(z)−δMS

(
2xJ(x)+2yJ(y)−(x+y)2+z2

)
, (A.36)

fFFV (x, y, z) = 6I(x, y, z) + δMS

(
2(x+ y + z)− 4J(x)− 4J(y)

)
, (A.37)

fgauge(x, y, z) =
1

4xyz

[
(−x4 − 8x3y − 8x3z + 32x2yz + 18y2z2)I(x, y, z)

+ (y − z)2(y2 + 10yz + z2)I(0, y, z) + x2(2yz − x2)I(0, 0, x)

+ (x2 − 9y2 − 9z2 + 9xy + 9xz + 14yz)xJ(y, z)

+

(
22y + 22z − 40

3
x

)
xyzJ(x) + δMS

(
4x3yz + 48xy2z2 + 8x2yzJ(x)

)]
+ (x↔ y) + (x↔ z) (A.38)
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where

δMS =

{
1 in the MS scheme

0 in the DR
′

scheme
(A.39)

Taking derivatives of these functions with respect to one argument is required for the

two-loop tadpoles, and we use the notations

f (1,0,0)
α (x, y; z, u) =

fα(x, z, u)− fα(y, z, u)

x− y

f (0,0,1)
α (x, y; z, u) =

fα(x, y, z)− fα(x, y, u)

z − u
(A.40)

For the mass diagrams, we require the following loop integral functions:

WSSSS(x, y, z, u) = [I(x, z, u)− I(y, z, u)]/(y − x), (A.41)

XSSS(x, y, z) = J(z)PSS(x, y), (A.42)

YSSSS(x, y, z, u) = J(u)[B(p2, x, z)−B(p2, x, y)]/(y − z), (A.43)

ZSSSS(x, y, z, u) = B(p2, x, y)B(p2, z, u), (A.44)

SSSS(x, y, z) = −S(x, y, z), (A.45)

USSSS(x, y, z, u) = U(x, y, z, u), (A.46)

VSSSSS(x, y, z, u, v) = [U(x, y, u, v)− U(x, z, u, v)]/(y − z), (A.47)

MSSSSS(x, y, z, u, v) = −M(x, y, z, u, v), (A.48)

WSSFF (x, y, z, u) =
1

x−y
[(z+u−x)I(x, z, u)−A(x)[A(z)+A(u)]]+(x↔ y), (A.49)

WSSFF (x, y, z, u) = −2WSSSS(x, y, z, u), (A.50)

VSSSFF (x, y, z, u, v) =
(y−u−v)U(x, y, u, v)+[A(u)+A(v)]B(s, x, y)

y−z
+(y ↔ z), (A.51)

VSSSFF (x, y, z, u, v) = −2VSSSSS(x, y, z, u, v). (A.52)

A.2 Small m2
G expansion

For completeness, we recall equations (3.7)-(3.10) from [11] for the expansion of the loop

functions appearing in the two-loop effective potential

fSSS(m2
G, x, y) = fSSS(0, x, y) + PSS(x, y)A(m2

G) +RSS(x, y)m2
G +O(m4

G), (A.53)

fSSS(m2
G,m

2
G, x) = fSSS(0, 0, x) + 2PSS(0, x)A(m2

G) + 2RSS(0, x)m2
G +O(m4

G), (A.54)

fSS(m2
G, x) = A(x)A(m2

G), (A.55)

fFFS(m2
G, x, y) = fFFS(0, x, y) + PFF (x, y)A(m2

G) +RFF (x, y)m2
G +O(m4

G), (A.56)

fFFS(m2
G, x, y) = fFFS(0, x, y) + PFF (x, y)A(m2

G) +RFF (x, y)m2
G +O(m4

G), (A.57)

fSSV (m2
G, x, y) = fSSV (0, x, y) +RSV (x, y)m2

G +O(m4
G), (A.58)

fSSV (m2
G,m

2
G, x) = fSSV (0, 0, x) + 2RSV (0, x)m2

G +O(m4
G), (A.59)

fV S(m2
G, x) = 3A(x)A(m2

G) + 2xδMSA(m2
G), (A.60)

fV V S(m2
G, x, y) = fV V S(0, x, y) + (PV V (x, y) + 2δMS)A(m2

G)

+ (RV V (x, y)− δMS)m2
G +O(m4

G), (A.61)
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where the R functions are defined in [11] as

RSS(x, y) = {(x+ y)2 + 2A(x)A(y)− 2xA(x)− 2yA(y)

+ (x+ y)I(0, x, y)}/(x− y)2, (A.62)

RFF (x, y) = −
[
(x+ y){(x+ y)2 + 2A(x)A(y)− 2xA(x)− 2yA(y) + (x+ y)2}

+ 2(x2 + y2)I(0, x, y)

]
/(x− y)2, (A.63)

RFF (x, y) = −2RSS(x, y), (A.64)

RSV (x, y) =
1

y

(
3(x+ y)I(0, x, y)− 3xI(0, 0, x) + 3A(x)A(y) + 2xy + y2

)
, (A.65)

RV V (x, y) =
1

4xy(x− y)2

[
3A(x)A(y)

(
x2 + y2 + 6xy

)
− 24xy

(
xA(x) + yA(y)

)
+ 14xy(x2 + y2) + 20x2y2 + 3(x+ y)3I(0, x, y)

− 3(x− y)2
(
xI(0, 0, x) + yI(0, 0, y)

)]
. (A.66)

One can see from the expression (A.24) that I(= −fSSS) is regular for any number

of its arguments vanishing. Using eq. (A.21) and (A.53), we can find the expansion of

U0(x, y,m2
G,m

2
G)

U0(x, y,m2
G,m

2
G) = − d

dm2
G

I(m2
G, x, y) =

d

dm2
G

fSSS(m2
G, x, y)

= PSS(x, y) logm2
G +RSS(x, y) + . . . (A.67)

For the derivatives of the two-loop f functions, we use the following expansions

f
(0,0,1)
FFS (x, y,m2

G,m
2
G) = − logm2

G[J(x)+J(y)]−I(x, y, 0)−(x+y)U0(x, y,m2
G,m

2
G)

= − logm2
G

[
(x+ y)PSS(x, y) +A(x) +A(y)

]
− I(x, y, 0)− (x+ y)RSS(x, y) +O(m2

G), (A.68)

f
(1,0,0)
SSV (m2

G,m
2
G;x, y) = −RSV (x, y) +O(m2

G) (A.69)

f
(0,1)
V S (x,m2

G,m
2
G) = (3A(x) + 2xδMS) logm2

G +O(m2
G) (A.70)

f
(0,0,1)
V V S (y, z;m2

G,m
2
G) = −

(
3PSS(y, z) + δMS

)
logm2

G −RV V (y, z) +O(m2
G). (A.71)

B Diagrams regulated by momentum

When studying the mass terms, we encountered some diagrams for which the resummation

of the Goldstone contributions provide no shift to regulate an infrared divergence and

hence these diagrams must be regulated by momentum. More precisely, this is the case

for the functions U , M , Z and for some of the V diagrams. In this section, we give the

expansions for small external momentum s ≡ −p2 of the diagrams that diverge as s → 0,
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taken from expanding expressions in [57, 59] or found by newly solving or expanding the

integral equations in [57]. Hence we stress that (most of) this section contains new results

not found elsewhere.

First, for Z, we only need the fact that

B(p2,m2
G,m

2
G) −→

mG→0
2− log(−s). (B.1)

Then, for the U function, taking one argument to zero does not cause any divergence,

and we find, looking at the integral definition (A.19) of U , that U(x, y, 0, 0), U(0, x, y, 0),

U(x, 0, y, 0), U(x, 0, 0, 0) and U(0, y, 0, 0) are all regular so we can substitute them for

U0 +O(s). The only divergent function is U(0, 0, x, y) that has the form

U(0, 0, x, y) = AU (x, y) log(−s) +BU (x, y) +O(s) (B.2)

with

AU (x, y) = −1 +
x logx− y log y

x− y
= PSS(x, y)→ AU (x, x) = logx, (B.3)

BU (x, y) =
5

2
+

1

2(y − x)

[
− (x+ y) log

2
y + 4x logx− 4y log y

+ 2x logx log y − 2(x+ y)Li2

(
1− x

y

)]
=

5

2
+

1

2(y − x)

[
8(x logx− y log y) + (x+ y)

(
log

2
x− log

2
y
)

− 2(y − x) logx log y − (x+ y)

(
Li2

(
1− x

y

)
− Li2

(
1− y

x

))]
, (B.4)

BU (x, x) = −3

2
− 3 logx− 1

2
log

2
x, (B.5)

where we have written the BU coefficient in two ways, one for computational simplicity,

and the other to explicitly show the symmetry in x ↔ y. The limit as x → 0 can be

smoothly taken to give

U(0, 0, 0, u) = (logu− 1) log(−s)− π2

6
+

5

2
− 2 logu− 1

2
log

2
u+O(s). (B.6)

which matches an expansion of the full momentum-dependence expression in equation

(6.24) of [57].

Finally,

U(0, 0, 0, 0) =
1

2

(
log(−s)− 3

)2
+ 1

is not required, as it always appears with λGGG as a factor, which is zero up to higher

order corrections.

Turning now to the M function, there are more cases to consider. In the case of only

one argument vanishing, we see from the integral expression (A.20) that the function is

regular. From eqs. (6.28) and (6.31) in [57], we also find that M(x, y, z, 0, 0), M(x, y, 0, 0, v)

and M(x, y, 0, 0, 0) are finite. Then we have

M(0, y, 0, u, v) = AM (y, u, v) log(−s) +BM (y, u, v) (B.7)
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where

AM (y, u, v) =
u logu

(y − u)(u− v)
− y log y

(y − u)(y − v)
− v log v

(y − v)(u− v)
, (B.8)

BM (y, u, v) = −(2 + log v)AM (y, u, v)

+
u+ v

(y − u)(u− v)
Li2(1− u/v)− v + y

(y − u)(y − v)
Li2(1− y/v). (B.9)

M(0, 0, 0, u, v) (resp. M(0, y, 0, u, 0)) is found by taking the limit y → 0 (resp. v → 0),

which is regular, in the expression of M(0, y, 0, u, v).

The expression of M(x, 0, 0, 0, 0) with full momentum dependence can be found in

equation (6.31) of [57], and becomes when expanding to leading order for small s

M(x, 0, 0, 0, 0) =
1

6x

(
18 + π2 − 12 log (−s/x) + 3 log2 (−s/x)

)
. (B.10)

Finally we find M(0, 0, 0, 0, v) to be

M(0, 0, 0, 0, v) =
1

v

(
log2(−s/v)− 2 log(−s/v) +

π2

3

)
. (B.11)

The approximate formulae for U(0, 0, x, y), M(0, y, 0, u, v) and M(0, 0, 0, 0, v) have

been checked against the numerical results from TSIL [58] and show excellent agreement

until s becomes of the order of the arguments in the functions — even when s is of the order

of the mass parameters, the difference between the approximate result and the numerical

from TSIL is about 10%.
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