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Abstract

Feulvarch et al. (2009) defined an extended class of nonlinear models of diffusion/reaction
in solids, applicable to both problems of diffusion of heat with phase change, and problems of
diffusion of chemical elements with formation of simple, “stoechiometric” precipitate phases.
They also presented an efficient finite element implementation of this class of models, based on
a two-field formulation coupled with an implicit time-integration. This paper extends this earlier
work in various ways. First it is shown that the class defined encompasses more elaborate models
of diffusion of chemical elements with formation of complex, “non-stoechiometric” precipitate
phases, consisting of solid solutions of “stoechiometric” constituents in variable proportions.
Second, a more economical finite element implementation based on a one-field formulation -
thus halving the number of nodal unknowns - is proposed. The keypoint in the new algorithm
lies in an improved treatment of boundary conditions. Third, applications of this new algorithm
pertaining to problems of internal oxidation of steel sheets are presented. Four distinct, prac-
tically significant situations are considered: (i) the case of a single, highly oxidizable element,
with a reference to the seminal analytical solution of Wagner (1959); (ii) the case of a complex
system involving 5 oxidizable elements and 9 a priori possible oxides; (iii) the case of a single
oxidizable element but with formation of a non-stoechiometric oxide; (iv) a 2D case involving
preferred diffusion along grain boundaries.
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1 Introduction

An extended class of nonlinear models of diffusion/reaction in solid matrices has been
defined by Feulvarch et al. (2009). These authors showed that this class does not only
encompass the classical equation of heat diffusion with phase change, but also less standard
models of diffusion of chemical elements with formation of precipitate phases, defined in
their simplest form by Wagner (1959) in the case of internal oxidation of steels, and later
gradually extended to more complex cases by Fortunier et al. (1995), Huin et al. (2005)
and Brunac et al. (2010). The common feature of these models is that in the diffusion
equations, the unknown quantities appearing in the left-hand side (LHS) involving a time-
derivative, and the right-hand side (RHS) involving the divergence of a flux, are different,
unlike in a simple heat diffusion equation. These two unknowns are however related since
that in the RHS is a well-defined, given function of that in the LHS - the converse being
not true, the function in question being not necessarily invertible. For instance, for heat
diffusion with phase change, the unknown in the LHS is the enthalpy per unit volume
and that in the RHS is the temperature: the temperature is a well-defined function of the
enthalpy, but the enthalpy is not a well-defined function of the temperature in the case
of phase change at a fixed temperature.

Feulvarch et al. (2009) have also presented an innovative finite element algorithm for nu-
merical solution of the boundary-value problem for this class of models. The two major
features of this algorithm are: (i) a two-field formulation involving both unknowns ap-
pearing in the LHS and the RHS; and (ii) an implicit time-integration. The advantages
of the new algorithm are as follows:

• In the case of heat diffusion with phase change:
· Since it considers the enthalpy (which makes it similar, if not identical, to so-called
enthalpic methods developed by Mundim and Fortes (1989); Droux (1991); Gremaud
(1991); Pham (2000); Nedjar (2002), among others), it offers a natural and unified
treatment of phase changes occurring both at some fixed, given temperature and over
some finite temperature range.

· Since it also considers the temperature, it permits to evaluate the thermal gradient
directly from the temperature field, rather than by using the derivative of the function
connecting the temperature to the enthalpy plus the enthalpy gradient. This is an
advantage in the case of a phase change occurring at a fixed temperature, because
the latter method is then hampered by the spatial discontinuity of the derivative of
the function connecting the temperature to the enthalpy.

· Its implicit scheme for time-integration warrants a good numerical stability.
• In the case of diffusion of chemical elements with formation of precipitate phases:
· Its use of finite elements makes the meshing, in the case of 2D and 3D problems, much
easier than in the approach of Huin et al. (2005) and Brunac et al. (2010) based on
finite differences.

· Its implicit time-integration also permits to use large time-steps without any apparent
degradation of the results; this again represents an advantage over the approach of
Huin et al. (2005) and Brunac et al. (2010) based on explicit time-integration, which
required careful (but nevertheless often inefficient) control of the time-step.
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The main drawback of Feulvarch et al. (2009)’s two-field algorithm, however, is that the
number of degrees of freedom (DOF) per node is twice that in a more customary one-field
approach. This is not a serious shortcoming for problems of heat diffusion with phase
change because the number of DOF per node is small anyway, be it 1 or 2. But it is
a drawback for problems of diffusion of chemical elements with formation of precipitate
phases, which frequently involve 5 or more elements: increasing the number of DOF per
node means making the simulations longer, and more importantly the convergence of the
iterative procedure at each time-step harder, if not impossible.

In order to obviate this difficulty, Feulvarch et al. (2009) tentatively proposed to eliminate
the nodal DOF pertaining to the RHS so as to retain only those pertaining to the LHS.
But this suggestion raises an insurmountable difficulty tied to boundary conditions (BC)
of Dirichlet type. It so happens that in the class of problems considered, these BC involve
the unknowns in the RHS, not the LHS. For instance, in problems of heat diffusion with
phase change, Dirichlet BC involve the temperature, not the enthalpy. If Dirichlet BC are
treated by a standard penalty method, the elimination of the nodal DOF pertaining to
the RHS leads, in the “reduced” nonlinear system on the nodal DOF pertaining to the
LHS, to very large off-diagonal terms of the tangent-matrix which prevent convergence of
the iterations.

The aim of this paper is to pursue the work of Feulvarch et al. (2009) in several directions.
Attention will essentially be focussed on elaborate models of diffusion of chemical elements
with formation of precipitate phases, but the case of heat diffusion with phase change will
also be considered incidentally, to provide a simple illustration of the main ideas.

We shall focus here on three features:

• First, we shall show that the class of models defined by Feulvarch et al. (2009) encom-
passes more complex models of diffusion of chemical elements with formation of pre-
cipitate phases than considered up to now. Fortunier et al. (1995), Huin et al. (2005)
and Brunac et al. (2010) all assumed that the precipitate phases were “stoechiomet-
ric” in the sense that their chemical composition was defined unambiguously: MnO,
Al2O3, etc. But more complex, “non-stoechiometric” phases are often encountered in
the metallurgical industry, in the form of solid solutions of stoechiometric constituents
with well-defined chemical composition, but in variable, a priori unknown proportions:
for instance (FeO)x(MnO)1−x, with 0 ≤ x ≤ 1. An extended model incorporating such
phases will be defined and shown to still fit within Feulvarch et al. (2009)’s theoretical
framework.

• Second, an innovative one-field finite element algorithm solving the difficulties of Feul-
varch et al. (2009)’s two-field approach, while retaining its advantages, will be proposed.
The key point in the new algorithm lies in a special treatment of Dirichlet BC permit-
ting to eliminate the nodal DOF pertaining to the RHS. This treatment is possible only
for a special subclass of Feulvarch et al. (2009)’s class of models; but all examples of
models considered by Feulvarch et al. (2009) and in this paper fall within this subclass.

• Third, we shall present some applications of the new numerical algorithm, implemented
in the SYSWELDr finite element code developed by ESI-Group. The examples chosen
all pertain to problems of internal oxidation of steel sheets, of practical interest in
the metallurgical industry. Most of them are 1D but may involve complex physical
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situations and/or raise drastic numerical difficulties, owing to severe nonlinearities.
The final example involves a 2D problem. (Considering fully 3D problems would not
raise any other problem than the heaviness and cost of the simulations).

The paper is organized as follows:

• Section 2 briefly presents, as a prerequisite, Feulvarch et al. (2009)’s class of nonlinear
models of diffusion/reaction in solids.

• Section 3 recalls, as a first, elementary but illuminating example, the heat diffusion
equation with phase change and shows how its fits into Feulvarch et al. (2009)’s theo-
retical framework.

• Section 4 presents, as a more elaborate example, a model of diffusion of chemical el-
ements with formation of precipitate phases, extending those studied by Fortunier et
al. (1995), Huin et al. (2005) and Brunac et al. (2010) through consideration of non-
stoechiometric phases. The proof of the fact that this extended model still belongs to
the class defined by Feulvarch et al. (2009) will require a careful mathematical investi-
gation of the “problem of local thermodynamic equilibrium”, defining the unknowns in
the RHS of the diffusion equations as functions of the unknowns in the LHS.

• Section 5 presents an innovative algorithm for numerical solution of the boundary value
problem by the finite element method, considering nodal DOF pertaining to the sole
LHS of the diffusion equations.

• Section 6 considers, as a first application, the case of 1D, isothermal internal oxidation of
a steel sheet containing a single, highly oxidizable alloying element (very low solubility
product of the oxide). This problem was solved analytically almost 60 years ago by
Wagner (1959), whose solution quickly became a cornerstone of the science of internal
oxidation. This reference solution is used to critically assess the algorithm proposed, in
some “numerically tough” case.

• Section 7 considers a still 1D, but nevertheless much more complex problem of anisother-
mal internal oxidation, involving 5 chemical elements, 9 a priori possible precipitate
phases, and a variable (prescribed) temperature.

• Section 8 comes back to a simpler case involving isothermal diffusion of only two ele-
ments and precipitation of a single oxide, but a non-stoechiometric one.

• Finally Section 9 considers a 2D problem of isothermal internal oxidation again involving
only two diffusing elements and a single oxide, but with enhanced diffusion along grain
boundaries.

2 Feulvarch et al. (2009)’s class of nonlinear models of diffusion/reaction

2.1 Field equations

The models considered by Feulvarch et al. (2009) involve two n-vector-valued functions of
position and time, u ≡ (ui)1≤i≤n and v ≡ (vi)1≤i≤n, satisfying the following field equations
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in the domain Ω considered:










∂ui

∂t
= div(ki grad vi) (1 ≤ i ≤ n)

v = φ(u)
in Ω (1)

with the initial condition
u(t = 0) = u0 in Ω (2)

where u0 is a given function. In the “diffusion” equations (1)1 the “diffusivities” ki may
depend on position and time (for instance via some dependence upon the temperature).
Also, φ(u) is a given function of u, which may have an additional dependence upon
position and time (again for instance via some dependence upon the temperature). This
function may not be invertible, that is, it may be impossible to express u as u = φ−1(v).

2.2 Boundary conditions

The boundary ∂Ω of the domain Ω is the union of disjoint parts ∂MΩ, ∂NΩ over which
BC of mixed- (Dirichlet/Neumann) and Neumann-type, respectively, are enforced.

The BC on ∂MΩ are of the following type, where J denotes a given subset of the set
{1, 2, ..., n} and J̄ = {1, 2, ..., n} − J the complementary subset:











vi = vpresci if i ∈ J

grad vi .n = 0 if i ∈ J̄
on ∂MΩ (3)

where the prescribed values vpresci may depend on position and time, and n denotes the unit
outward normal vector to ∂Ω. Note that the BC (3)1 involves the unknown v appearing
in the RHS of the diffusion equations (1)1, not that, u appearing in the LHS as would
seem natural; this will create difficulties, as will be apparent in the sequel.

The BC on ∂NΩ are of more standard, “zero-flux type”:

grad vi .n = 0 (1 ≤ i ≤ n) on ∂NΩ. (4)

More complex BC could of course be considered; for instance, the subset J of {1, 2, ..., n}
could depend upon position on ∂MΩ, nonzero fluxes could be prescribed on ∂NΩ, etc. The
simple BC (3), (4) are adopted here for simplicity and because they will suffice for the
practical examples considered.

2.3 Additional properties

The treatment of BC within the numerical algorithm proposed in this paper will rely
on some additional properties of the function φ(u) restricting the class of problems con-
sidered. To define these properties, it is necessary to introduce the following notations:
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w ≡ (wi)1≤i≤n denoting some arbitrary n-vector, wJ and wJ̄ are the vectors composed of
those components wi with index i in J and J̄ , respectively.

The first property then reads as follows:

(P1): The equation

v ≡ (vJ ,vJ̄) = φ(u) ≡ φ(uJ ,uJ̄) (5)

where vJ and uJ̄ are given while vJ̄ and uJ are unknown, unambiguously defines vJ̄ as a
function of vJ and uJ̄ ,

vJ̄ ≡ φJ(vJ ,uJ̄). (6)

It may seem at first sight that property (P1) must automatically be satisfied, the function
φJ(vJ ,uJ̄) being obtainable by the following procedure: use equation (5) for the compo-
nent vJ to relate it to uJ and uJ̄ ; invert the relation with respect to uJ to relate it to vJ

and uJ̄ ; finally re-use equation (5) for the component vJ̄ to relate it to vJ and uJ̄ . The
failure of this reasoning, however, lies in the fact that the relation connecting vJ to uJ

and uJ̄ may not be invertible. Thus property (P1) is not automatically fulfilled, and does
represent an extra condition imposed upon the type of problems considered.

The second property is as follows:

(P2): Equation (5) also unambiguously defines uJ as a function of vJ and uJ̄ ,

uJ ≡ ψJ(vJ ,uJ̄). (7)

Again, property (P2) is not an automatic consequence of the hypotheses made.

For the treatment of BC proposed below to be applicable, fulfillment of property (P1) will
reveal compulsory, whereas that of property (P2) will reveal useful but not indispensable.

3 Basic example: heat diffusion with phase change

The classical equation of diffusion of heat with phase change reads

∂H

∂t
= div(λ gradT ) (8)

where H is the enthalpy per unit volume of the material, λ the thermal conductivity and
T the temperature. The temperature is a well-defined function of the enthalpy:

T ≡ φ(H) (9)

but the converse is not necessarily true. Indeed in the case of phase change occurring at a
fixed temperature, H may, at this specific temperature, take all values in a given interval,
depending on the respective proportions of the phases. Equations (8) and (9) are of type
(1), with n ≡ 1, u ≡ H , v ≡ T and k1 ≡ λ.

Classical Dirichlet-type BC are also of type (3) (with J ≡ {1} and J̄ ≡ ∅), since they
involve the temperature, not the enthalpy.
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Finally property (P1) is trivially satisfied: prescribing the value of vJ ≡ T suffices to fix
that of vJ̄ since the latter vector does not exist (J̄ ≡ ∅). On the other hand property
(P2) is not satisfied, since prescribing the value of vJ ≡ T may not suffice to fix that of
uJ ≡ H . (For instance, a prescribed temperature of 0◦C in a mixture of liquid water and
ice is compatible with any proportions of the phases, and therefore does not suffice to fix
the enthalpy of this mixture).

4 Complex example: diffusion of chemical elements with formation of pre-
cipitate phases

The model presented in this Section is similar to that developed in the works of Fortunier
et al. (1995); Huin et al. (2005); Brunac et al. (2010), with the important novelty, however,
that the possibility of non-stoechiometric precipitate phases is accounted for.

4.1 General hypotheses and notations

The material considered consists of a “matrix” phase containing mobile, dissolved chemical
elements plus a number of immobile, “precipitate” phases (Figure 1). The fractions of
elements dissolved in the matrix are assumed to be small (hypothesis of dilute solution),
and so are also the fractions of precipitate phases. The “representative volume elements”
(RVE) considered are large enough to contain the matrix phase plus all types of precipitate
phases. Local variations of chemical composition within each RVE are disregarded.

Precipitate
phases

Matrix

Fig. 1. Schematic “representative volume element” considered by the model

There are ne chemical elements denoted with a Latin index i = 1, ..., ne. The atomic mass
of element i is denoted mi, its total mass fraction (in all possible phases of the RVE) Fi,
and its mass concentration or dissolved fraction (in the sole matrix phase) Ci. Its total
molar fraction and molar concentration are therefore Fi/mi and Ci/mi.

There are np precipitate phases denoted with a Greek index λ = 1, ..., np. Each phase λ
is made of nc(λ) stoechiometric constituents denoted with an additional Greek index α =
1, ..., nc(λ). (The phase is stoechiometric if nc(λ) = 1, non-stoechiometric if nc(λ) ≥ 2).
The molar mass of constituent (λ, α) of phase λ is denoted Mλα, and its mass fraction
in the RVE Pλα. Its molar fraction is thus Pλα/Mλα. The stoechiometric coefficient of
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element i in constituent (λ, α) of phase λ, that is the number of atoms of the element in
a molecule of the constituent, is denoted Nλαi.

Counting all atoms of element i in the RVE (in the matrix phase plus all precipitate
phases), one gets the obvious balance equation

Fi

mi
=

Ci

mi
+

np
∑

λ=1

nc(λ)
∑

α=1

Nλαi
Pλα

Mλα
(i = 1, ..., ne). (10)

4.2 Diffusion equations

The activity ai of element i in the matrix phase is classically defined by

ai ≡ γi Ci (i = 1, ..., ne) (11)

where γi is Henry’s coefficient. This (positive) coefficient depends upon the material and
the temperature but not on the concentrations of other elements (that is, interaction
coefficients between elements are disregarded).

The flux-vector of element i within the matrix phase is classically assumed to be propor-
tional to the opposite of the gradient of its activity. Writing then the rate of the total
number of atoms of element i within the RVE as minus the integral of this flux over its
boundary, and using the divergence theorem, one gets the diffusion equations

∂Fi

∂t
= div

(

Di

γi
grad ai

)

(i = 1, ..., ne) (12)

where Di is the diffusion coefficient of the element. (Note that the RHS here reduces
to div(Di gradCi) when γi is uniform). This diffusion coefficient again depends on the
material and the temperature.

4.3 Laws of mass action

The precipitate phase λ being assumed to be an ideal solid solution of its constituents,
the activity Aλα of constituent (λ, α) in this phase is simply identical to its partial molar
fraction within it:

Aλα ≡ Pλα/Mλα

Sλ
, Sλ ≡

nc(λ)
∑

β=1

Pλβ

Mλβ
(13)

(Sλ is the sum of the molar fractions of the constituents of phase λ). Note that this
definition implies that the sum of the activities of the constituents of a given phase must
always be unity:

nc(λ)
∑

α=1

Aλα = 1 (λ = 1, ..., np). (14)
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The laws of mass action, expressing the hypothesis of local thermodynamic equilibrium
between the various phases within the RVE, may then be stated as follows:

• If phase λ is present, then for each of its constituents,

∏ne

i=1 a
Nλαi
i

Aλα

= Kλα (α = 1, ..., nc(λ))

where Kλα is the solubility product of constituent (λ, α). This equation expresses the
equality, within the RVE, of the chemical potentials of this constituent and the atoms
dissolved in the matrix which produce it and vice versa. The solubility product depends
upon the constituent and the temperature.

• But phase λ may be absent, if the activities of the elements dissolved in the matrix are
too small for the chemical reaction producing it to occur. To find the condition satisfied
then, it suffices to note that if the phase is present, then necessarily, by equations (14)

and the above laws of mass action,
∑nc(λ)

α=1

(

∏ne

i=1 a
Nλαi
i

)

/Kλα = 1. Thus the condition
of absence of phase λ reads

nc(λ)
∑

α=1

∏ne

i=1 a
Nλαi
i

Kλα
< 1.

These laws may be summarized as follows: for each of the phases,































* either Sλ = 0 and
nc(λ)
∑

α=1

∏ne
i=1 a

Nλαi
i

Kλα
≤ 1

* or Sλ > 0 and

∏ne
i=1 a

Nλαi
i

Aλα
= Kλα for every α = 1, ..., nc(λ)

(λ = 1, ..., np).

(15)

(The limit-case where Sλ = 0 and
∑nc(λ)

α=1

(

∏ne

i=1 a
Nλαi
i

)

/Kλα = 1 corresponds to the special

circumstance where phase λ is still absent but just about to appear).

It is important to note the following qualitative consequence of this law. Let us say that
a given constituent (λ, α) is a priori excluded if it contains at least one element which
happens to be absent, that is if there is an i for which Nλαi > 0 and Fi = 0. (Of course,
such a constituent is necessarily absent). Then:

If a given phase λ is present (Sλ > 0), then all of its constituents (λ, α) which are not a
priori excluded are necessarily present (Pλα > 0).

Equivalently, if a given phase λ is present (Sλ > 0) but contains a constituent (λ, α) which
is not (Pλα = 0), then this constituent is a priori excluded. To establish this, consider such
a phase and constituent. Then Aλα = 0 so that, by equation (15)2,

∏ne
i=1 a

Nλαi
i = 0. There

must thus be some i for which Nλαi > 0 and ai = 0, implying Ci = 0. Now consider any
other constituent (µ, β) containing element i (Nµβi > 0). If phase µ is absent, then Pµβ = 0;

if it is present, then
∏ne

j=1 a
Nµβj

j = 0 since the product contains the term a
Nµβi

i = 0, so that
by equation (15)2, Aµβ = 0, implying again Pµβ = 0. Thus all constituents containing
element i are necessarily absent. It then follows from the balance equation (10), with
Ci = 0, that Fi = 0 also, which means that constituent (λ, α) is a priori excluded.
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4.4 Analysis of the problem of local thermodynamic equilibrium

The topic of this Subsection is the mathematical analysis of the problem of local thermo-
dynamic equilibrium which may be stated as follows:

For given non-negative values of the total fractions of elements Fi, find non-negative
values of the fractions of constituents Pλα - principal unknowns of the problem - and the
concentrations of elements Ci - ancillary unknowns deduced from the Pλα and the given
Fi through equations (10) -, obeying the laws of mass action (15).

The reader uninterested in mathematical developments may safely skip the present Sub-
section 4.4 and move to the next one 4.5, retaining only the following conclusions:

• for any given non-negative values of the total fraction of elements, there always exists
a solution to the problem of local thermodynamic equilibrium;

• this solution is unique in general, but may be non-unique in some exceptional cases
involving special values of the solubility products of constituents;

• however the concentrations of elements at thermodynamic equilibrium are unique even
if the fractions of constituents are not.

The treatment to follow basically stands as an extension of that of Leblond (2005) for
stoechiometric precipitate phases to possibly non-stoechiometric ones - with the exception
of Subsubsection 4.4.6 devoted to the property of uniqueness of the concentrations of
elements, which was overlooked by Leblond (2005).

4.4.1 Preliminaries

In order to simplify a number of heavy expressions to follow, we momentarily set the
Henry coefficients γi, the atomic masses mi and the molar masses Mλα to unity. (This is
equivalent to redefining the total fractions and concentrations of elements as F ′

i = Fi/mi

and C ′
i = Ci/mi, i = 1, ..., ne, and the fractions and solubility products of constituents

as P ′
λα = Pλα/Mλα and K ′

λα = Kλα/
∏ne

i=1(γimi)
Nλαi , λ = 1, ..., np, α = 1, ..., nc(λ)).

Standard notations will be resumed in Subsection 4.5 below.

Since, as noted above, equations (10) define the Ci as (linear) functions of the Pλα (and
the given Fi), we essentially concentrate in the present Subsection 4.4 on the principal
unknowns Pλα - with the exception of Subsubsection 4.4.6 below.

Also, an important remark is that all the Fi may be assumed to be positive; indeed if
one Fi is zero, all constituents (λ, α) containing it (Nλαi > 0) are a priori excluded, so it
suffices to simply discard element i and all constituents containing it from the problem of
local thermodynamic equilibrium. The hypothesis of positivity of all Fi will therefore be
made in the entire present Subsection 4.4.

Then, for a given set of positive Fi, let C denote the set of “admissible points” P ≡
(Pλα)1≤λ≤np, 1≤α≤nc(λ). These points are defined by the “admissibility conditions” Pλα ≥ 0
(λ = 1, ..., np, α = 1, ..., nc(λ)) and Ci ≥ 0 (i = 1, ..., ne). Each of these conditions
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defines a closed half-space in the space of points P. Each such half-space being convex, C
is itself closed and convex. Moreover each Pλα is bounded from below, and also from above
since for every (λ, α), one can find an i such that Nλαi > 0 (each constituent contains

at least one element) so that NλαiPλα ≤ Ci +
∑np

µ=1

∑nc(µ)
β=1 NµβiPµβ = Fi implying that

Pλα ≤ Fi/Nλαi. Hence C is bounded. Since it is closed, it is compact.

The boundary ∂C of C consists of those points of this set for which (i) at least one Pλα is
zero, or (ii) at least one Ci is zero. Let ∂1 C and ∂2 C denote those parts of ∂C defined by
conditions (i) and (ii), respectively. Obviously, ∂1 C∪∂2 C = ∂C. (In contrast ∂1 C∩∂2 C 6= ∅

generally, but this is unimportant).

The analysis to follow will make a fundamental use of the function G defined on C by

G(P) ≡
np
∑

λ=1

nc(λ)
∑

α=1

Pλα lnKλα +
np
∑

λ=1

nc(λ)
∑

α=1

Pλα lnAλα +
ne
∑

i=1

Ci (lnCi − 1)

=
np
∑

λ=1

nc(λ)
∑

α=1

Pλα lnKλα +
np
∑

λ=1

nc(λ)
∑

α=1

Pλα lnPλα −
np
∑

λ=1

Sλ lnSλ +
ne
∑

i=1

Ci (lnCi − 1)

(16)

where equation (13) has been used. This function, which is continuous on the compact set
C, physically represents the Gibbs energy per unit volume of the material. The existence
and uniqueness of the state of thermodynamic equilibrium will be studied by showing
that this state corresponds to the minimum of G.

Let us calculate the first and second derivatives of G using equations (10), (13)2 and (16)2:

∂G

∂Pλα
(P) = lnKλα + lnPλα + 1− ∂Sλ

∂Pλα
lnSλ −

∂Sλ

∂Pλα
+

ne
∑

i=1

lnCi
∂Ci

∂Pλα

= lnKλα + lnPλα − lnSλ −
ne
∑

i=1

Nλαi lnCi;
(17)

∂2G

∂Pλα∂Pµβ
(P) =

1

Pλα

∂Pλα

∂Pµβ
− 1

Sλ

∂Sλ

∂Pµβ
−

ne
∑

i=1

Nλαi

Ci

∂Ci

∂Pµβ

=
δλµδαβ
Pλα

− δλµ
Sλ

+
ne
∑

i=1

NλαiNµβi

Ci

(18)

where the δij are Kronecker’s symbols. It follows from equation (18) that for any vector
X ≡ (Xλα)1≤λ≤np, 1≤α≤nc(λ),

np
∑

λ=1

nc(λ)
∑

α=1

np
∑

µ=1

nc(µ)
∑

β=1

∂2G

∂Pλα∂Pµβ
(P)XλαXµβ =

np
∑

λ=1

nc(λ)
∑

α=1

X2
λα

Pλα
−

np
∑

λ=1

1

Sλ





nc(λ)
∑

α=1

Xλα





2

+
ne
∑

i=1

1

Ci





np
∑

λ=1

nc(λ)
∑

α=1

NλαiXλα





2

.

(19)

• To study the first two terms in the RHS here, let us set Yλα ≡ Xλα/P
1/2
λα and Zλα ≡ P

1/2
λα .

11



Then the sum of these first two terms is equal to

np
∑

λ=1

nc(λ)
∑

α=1

Y 2
λα −

np
∑

λ=1

(

∑nc(λ)
α=1 YλαZλα

)2

∑nc(λ)
α=1 Z2

λα

=
np
∑

λ=1

1
∑nc(λ)

α=1 Z2
λα











nc(λ)
∑

α=1

Y 2
λα









nc(λ)
∑

α=1

Z2
λα



−




nc(λ)
∑

α=1

YλαZλα





2




 .

The term [...] here is non-negative by the Cauchy-Schwartz inequality, so that the entire
sum

∑np

λ=1 ... is non-negative.
• The third term in the RHS of equation (19) is also trivially non-negative.

These results, applicable in the interior C −∂C of the convex set C, show that the Hessian
matrix of G is positive semidefinite over this interior, which implies that the function G
is convex over it and hence, by continuity, over the entire set C.

4.4.2 If G is minimum somewhere, the laws of mass action are satisfied there

Lemma 1. If G is minimum at P ∈ C, then P /∈ ∂2C, that is, all the Ci are positive there.

(This does not exclude the possibility that P ∈ ∂1C, that is, that some Pλα may be zero).

Proof. Consider a point P ∈ ∂2C, where one Ci is zero; we must show that G is not
minimum there. Since, by equation (10), Fi =

∑np

λ=1

∑nc(λ)
α=1 NλαiPλα > 0, there must be

a pair (λ, α) such that Nλαi > 0 and Pλα > 0. Consider some small negative variation
δPλα = −ǫ, ǫ → 0+, of this Pλα. By equation (10), each Cj then varies by the amount
δCj = −Nλαj δPλα = Nλαj ǫ; these amounts are non-negative so that the Cj remain non-
negative, implying that P remains in C. In the RHS of equation (16)2, the variations of
the first three sums are O(ǫ) since Pλα > 0. In the last sum, the term Ci (lnCi −1), which
is initially zero, varies by the amount δCi (ln δCi − 1) = Nλαi ǫ ln ǫ + O(ǫ), whereas the
other terms Cj (lnCj − 1) vary by O(ǫ) or Nλαj ǫ ln ǫ + O(ǫ), depending on whether Cj

is positive or zero. Thus the variation δG of G is globally of the form cǫ ln ǫ+ O(ǫ) with
c ≥ Nλαi > 0. It follows that δG < 0 so that G is not minimum at P.

Lemma 2. If G is minimum at P ∈ C and λ ∈ {1, ..., np} is an index such that Sλ > 0
there, then Pλα > 0 for every α ∈ {1, ..., nc(λ)}.

Proof. Assume that at the point P, G is minimum and Sλ > 0 but Pλα = 0 for some pair
(λ, α). Consider some small positive variation δPλα = ǫ, ǫ → 0+, of this Pλα. For such a
variation the Ci decrease, but since they are initially positive by Lemma 1, they remain
so provided that ǫ is chosen small enough, implying that P again remains in C. In the
RHS of equation (16)2, the first sum varies by O(ǫ), the second by δPλα ln δPλα = ǫ ln ǫ,
the third by O(ǫ) (since Sλ > 0) and the fourth by O(ǫ) (since Ci > 0 for every i). Thus
the variation δG of G is globally of the form ǫ ln ǫ+O(ǫ) < 0, implying that G cannot be
minimum at P, in contradiction with the hypothesis made.

It now becomes necessary to introduce a few extra notations:

12



• C′ will denote the subset of C consisting of those points P ∈ C satisfying two conditions:
all the Ci are positive, and if, for any λ ∈ {1, ..., np}, Sλ is positive, then all the Pλα

(α = 1, ..., nc(λ)) are positive. Note that Lemmas 1 and 2 then reduce to the following
statement: if G is minimum at P ∈ C, then necessarily P ∈ C′.

• For any λ ∈ {1, ..., np}, Xλ ≡ (Xλα)1≤α≤nc(λ) will denote an arbitrary nc(λ)-vector.
• For any vector Xλ, DXλ

G will denote, if it exists, the directional derivative of the
function G in the direction Xλ, defined as limǫ→0

1
ǫ
[G(P + ǫXλ) − G(P)] where Xλ is

the “completed” vector whose (µ, α)-component is Xλα if µ = λ and 0 if µ 6= λ.

Let us now study the directional derivatives of G at an arbitrary point P of the subset
C′. Let λ denote an arbitrary index in {1, ..., np}.

• Case where Sλ > 0. The positivity of all Ci and Pλα then implies, by equation (17)2,
that the derivatives ∂G/∂Pλα exist. Thus G is differentiable with respect to the set of
variables Pλα, the directional derivative DXλ

G exists for all vectors Xλ, and is given by

DXλ
G(P) =

nc(λ)
∑

α=1

∂G

∂Pλα
(P)Xλα. (20)

Note that this expression is linear in the vector Xλ.
• Case where Sλ = 0. Then the derivatives ∂G/∂Pλα do not exist because of the inde-
terminate form lnPλα − lnSλ = ln(Pλα/Sλ) in the RHS of equation (17)2; that is, G is
not differentiable with respect to the set of variables Pλα. However, consider a vector
Xλ having Xλα ≥ 0 for all α and

∑nc(λ)
α=1 Xλα = 1, and variations of the Pλα of the form

δPλα = ǫXλα, ǫ → 0+, so that δSλ =
∑nc(λ)

α=1 δPλα = ǫ. For sufficiently small values of ǫ,
the Ci remain positive and by equation (16)2, the variation δG of G is given by

δG =
nc(λ)
∑

α=1

∂

∂Pλα





np
∑

µ=1

nc(µ)
∑

β=1

Pµβ lnKµβ +
ne
∑

i=1

Ci (lnCi − 1)



 δPλα +O(ǫ2)

+
nc(λ)
∑

α=1

δPλα ln(δPλα)− δSλ ln δSλ

=
nc(λ)
∑

α=1

[

lnKλα +
ne
∑

i=1

lnCi
∂Ci

∂Pλα

]

ǫXλα +
nc(λ)
∑

α=1

ǫXλα ln(ǫXλα)− ǫ ln ǫ+O(ǫ2)

=
nc(λ)
∑

α=1

(Qλα + lnXλα) ǫXλα +O(ǫ2)

where

Qλα ≡ lnKλα −
ne
∑

i=1

Nλαi lnCi. (21)

Thus the directional derivative DXλ
G exists and is given by

DXλ
G(P) =

nc(λ)
∑

α=1

(Qλα + lnXλα)Xλα. (22)

Note however that DXλ
G is no longer a linear function of the vector Xλ, as a conse-

quence of the fact that the derivatives ∂G/∂Pλα do not exist. (The fact that DXλ
G

13



nevertheless exists basically results from the cancellation of the terms in ǫ ln ǫ in the
above calculation of δG).

We may now state

Theorem 1. If G is minimum at P ∈ C, the laws of mass action (15) are satisfied there.

Proof. Consider a point P ∈ C where G is minimum, P ∈ C′ by what precedes, and an
arbitrary index λ ∈ {1, ..., np}.

• Case where Sλ > 0. Since all Pλα are positive (P ∈ C′), one may consider small but
otherwise arbitrary variations of these quantities around P. One then concludes from
the assumed existence of a minimum of G at P that at this point, the directional
derivative DXλ

G must necessarily be zero for all vectors Xλ; equivalently all derivatives
∂G/∂Pλα must be zero. By equations (13)1 and (17)2, this condition reads

lnKλα + lnAλα −
ne
∑

i=1

Nλαi lnCi = 0 ⇔
∏ne

i=1C
Nλαi
i

Aλα
= Kλα (α = 1, ..., nc(λ))

which is one possible form of the laws of mass action, see equation (15)2 (with ai ≡ Ci

since γi = 1).
• Case where Sλ = 0. Then all Pλα are zero. Consider an arbitrary vector Xλ having
Xλα ≥ 0 for all α and

∑nc(λ)
α=1 Xλα = 1, and small non-negative variations of the Pλα of

the form δPλα = ǫXλα, ǫ → 0+. One then deduces from the existence of a minimum of
G at P that at this point, the directional derivative DXλ

G given by equation (22) must
necessarily be non-negative. Thus the condition

Mλ ≡ MinXλ
DXλ

G(P) ≥ 0 (23)

where the minimum is taken over all vectors Xλ such that Xλα ≥ 0 for all α and
∑nc(λ)

α=1 Xλα = 1, must be met. The calculation of the minimum implied in the definition
of Mλ is carried out in Appendix A, with the result that

Mλ = −ln





nc(λ)
∑

α=1

∏ne

i=1C
Nλαi
i

Kλα



 . (24)

It follows from this result that condition (23) reduces to

nc(λ)
∑

α=1

∏ne
i=1C

Nλαi
i

Kλα
≤ 1

which is the other possible form of the laws of mass action, see equation (15)1 (with
ai ≡ Ci).

4.4.3 If the laws of mass action are satisfied somewhere, G is minimum there

Lemma 3. If the laws of mass action (15) are satisfied at P ∈ C, then P /∈ ∂2C.

14



Proof. Equivalently, we must show that if at some point P ∈ C, one Ci is zero (P ∈ ∂2C),
the laws of mass action (15) are not satisfied. For such a P and i, by equation (10), Fi =
∑np

λ=1

∑nc(λ)
α=1 NλαiPλα > 0, so that there must be a pair (λ, α) such thatNλαi > 0 and Pλα >

0. Hence phase λ is present (Sλ > 0) but the law of mass action
(

∏ne

j=1C
Nλαj

j

)

/Aλα = Kλα

is not satisfied, because the LHS is zero (the product contains the term CNλαi
i = 0) whereas

the RHS is not.

Lemma 4. If the laws of mass action (15) are satisfied at P ∈ C and λ ∈ {1, ..., np} is an
index such that Sλ > 0 there, then Pλα > 0 for every α ∈ {1, ..., nc(λ)}.

Proof. This lemma is a consequence of the remark made at the end of Subsection 4.3
above. Indeed since all Fi are assumed here to be positive, no constituent (λ, α) is a priori
excluded; hence if Sλ > 0, then necessarily Pλα > 0 for all α.

Lemmas 3 and 4 may be summarized as follows: if the laws of mass action (15) are satisfied
at P ∈ C, then necessarily P ∈ C′.

Theorem 2. If the laws of mass action (15) are satisfied at P ∈ C, G is minimum there.

Proof. Consider a point P ∈ C where the laws of mass action (15) are satisfied, P ∈ C′ by
what precedes, and another arbitrary point P′ ∈ C. Let h(t) denote the function defined
on the interval [0, 1] by the formula

h(t) ≡ G(P+ tX) , X ≡ P′ −P. (25)

This function is convex since the function G is convex and P + tX is a linear function
of t. Now, for every index λ ∈ {1, ..., np}, let Xλ denote the nc(λ)-vector of components
(Xλα)1≤α≤nc(λ) and Xλ the completed vector whose (µ, α)-component is Xλα if µ = λ and

0 if µ 6= λ. Then X =
∑np

λ=1Xλ so that h(t) = G
(

P+
∑np

λ=1 tXλ

)

and consequently 1

h′(t = 0) =
np
∑

λ=1

DXλ
G(P). (26)

One must now, for every index λ ∈ {1, ..., np}, distinguish two cases.

• Case where Sλ > 0. Then the law of mass action (15)2 implies that
(

∏ne
i=1C

Nλαi
i

)

/Aλα =
Kλα for all α. The calculations presented in Subsubsection 4.4.2 above show that this is
equivalent to (∂G/∂Pλα)(P) = 0 for all α or DYλ

G(P) = 0 for every vector Yλ. Thus
in particular DXλ

G(P) = 0.
• Case where Sλ = 0. Then all Pλα are zero. Furthermore, by the law of mass action (15)1,
∑nc(λ)

α=1

(

∏ne

i=1C
Nλαi
i

)

/Kλα ≤ 1. The calculations of Subsubsection 4.4.2 above show that

this is equivalent to DYλ
G(P) ≥ 0 for every vector Yλ such that Yλα ≥ 0 for all α

and
∑nc(λ)

α=1 Yλα = 1; but this remains true even if the sum
∑nc(λ)

α=1 Yλα is not unity, since

1 Use is made here of the fact that the RHS of equation (16)2, with P + tX instead of P, is
a sum of np terms which admit directional derivatives in the directions Xλ, plus a sum of ne

terms which are differentiable with respect to X.
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DkYλ
G(P) = kDYλ

G(P) for every scalar k by the very definition of the directional
derivative. Now for every α, Xλα = P ′

λα − Pλα = P ′
λα ≥ 0. Hence DXλ

G(P) ≥ 0.

It follows from these elements that DXλ
G(P) ≥ 0 for every λ, so that h′(0) ≥ 0. Since the

function h is convex, this implies that h(1) ≥ h(0), or equivalently G(P′) ≥ G(P). Hence
the function G is minimum at P.

4.4.4 Existence of a solution to the problem of local thermodynamic equilibrium

The results of Subsubsections 4.4.2 and 4.4.3 imply that looking for a solution of the
problem of local thermodynamic equilibrium, defined by the laws of mass action (15),
is equivalent to looking for a minimum of G. Since this function is continuous on the
compact set C, it reaches its minimum over this set. Hence there exists a solution to the
problem of local thermodynamic equilibrium.

4.4.5 Is the solution of the problem of local thermodynamic equilibrium unique?

The uniqueness of the solution of the problem of local thermodynamic equilibrium is not
guaranteed. A simple example of non-uniqueness, involving only stoechiometric precipitate
phases, was provided by Leblond (2005). But he also showed that lack of uniqueness is
an exceptional circumstance arising only for special values of the solubility products.

4.4.6 Uniqueness of the concentrations of elements at thermodynamic equilibrium

Even if, in some exceptional case, the vector P of fractions of constituents at thermody-
namic equilibrium happens not to be unique, the corresponding vector C ≡ (Ci)1≤i≤ne of
concentrations of elements is unique. This stems from the following theorem:

Theorem 4. Assume that G reaches its minimum at distinct points P 6= P′. Then the
vectors C and C′ of concentrations of elements at P and P′ are identical.

Proof. First, note that both P and P′ lie in C′ by Lemmas 1 and 2. Note then that
the function G takes the same value at these two points so that, since it is convex, it
is constant and minimum over the entire segment [P, P′] = {P + tX, t ∈ [0, 1]} where
X ≡ P′ − P. Introduce then the function h defined by equation (25); it is constant over
the interval [0, 1] so that the function h′′ is uniformly zero.

Now let E and E ′ denote the sets of indices λ of phases present at points P (Sλ > 0) and
P′ (S ′

λ > 0) respectively - note that these sets do not necessarily coincide - and Ē and Ē ′

the complementary subsets in {1, ..., np}. Then for every λ and α, Xλα = 0 if λ ∈ Ē ∩ Ē ′

(because Pλα = P ′
λα = 0); thus the only possibly nonzero components Xλα are those with

index λ ∈ E ∪ E ′. Also, let P′′ ≡ 1
2
(P+P′) denote the midpoint of the segment [P, P′];

at this point phase λ is absent if λ ∈ Ē ∩ Ē ′ (S ′′
λ = 1

2
(Sλ + S ′

λ) = 0 since Sλ = S ′
λ = 0),

and present if λ ∈ E ∪ E ′ (S ′′
λ = 1

2
(Sλ + S ′

λ) > 0 since Sλ ≥ 0, S ′
λ ≥ 0, and Sλ > 0 or

S ′
λ > 0).
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It follows from these elements and equation (19) that

h′′

(

1

2

)

=
∑

λ∈E∪E′

nc(λ)
∑

α=1

∑

µ∈E∪E′

nc(µ)
∑

β=1

∂2G

∂Pλα∂Pµβ
(P′′)XλαXµβ

=
∑

λ∈E∪E′

nc(λ)
∑

α=1

X2
λα

P ′′
λα

−
∑

λ∈E∪E′

1

S ′′
λ





nc(λ)
∑

α=1

Xλα





2

+
ne
∑

i=1

1

Ci





∑

λ∈E∪E′

nc(λ)
∑

α=1

NλαiXλα





2

.

Following the discussion after equation (19), the condition h′′(1/2) = 0 then implies that
in the RHS the sum of the two first terms, and the third term, must separately be zero.
For the third term this implies that

∑

λ∈E∪E′

nc(λ)
∑

α=1

NλαiXλα = 0 for every i = 1, ..., ne.

Now take the difference of the balance equations (11) written at points P and P′; since
the Fi are the same in both cases one gets

0 = C ′
i − Ci +

np
∑

λ=1

nc(λ)
∑

α=1

Nλαi(P
′
λα − Pλα)

⇒ Ci − C ′
i =

∑

λ∈E∪E′

nc(λ)
∑

α=1

NλαiXλα (i = 1, ..., ne)

where account has been taken of the fact that Xλα = 0 if λ ∈ Ē ∩ Ē ′. The last double
sum here is zero by what precedes, so that Ci = C ′

i for every i.

4.5 Connection with Feulvarch et al. (2009)’s class of models

We now come back to the general notations defined in Subsections 4.1 and 4.2: the γi, mi

and Mλα are no longer assumed to be unity.

The diffusion equations (12) are of type (1)1 with n ≡ ne, u ≡ F ≡ (Fi)1≤i≤ne (the
vector of total fractions of elements), v ≡ a ≡ (ai)1≤i≤ne ≡ (γiCi)1≤i≤ne (the vector of
activities of elements) and ki ≡ Di/γi. Also, a is a well-defined function of F, as required
by equation (1)2, since it has been shown in Subsection 4.4 that for any given value of F,
(i) the problem of local thermodynamic equilibrium defined by the laws of mass action
(15) always admits a solution, and (ii) the values of the concentrations Ci, and whence of
the activities ai, are the same for all possible solutions, in the case of multiple ones.

Dirichlet and Neumann BC are also of type (3) or (4):

• Dirichlet conditions involve the activities ai of elements, not their total fractions Fi.
(The activity of some element on the bounding surface of the solid is fixed when atoms
of this element dissolved in the matrix are in quick chemical equilibrium with those in
gaseous form in the surrounding atmosphere; on the other hand there is no practical
way to fix the total fractions of elements).
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• Neumann conditions, as a rule, involve zero prescribed fluxes. (There is no practical
way to prescribe nonzero given fluxes).

To see whether the additional property (P1) defined in Subsection 2.3 applies, consider a
given subset J of {1, ..., ne} and the complementary subset J̄ . Assume that at some point
and instant, the activities ai, i ∈ J and total fractions Fi, i ∈ J̄ are imposed, whereas the
ai, i ∈ J̄ and Fi, i ∈ J are unknown. The laws of mass action (15) may then be rewritten
as follows, “incorporating” the known activities into the solubility products: for each of
the phases,































* either Sλ = 0 and
nc(λ)
∑

α=1

∏

i∈J̄ a
Nλαi
i

K ′
λα

≤ 1

* or Sλ > 0 and

∏

i∈J̄ a
Nλαi
i

Aλα

= K ′
λα for every α = 1, ..., nc(λ)

(λ = 1, ..., np)

(27)
where

K ′
λα ≡ Kλα

∏

i∈J a
Nλαi
i

(λ = 1, ..., np, α = 1, ..., nc(λ)). (28)

Equations (27), together with the balance equations (10) written for indices i ∈ J̄ only,
define a “reduced” problem of local thermodynamic equilibrium with unknowns Pλα,
λ = 1, ..., np, α = 1, ..., nc(λ) and ai, i ∈ J̄ , possessing the same properties as the
original one. Hence this problem unambiguously defines the ai, i ∈ J̄ as functions of the
Fi, i ∈ J̄ . This means that property (P1) is satisfied.

Remarkably, property (P2) of Subsection 2.3 also applies (unlike in the case of heat diffu-
sion with phase change, see Section 3). Indeed once the Pλα, λ = 1, ..., np, α = 1, ..., nc(λ)
have been determined by solving the reduced problem of local thermodynamic equilib-
rium, it suffices to now re-use the balance equations for i ∈ J , where the Ci are known
from the ai, to get the unknown Fi, i ∈ J .

In conclusion, the model defined in Subsections 4.1 to 4.3 does not only fit into Feulvarch
et al. (2009)’s class, but also verifies the additional properties (P1) and (P2) of Subsection
2.3.

5 One-field algorithm for numerical solution of the boundary value problem

We now come back to the general class of problems and notations defined in Section 2.

5.1 Definition of nodal variables - Spatial and temporal discretizations

We consider a finite-element mesh of the domain Ω. The nodes of this mesh are denoted
with an index p, and quantities at node p are denoted with an upper symbol (p); for
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instance N (p)(x) is the shape function associated to node p. (N (p)(x) = N (p)
e (x) if the

point x lies in element e, N (p)
e (x) denoting the shape function of node p in element e).

We consider first the LHS of the diffusion equations (1)1. In the spirit of the enthalpic
methods developed for problems of heat diffusion with phase change by Mundim and Fortes
(1989); Droux (1991); Gremaud (1991); Pham (2000); Nedjar (2002), among others, we

introduce a first set of nodal variables consisting of the values u
(p)
i of the functions ui at

the various nodes p.

The diffusion equations (1)1 obviously entail spatial continuity of the functions vi, but
permit spatial discontinuities of the functions ui, especially in the case of multimaterial
problems since the function φ(u) may then have an extra, discontinuous dependence upon
position. The natural way of accounting for such discontinuities would be to introduce,
at each node lying on some interface between different materials and for each index i =
1, ..., n, several variables u

(p)
i - one for each material containing the node. We do not follow

this approach which would increase the number of DOF per node in an unreasonable way,
and stick to only one variable u

(p)
i per node p and index i. This means ruling out multi-

material problems here. It will however be shown in a future paper that such problems
may be handled with minimal adjustments of the method, without increasing the number
of DOF per node.

There is no real need for a spatial interpolation of the functions ui - the hypothesis that
their time-derivatives vary little in the immediate vicinity of each node will suffice. On
the other hand a temporal discretization of these functions will be necessary. Assume that
all quantities at time t, denoted with an upper index 0, are known and that all quantities
at time t+∆t, denoted without any index, are to be evaluated from there. To do so, we
shall use a fully implicit Euler (first-order) scheme resulting in the following approximate

expression of the derivatives ∂u
(p)
i /∂t at time t +∆t:

∂u
(p)
i

∂t
≃ u

(p)
i − u

0(p)
i

∆t
(i = 1, ..., n). (29)

The implicit Euler scheme is preferred to the explicit one because it is known to tolerate
much larger time-steps, for problems of the type considered.

We now consider the RHS of the diffusion equations (1)1. There are several options to
discretize this RHS. A natural one would be to use equation (1)2 to express grad vi as
∑n

j=1
∂φi

∂uj
grad uj, plus a spatial interpolation of the functions uj . But such an approach

would be hampered by (i) difficulties arising from the possible spatial discontinuities of the
derivatives ∂φi/∂uj , and (ii) the necessity of the extra calculation of the second-derivatives
∂2φi/(∂uj ∂uk) to evaluate the tangent-matrix.

We therefore introduce instead a second set of nodal variables consisting of the values v
(p)
i

of the functions vi at the various nodes p. Following the standard finite-element procedure
(Zienkiewicz et al., 2005), these functions and their gradients are interpolated spatially
using shape functions:

vi(x) ≃
∑

p

N (p)(x) v
(p)
i , grad vi(x) ≃

∑

p

gradN (p)(x) v
(p)
i , ∀x ∈ Ω. (30)
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On the other hand no time-discretization of these functions is required.

The vectorial functions u ≡ (ui)1≤i≤n and v ≡ (vi)1≤i≤n are connected through equation
(1)2. In order to enforce this relation, Feulvarch et al. (2009) proposed to use, within a
two-field approach involving both functions as unknowns, a weak formulation. The simpler
approach adopted here consists in writing equation (1)2 pointwise, at every node p:

v(p) ≡
(

v
(p)
1 , ..., v(p)n

)

= φ(u(p)) ≡ φ
(

u
(p)
1 , ..., u(p)

n

)

for every p. (31)

This means calculating the temperature as a function of the enthalpy, in the case of heat
diffusion with phase change, or solving the laws of mass action, in the case of diffusion
of chemical elements with formation of precipitate phases, at the nodes instead of the
integration points. This procedure basically amounts to eliminating the unknown nodal
variables v

(p)
i in the system of equations to be solved, that is to using a one-field formu-

lation with sole nodal variables u
(p)
i , instead of a two-field one.

5.2 Finite element equations

In order to simplify the presentation, we first assume that the BC are exclusively of
Neumann-type; this means, in reference to the notations introduced in Subsection 2.2,
that ∂MΩ = ∅ and ∂NΩ = ∂Ω. The treatment of mixed (Dirichlet/Neumann) BC will be
explained in Subsection 5.3 below.

Following the standard finite element procedure (Zienkiewicz et al., 2005), we multiply
both sides of equation (1)1 by the shape function N (p) of node p and integrate over Ω,
accounting for the approximations (29) and (30)2.

• The LHS then becomes
∫

Ω
∂ui

∂t
N (p)dΩ. Assuming that the derivative ∂ui/∂t varies little

in the immediate vicinity of node p where N (p) is nonzero, we replace it with ∂u
(p)
i /∂t,

extract it from the integral, and finally use approximation (29); the final result is:
u
(p)
i −u

0(p)
i

∆t

∫

Ω N (p)dΩ.
• The RHS becomes

∫

Ω div(ki grad vi)N
(p)dΩ, or equivalently upon integration by parts

(account being taken of equation (4) applicable on the whole of ∂Ω) plus use of approx-

imation (30)2: −
∑

q

∫

Ω ki gradN (p). gradN (q) v
(q)
i dΩ.

The net result is the following set of “finite element equations”:

R
(p)
i ≡

(∫

Ω
N (p)dΩ

)

u
(p)
i − u

0(p)
i

∆t
+
∑

q

(∫

Ω
ki gradN (p). gradN (q) dΩ

)

v
(q)
i = 0 (32)

for every i = 1, ..., n and p. Equations (32) form a nonlinear system on the sole unknowns

u
(p)
i , the v

(p)
i being expressed in terms of them via equations (31). The components of the

tangent-matrix of this system are given by

∂R
(p)
i

∂u
(q)
j

=
(∫

Ω
N (p)dΩ

)

δpqδij
∆t

+
(∫

Ω
ki gradN (p). gradN (q) dΩ

)

∂v
(q)
i

∂u
(q)
j

. (33)
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Note that this tangent-matrix is non-symmetric, the term ki having no counterpart for
the index j, and the term ∂v

(q)
i /∂u

(q)
j for the index p.

5.3 Treatment of mixed boundary conditions

We now consider the more general case where mixed (Dirichlet/Neumann) BC are enforced
on a non-empty part ∂MΩ of ∂Ω, equations (3). Attention is restricted to the subclass of
Feulvarch et al. (2009)’s class of models obeying property (P1) of Subsection 2.3.

A first remark is that within the one-field approach adopted here, penalty methods clas-
sically used to impose Dirichlet BC are not usable since these BC do not pertain to the
unknowns u

(p)
i themselves but to the v

(p)
i which are functions of them, see equation (31).

A second remark is that the finite element equations (32) apply to (i) nodes lying in the
interior of Ω or on that part ∂NΩ of ∂Ω over which the Neumann BC (4) are imposed;
and (ii) nodes lying on ∂MΩ but only for indices i ∈ J̄ for which the Neumann BC (3)2 is
imposed. They are not applicable to nodes lying on ∂MΩ and indices i ∈ J for which the
Dirichlet BC (3)1 is imposed, because they disregard the flux resulting from enforcement
of this BC. (For instance, in the case of heat diffusion with phase change, prescribing the
temperature somewhere requires inputting or extracting a suitable amount of heat there).

A third remark pertains to the unknowns involved in the second term of the RHS of
equation (32). All values of the v

(q)
i - that is, at all nodes q and for all indices i - appear in

this second term. For a node q lying in the interior of Ω or on ∂NΩ, these values depend
on those of the u

(q)
i at the same node according to equation (31). For a node q lying on

∂MΩ, there are two cases: if i ∈ J , v
(q)
i is prescribed and known according to equation

(3)1; and if i ∈ J̄ , it depends on the values of the u
(q)
j , j ∈ J̄ according to equation (6)

resulting from the assumed property (P1). (Note that the vector vJ in this equation is

known from the BC (3)1). Thus all unknown quantities v
(q)
i in the second term of the RHS

of equation (32) are expressible in terms of (i) the nodal unknowns u
(q)
j at nodes q lying

in the interior of Ω or on ∂NΩ; (ii) the nodal unknowns u
(q)
j at nodes q lying on ∂MΩ, but

only for indices j ∈ J̄ .

The last two remarks suggest a simple strategy: exclude from the system to be solved all
equations and nodal unknowns corresponding to nodes p lying on ∂MΩ and indices i ∈ J .
Equations (32) are then written at nodes p lying in the interior of Ω or on ∂NΩ, and at
nodes p lying on ∂MΩ but only for indices i ∈ J̄ ; and their unknowns are the values of the
u
(p)
i for the same nodes p and indices i. The system is thus complete and non-redundant.

This method is thus based on elimination rather than penalization. It must be stressed,
however, that such an elimination is possible only for the subclass of models obeying
property (P1). Were this property not obeyed, it would not be possible, at a node p lying

on ∂MΩ, to express the v
(p)
i , i ∈ J̄ in terms of the sole u

(p)
j , j ∈ J̄ ; the u

(p)
j , j ∈ J would

also be involved and thus could not be eliminated from the system.

With regard to the nodal unknowns u
(p)
i at nodes p lying on ∂MΩ and for indices i ∈ J ,
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there are two possibilities. If property (P2) of Subsection 2.3 is satisfied, like in the case of
diffusion of chemical elements with formation of precipitate phases, these unknowns can,
as a bonus, be deduced from equation (7) once the system on other unknowns has been
solved. If property (P2) is not satisfied, like in the case of heat diffusion with phase change,
there is no way to calculate them. But this has no impact upon the unambiguousness of
the rest of the solution of the problem.

5.4 Comparison with Feulvarch et al. (2009)’s algorithm

The main novelty brought by the present algorithm, as compared to that proposed by
Feulvarch et al. (2009), lies in the halving of the number of DOF per node resulting from
the replacement of a two-field formulation by a single-field one. As already mentioned
in the Introduction, such a halving is not decisive for problems of heat diffusion with
phase change for which this number is small anyway, but it is for problems of diffusion of
chemical elements with formation of precipitate phases, which frequently involve numerous
elements. Without even mentioning the fact that some finite element codes place limits
on the number of DOF per node, halving this number means halving the system of linear
equations to be solved at each iteration, thus decreasing the CPU time spent in inversion
of the tangent matrix by a factor of roughly 4; but more importantly, it facilitates the
convergence of the iterations, thus permitting to solve more difficult problems. For the
problem envisaged in Section 9 below for instance, the new algorithm results in a shorter
CPU time, due to less adjustments of the time-steps in order to get convergence, than
that of Feulvarch et al. (2009); and for the problem of Section 7, it simply permits to
obtain results, a thing which the earlier algorithm could never do.

6 Application 1: Wagner’s problem of internal oxidation of a single, very
oxidizable element

6.1 Presentation of the problem

Wagner (1959) has provided an analytic solution to an archetypal 1D problem of isother-
mal internal oxidation of a steel sheet containing initially no oxygen (O) but a given
concentration of some oxidizable element (A) fixed by the grade of the steel. The problem
involves (i) inward diffusion of element O, with diffusion coefficient DO, from the surface
of the sheet at x = 0 where the value of its mass concentration CO is fixed at some value
Csurf

O ; (ii) outward diffusion of element A, with diffusion coefficient DA, from the deep
regions of the sheet at x = +∞ where its mass concentration CA is fixed at some value
Ccore

A ; and (iii) precipitation of a single oxide of chemical formula OAν where ν is a rational
number. The solubility product of this oxide is considered to be so small (element A so
highly oxidizable) that the two chemical elements cannot coexist in their dissolved forms.
As a consequence, oxidation occurs only on an oxidation front, the position of which is
denoted ξ(t). In the region 0 ≤ x < ξ(t), CO is nonzero but CA is zero; in the region
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ξ(t) < x < +∞ the converse is true.

The equations of the problem admit a solution wherein the total mass fractions FO, FA

and mass concentrations CO, CA of the elements O and A, and the mass fraction P of
the oxide OAν , all depend on the single variable x/

√
t where t denotes time. The position

ξ(t) of the oxidation front is therefore looked for in the form

ξ(t) = 2γ
√

DO t (34)

where γ is a positive constant to be determined. The concentration CO in the region
0 ≤ x < ξ(t) and the concentration CA in the region ξ(t) < x < +∞ obey standard
diffusion equations since ∂P/∂t is zero in both regions. (This derivative is nonzero only
at the position x = ξ(t), where it is infinite). These concentrations are thus expressible in
terms of the classical erf function.

The value of the constant γ is then deduced from the relation connecting the left-hand
flux of O and the right-hand flux of A at x = ξ(t), −ν DO

MO

∂CO

∂x
[ξ(t)−, t] = DA

MA

∂CA

∂x
[ξ(t)+, t]

where MO and MA denote the atomic masses of O and A; this relation arises from the
fact that all O and A atoms arriving there, from the left and the right respectively, are
consumed in creation of OAν molecules. The equation defining γ reads (Wagner, 1959):

exp(γ2) erf γ√
φ exp(γ2φ) erfc(γ

√
φ)

= ν
MA

MO

Csurf
O

Ccore
A

, φ ≡ DO

DA
. (35)

Finally ∂P/∂t, and by integration P , may be deduced from the left- and right-hand fluxes

of O and A at x = ξ(t) plus the velocity ξ̇ = γ
√

DO/t of the oxidation front. It is found

that P is uniform within the oxidized zone 0 ≤ x < ξ(t) and given by (Wagner, 1959):

P = Ccore
A

MP

νMA

exp (−γ2φ)

γ
√
πφ erfc

(

γ
√
φ
) (36)

whereMP is the molar mass of the precipitate OAν . Note that P is not simply proportional
to Ccore

A as one would intuitively expect, since the parameter γ itself depends on Ccore
A in a

complex way; this is because the diffusion of elements leaves time for a gradual enrichment
in element A near the sheet’s surface, due to the “consumption” of this element at x = ξ(t).

Wagner (1959)’s work was extended in several directions. Rapp (1965) first summarized
and discussed the theory. Wagner’s various restrictive assumptions were then relaxed, so
as to extend the validity of the model, by various authors, including Kirkaldy (1969);
Laflamme and Morral (1978); Ohriner and Morral (1979); Whittle et al. (1981); Christ et
al. (1986); Stott and Wood (1988); Fortunier et al. (1995); Gesmundo and Gleeson (1995);
Gesmundo et al. (1996); Huin et al. (1997); Gesmundo et al. (1997, 1998); Gesmundo and
Niu (1999); Niu and Gesmundo (2001), among others. A critical discussion of improved
variants of Wagner’s model was also provided by Douglass (1995). But no fully explicit
analytical solution was ever found for any situation more complex than that envisaged
by Wagner (1959), although a semi-analytical solution - reducing the problem to the
numerical integration of an ordinary nonlinear second-order differential equation on a
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single unknown function - may be found in the work of Huin et al. (2005), for a situation
analogous to that of Wagner but with a finite, nonzero solubility product of the oxide.

6.2 Numerical results

As a numerical example, we consider the case of the system O/Al/Al2O3 at a temperature
of 800◦C. The diffusion and precipitation constants of this sytem, taken from (Oikawa,
1982) and the (Thermodata, 2005) data bank, are displayed in Table 1 except for the
Henry coefficients γi which are considered to be unity. (Note that Dirichlet boundary con-
ditions on activities of elements are then equivalent to conditions on their concentrations).
The solubility product of Al2O3 is sufficiently small for Wagner (1959)’s solution to be
applicable.

MO (g) MAl (g) MAl2O3 (g) DO (µm2s−1) DAl (µm
2s−1) KAl2O3 (ppm5)

15.999 26.982 101.961 8.009 5.559 × 10−4 2.1425 × 10−18

Table 1
Diffusion and precipitation constants of the system O/Al/Al2O3

The initial mass concentration of Al imposed by the grade of the steel, Ccore
Al , is 1,200 ppm,

and the mass concentration of O enforced on the surface of the sheet (by some external
atmosphere), Csurf

O , is 9.231× 10−3 ppm.

Figures 2, 3 and 4 display the calculated mass concentrations of O and Al and mass
fraction of Al2O3 respectively, as functions of position, at times t = 1, 15 and 60 s. One sees
that the concentration of O is nonzero in the oxidized zone but zero outside, whereas the
converse is true for the concentration of Al, in agreement with Wagner (1959)’s solution.
Also, the fraction of Al2O3 is quite uniform within the oxidized zone, again in agreement
with the theoretical prediction. This peculiar feature of Wagner (1959)’s solution, which
implies spatial and temporal discontinuities of the fraction of Al2O3 at the oxidation
front, makes the numerical simulation of the problem a difficult challenge, since the finite
element method is based in essence on an assumption of continuity of the unknowns
represented through their nodal values. 2 One may note in this context that the fraction
of Al2O3 found numerically in fact varies smoothly, although quickly, in the vicinity of the
oxidation front, as a consequence of the finite element method’s hypotheses of continuity.

With the parameters indicated above, equation (35) predicts that γ ≃ 8.25× 10−4. (The
fact that γ is much smaller than unity means that the precipitation of Al2O3 slows down
the diffusion of O into the sheet by a very important factor, which is an illustration of
the extreme nonlinearity of the problem). It follows that at times t = 1, 15 and 60 s the
oxidation front is, by equation (34), at the positions ξ ≃ 0.0047, 0.0181 and 0.0362µm.

2 The “finite element equations” (32) were arrived at by assuming small variations of the func-
tions ∂ui/∂t, that is of ∂FO/∂t and ∂FAl/∂t in the present context, in the vicinity of the node
considered; this hypothesis breaks down here at the precipitation front since the moving discon-
tinuity of P there entails similar discontinuities of FO, FAl and their time-derivatives.
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Fig. 2. Wagner’s problem - Distribution of mass concentration of O at several instants
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Fig. 3. Wagner’s problem - Distribution of mass concentration of Al at several instants

Furthermore equation (36) predicts that P ≃ 14,395 ppm within the oxidized zone. These
predictions are quite compatible with the computed results, see Figure 4 where the theo-
retical predictions are provided in the form of dotted lines. This illustrates the quality of
the numerical results, in spite of the difficulty of the problem.

7 Application 2: a complex case involving many chemical elements and pre-
cipitate phases

We now consider a much more complex case involving diffusion of 5 elements, O, Mn, Si,
Al and Cr, and possible precipitation of 9 oxides, MnO, Mn2SiO4, SiO2, Cr2O3, Al2O3,
Al2MnO4, MnSiO3, FeAl2O4 and Fe2SiO4. It should be noted, however, that if p oxides are
present, the laws of mass action (15) expressing their equilibrium with the surrounding
matrix provide p independent equations on the 5 unknown concentrations of elements in
the matrix, so that p cannot be larger than 5. (On the surface p cannot be larger than 4
since there are only 4 a priori free concentrations of elements, that of O being fixed). Thus
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parison with the analytical solution

among the 9 a priori possible precipitate phases, no more than 5 (4 on the surface) may
be present simultaneously; but of course the determination of the set of actually existing
phases at each point and each instant is an integral part of the solution of the problem.

The phases FeAl2O4 and Fe2SiO4 involve Fe, the element the matrix is made of. This
element is considered not to participate in the diffusion process (the matrix is considered
to be unaffected by the diffusion of alloying elements within it) and is therefore disregarded
in the simulation. For this reason it will be noted hereafter between parentheses in the
phases involving it, (Fe)Al2O4 and (Fe)2SiO4, and will not be accounted for in the physical
constants (molar mass and solubility product) of these phases.

The calculation is also more involved because the temperature is assumed to vary accord-
ing to some specified law, and most of the diffusion and precipitation parameters vary
accordingly; furthermore the concentration of oxygen prescribed on the surface of the
sheet also varies, because it is governed by chemical equilibrium between oxygen atoms
dissolved in the Fe matrix and present in gaseous form in the surrounding atmosphere,
which depends upon temperature.

The parameters of the problem, except for the Henry coefficients which are again consid-
ered to be unity, are as follows:

• Atomic masses of elements:

MO (g) MMn (g) MSi (g) MAl (g) MCr (g)

15.999 54.938 28.086 26.982 51.996

Table 2
Atomic masses of elements

• Molar masses of precipitate phases:
• Diffusion coefficients of elements: the diffusion coefficients below, taken from Oikawa
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MMnO (g) MMn2SiO4 (g) MSiO2 (g) MCr2O3 (g) MAl2O3 (g)

70.937 201.958 60.084 151.989 101.961

MAl2MnO4 (g) MMnSiO3 (g) M(Fe)Al2O4
(g) M(Fe)2SiO4

(g)

172.898 131.031 117.960 92.082

Table 3
Molar masses of precipitate phases

(1982), are expressed in µm2s−1 as functions of the absolute temperature T in K:


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
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DO = 2.44× 105 exp(−11078/T )

DMn = 7.56× 107 exp(−26983/T )

DSi = 7.35× 107 exp(−26439/T )

DAl = 5.15× 108 exp(−29566/T )

DCr = 7.60× 108 exp(−28183/T ).

(37)

• Solubility products of oxides: the solubility products below, taken from the Thermodata
(2005) data bank, are expressed in (ppm)n where n is the number of atoms per molecule
of the oxide considered, as functions of the absolute temperature T in K:
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



KMnO = 25.213 exp(−24937/T )

KMn2SiO4 = 88.788 exp(−107922/T )

KSiO2 = 36.841 exp(−50680/T )

KCr2O3 = 69.009 exp(−76216/T )

KAl2O3 = 65.739 exp(−114208/T )

KAl2MnO4 = 91.827 exp(−144934/T )

KMnSiO3 = 62.308 exp(−78841/T )

K(Fe)Al2O4 = 74.028 exp(−123856/T )

K(Fe)2SiO4
= 60.696 exp(−75191/T ).

(38)

• Dependence of the oxygen concentration on the sheet’s surface upon the parameters of
the external atmosphere and the temperature: see Appendix A of (Huin et al., 2005).

• Core concentrations of oxidizable elements imposed by the grade of the steel:

Ccore
Mn = 12, 350 ppm ; Ccore

Si = 1, 250 ppm ; Ccore
Al = 2, 700 ppm ; Ccore

Cr = 500 ppm. (39)

• Thermal history: T varies linearly between the instants indicated in Table 4 below.

Figure 5 displays the mass concentrations of the various elements as functions of position,
for various times. The distributions of oxygen on the one hand, oxidizable elements on
the other hand, are roughly similar to those obtained in the much simpler case of the
Wagner problem (see Figures 2 and 3); in particular the concentrations of all oxidizable
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t (s) 0 130 172 232 250

T (K)− 273.15 20 800 800 500 500

Table 4
Thermal history

elements in the matrix go down near the surface, which is a clear indication that they
are all involved in formation of oxides. There is however a notable difference with respect
to Wagner’s problem: here the solution does not depend on the single variable x/

√
t, as

a result of the variations of the temperature in time which generate similar variations of
most of the parameters of the problem. The more complex dependence of the solution
upon x and t is apparent for instance in the dependence of the surface concentrations
(at x = 0) upon time. This is true for all elements but especially O and Cr; for O the
explanation obviously lies in the dependence of Csurf

O upon the time-varying temperature,
see Appendix A of (Huin et al., 2005); for Cr it is to be found in the combined effects of
the variations of Csurf

O and the solubility product KCr2O3.

Figure 6 shows the mass fractions of the oxides MnO, Mn2SiO4, Cr2O3, Al2O3, Al2MnO4

and MnSiO3 as functions of position, for various times. (Note that the scale on the ver-
tical axis, indicated in the upper-left corner of each subfigure, just above the diagram, is
different for each oxide). The distributions of the oxides SiO2, (Fe)Al2O4 and (Fe)2SiO4

are not shown, because SiO2 appears only at a single point and a single instant, with a low
fraction, and (Fe)Al2O4 and (Fe)2SiO4 are never formed. Again, the lack of dependence
of the solution upon the single variable x/

√
t is apparent, for instance in the distribution

of Al2MnO4 which exhibits a time-varying maximum, see Subfigure 6(e). Also, it is worth
noting that on the surface, only MnO, Mn2SiO4, Cr2O3 and Al2MnO4 are formed (see
Subfigures 6(a), 6(b), 6(c), 6(e)), in agreement with the property mentioned above that
only 4 precipitate phases can coexist here. The upper limit of 5 precipitate phases in the
interior of the sheet is also respected since only Al2O3, Al2MnO4 and MnSiO3 coexist
there (see Subfigures 6(d), 6(e), 6(f)).

8 Application 3: a case involving a non-stoechiometric oxide

We come back to a case involving isothermal diffusion of two elements only, O and Mn,
and precipitation of a single oxide, but a non-stoechiometric one, ((Fe)O)x(MnO)1−x with
0 ≤ x ≤ 1. The laws of mass action are given by equations (15), with the activities
A(Fe)O ≡ x, AMnO ≡ 1− x of the constituents (Fe)O, MnO being given by equation (13).
The determination of these activities at each point and instant is an integral part of the
solution of the problem, thereby increasing its numerical difficulty.

Remarks about element Fe and constituent (Fe)O similar to those of Section 7 apply here.

Table 5 provides the diffusion and precipitation constants of the system, except again for
the Henry coefficients which are considered to be unity.

The initial mass concentration of Mn imposed by the grade of the steel, Csurf
Mn , is 12,350
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(a) Oxygen
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(b) Manganese
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(c) Silicium
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(d) Aluminium
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(e) Chromium

Fig. 5. Complex anisothermal case - Distribution of mass concentrations of elements at several
instants

ppm. Two values of the mass concentration of O enforced on the surface of the sheet,
Csurf

O , are considered: 9.231× 10−3 ppm and 0.88 ppm.

If the phase ((Fe)O)x(MnO)1−x exists, the activity x of the constituent (Fe)O is simply
proportional to CO (x = CO/K(Fe)O by equation (15)2), so there is no need to display it.
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(a) MnO
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(b) Mn2SiO4
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(c) Cr2O3
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(d) Al2O3
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(e) Al2MnO4
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(f) MnSiO3

Fig. 6. Complex anisothermal case - Distribution of mass fractions of oxides MnO, Mn2SiO4,
Cr2O3, Al2O3, Al2MnO4, MnSiO3 at several instants

Figures 7, 8 and 9 show, in the two cases, the mass concentration of O, the mass con-
centration of Mn and the mass fraction of the phase ((Fe)O)x(MnO)1−x, respectively, as
functions of position, at times t = 1, 15 and 60 s. Several points are noteworthy here:

• With regard to the distributions of the mass concentration of O (Figure 7), there are
several differences between the two cases. First, the orders of magnitude of this concen-
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MO (g) MMn (g) M(Fe)O (g) MMnO (g)

15.999 54.938 15.999 70.937

DO (µm2s−1) DMn (µm2s−1) K(Fe)O (ppm) KMnO (ppm2)

8.009 9.06× 10−4 1.706 7.19

Table 5
Diffusion and precipitation constants of the system O/Mn/((Fe)O)x(MnO)1−x
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Fig. 7. System O/Mn/((Fe)O)x(MnO)1−x - Distribution of mass concentration of O at several
instants
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Fig. 8. System O/Mn/((Fe)O)x(MnO)1−x - Distribution of mass concentration of Mn at several
instants

tration are different, as an obvious consequence of the widely different values imposed
on the sheet’s surface. Second, the shapes of the distributions are also different, the
decrease being strongly nonlinear for the smaller value of Csurf

O but almost linear for
the larger value. Third, the decrease is less quick in the latter case, suggesting a thicker
oxidized zone.

• Inspection of the distributions of the mass concentration of Mn (Figure 8) confirms
the last conclusion, the main difference between the two cases being a depletion in
dissolved Mn atoms near the surface (due to “pumping” by oxides) more important,
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Fig. 9. System O/Mn/((Fe)O)x(MnO)1−x - Distribution of mass fraction of ((Fe)O)x(MnO)1−x

at several instants

and occurring deeper in the sheet, for the larger value of Csurf
O .

• Figure 9, showing the distributions of the mass fraction of the phase ((Fe)O)x(MnO)1−x,
again confirms that the thickness of the oxidized zone is (much) larger for the larger
value of Csurf

O . However the value of this fraction on the sheet’s surface is higher for the
lower value of Csurf

O ; in fact in this case the situation could almost be characterized as
“external oxidation”.

9 Application 4: preferred diffusion along grain boundaries

We finally study a 2D problem of internal oxidation wherein individual grains are explicitly
meshed, in order to account for the preferred diffusion of elements in grain boundaries.
Subfigure 10(a) shows the whole square geometry considered, and Subfigure 10(b) a zoom
on a few grains. Note the refinement of the mesh in the grains near the grain boundaries,
aimed at resolving the high concentration gradients that may be anticipated there. The
length of the side of the square is 100µm, the size of the grains varies between 10µm and
30µm (fine grain structure), and the grain boundaries are 1µm thick.

(a) General view (b) Zoom on some grain boundaries

Fig. 10. Mesh of a 2D polycrystal
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The system considered is O/Mn/MnO at a temperature of 800◦C. The diffusion coeffi-
cients of O and Mn are enhanced by an arbitrary factor of 103 in the grain boundaries,
in order to simulate their role of diffusion shortcuts (due to the local mismatch of atomic
lattices which creates vacancies available for diffusion of alloying elements).

The diffusion and precipitation constants in the grains are displayed in Table 6, except
once again for the Henry coefficients which are considered to be unity. The initial mass
concentration of Mn imposed by the grade of the steel is 12,350 ppm and the mass
concentration of O enforced on the surface of the sheet is 0.88 ppm.

MO (g) MMn (g) MMnO (g) DO (µm2s−1) DMn (µm2s−1) KMnO (ppm2)

15.999 54.938 70.937 8.009 9.060 × 10−4 7.190

Table 6
Diffusion and precipitation constants of the system O/Mn/MnO

Figure 11 displays the distributions of the mass concentrations of O and Mn at three
instants. Again one observes the gradual penetration of O into the sheet from the surface
located at the top of the square, and the gradual depletion of Mn near this surface, due to
precipitation of MnO. Both of these phenomena are more marked in the grain boundaries
than in the grains.

Figure 12 displays the distribution of the mass fraction of MnO at the same instants as
before. The oxide gradually “invades” the material from the surface, and this again occurs
preferentially along grain boundaries.

10 Conclusion

The aim of this work was to extend the previous one of Feulvarch et al. (2009) on numerical
implementation of a class of nonlinear models of diffusion/reaction in solids. In this class,
the unknowns appearing in the LHS of the diffusion equations involving a time-derivative,
and in the RHS involving spatial derivatives, are different, the latter unknowns being
functions of the former. The class encompasses interesting cases like diffusion of heat with
phase change, and diffusion of chemical elements with formation of precipitate phases. In
the present work emphasis was placed on the second, more complex case.

The first task was to show that Feulvarch et al. (2009)’s class encompasses more complex
models of diffusion of chemical elements with formation of precipitate phases than consid-
ered in previous publications (Fortunier et al., 1995; Huin et al., 2005; Brunac et al., 2010).
In all of these, the hypothesis was made of “stoechiometric” precipitate phases, of well-
defined chemical composition. In Section 4 of this paper we introduced the possibility of
“non-stoechiometric” phases, consisting of solid solutions of stoechiometric constituents
of well-defined chemical composition but in variable, a priori unknown proportions, as
commonly encountered in the metallurgical industry. It was shown that the resulting ex-
tended model still fits within Feulvarch et al. (2009)’s framework. The proof required a
careful examination of the mathematical properties of the model, in order to show that
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(a) Oxygen - t = 500 s (b) Manganese - t = 500 s

(c) Oxygen - t = 2,000 s (d) Manganese - t = 2,000 s

(e) Oxygen - t = 4,500 s (f) Manganese - t = 4,500 s

Fig. 11. Distributions of mass concentrations of O and Mn (in ppm) at several instants - Case
1, identical solubility products of MnO in the grains and the grain boundaries

the concentrations of chemical elements dissolved in the matrix phase are well-defined, un-
ambiguous functions of their total fractions. This result was proved by establishing that:
(i) one may always find some fractions of the constituents of the phases satisfying the laws
of mass action defining local thermodynamic equilibrium; (ii) even though, in exceptional
cases, these laws may not define these fractions in a unique way, the concentrations of
elements corresponding to two possible solutions are identical.
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(a) t = 500 s (b) t = 2000 s

(c) t = 4500 s

Fig. 12. Distribution of the mass fraction of MnO (in ppm) at several instants - Case 1, identical
solubility products of MnO in the grains and the grains boundaries

The second task was to overcome some difficulties encountered by Feulvarch et al. (2009)
when defining a numerical algorithm of solution by the finite element method. These diffi-
culties were tied to the nature of BC of Dirichlet type. For the type of models considered,
Dirichlet BC involve the unknowns in the RHS of the diffusion equations, making it dif-
ficult to use a classical penalty method to enforce them within approaches considering
the unknowns in the LHS. Feulvarch et al. (2009) proposed to use such a method within
a two-field approach considering both types of unknowns, but this approach resulted in
an unhappy doubling of the number of DOF per node; and elimination of the unknowns
in the RHS, although possible, led to very large off-diagonal terms in the tangent-matrix
preventing convergence of the iterative procedure required to deal with nonlinearities.
These problems were overcome in Section 5 of this paper by showing that for some sub-
class of Feulvarch et al. (2009)’s class of models, encompassing those of practical interest,
one may use an economical one-field approach considering the sole unknowns in the LHS,
Dirichlet BC being tractable for members of this subclass through elimination rather than
penalization.

The third task was to provide examples of application of the new algorithm of solution,
duly implemented into the SYSWELDr finite element programme developed by ESI-
Group. All the examples chosen pertained to problems of internal oxidation of steel sheets,
of interest in the metallurgical industry. In spite of their being 1D for the most part, they
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all exhibited severe nonlinearities making their numerical solution a difficult challenge.

Section 6 considered the archetypal 1D problem of isothermal internal oxidation of a sheet
containing a single oxidizable element reacting with oxygen to form a single oxide of very
low solubility product. An analytical solution to this problem was provided in the seminal
work of Wagner (1959). In this solution the chemical reaction occurs on some “oxidation
front” of measure zero; the fraction of oxides formed is uniform within the growing oxidized
zone, and discontinuous across the oxidation front. The numerical solution satisfactorily
reproduced the main features of the analytical one and especially the uniformity of the
fraction of oxides in the oxidized zone, although it varied quickly but continuously in the
elements adjacent to the precipitation front, rather than discontinuously across it.

Section 7 was devoted to a much more complex problem involving 5 diffusing elements and
9 a priori possible oxides, and a temperature varying in time, making most parameters
of the problem functions of time. The problem was too complex to be amenable to some
analytical solution which could serve as a reference, but the numerical solution exhibited
reasonable features, and respected in particular the theoretical restrictions imposed by
the laws of mass action upon the number of oxides present at a given point and a given
instant, both in the interior of the sheet or on its surface.

Section 8 came back to a problem of isothermal internal oxidation involving diffusion of
two elements only, O and Mn, and precipitation of a single, but non-stoechiometric oxide,
(FeO)x(MnO)1−x. This feature increased the difficulty of the numerical determination of
the state of local thermodynamic equilibrium through introduction of an extra unknown,
the activity x of the constituent FeO within the solid solution (FeO)x(MnO)1−x. Again no
analytical solution was available for comparison with the numerical one but the simulation
yielded reasonable results.

Section 9 was finally devoted to a problem of internal oxidation involving preferred diffu-
sion along grain boundaries, using a 2D mesh of an ensemble of grains and grain bound-
aries. The diffusion coefficients of elements were enhanced in the grain boundaries by a
factor of 103 in order to simulate their role of diffusion shortcuts. The results evidenced the
selective penetration of oxygen, depletion of oxidizable element and formation of oxides
in the grain boundaries.

The work opens various perspectives. Among these, the possibility of accounting for geom-
etry changes arising from precipitation (because of differences of specific volume between
the various phases) probably deserves special mention. This perspective implies a coupling
of diffusion/reaction and mechanical simulations. A full coupling would imply adding the
three displacements to the diffusion/reaction DOF, thus making the simulations much
heavier and the convergence of the iterative procedure at each time-step much more in-
certain. An alternative approach would consist of a “weak”, “explicit” coupling; in this
option the calculation between times t and t + ∆t would consist of first solving the dif-
fusion/reaction equations on this time-interval on the geometrical configuration at time
t, then solving the elasticity equations on the same time-interval and geometrical con-
figuration using the “free strains” determined by the fractions of phases at time t + ∆t
just calculated, and finally updating the geometrical configuration before proceeding to
the next time-step. The advantage of this simpler option would be to perform diffu-
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sion/reaction and mechanical calculations in succession instead of simultaneously - thus
facilitating convergence of the iterations -, its disadvantage to require small time-steps
in order to minimize errors arising from the explicit character of the algorithm. This
could permit, among other things, to evaluate mechanical consequences of carburizing
and nitriding treatments.
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A Appendix: calculation of the minimum Mλ

The aim of this Appendix is to evaluate the quantity Mλ defined by equations (22) and
(23) of the text.

Let us define, for any vector Xλ such that Xλα ≥ 0 for all α, the function

fλ(Xλ) ≡
nc(λ)
∑

α=1

(Qλα + lnXλα)Xλα.

Note that fλ(Xλ) = DXλ
G(P) if

∑nc(λ)
α=1 Xλα = 1. Thus the problem is to minimize the

convex function fλ(Xλ) over the convex set {Xλ, Xλα ≥ 0 for all α,
∑nc(λ)

α=1 Xλα = 1}; Mλ

will be the value of the minimum.

The minimum is not reached on the boundary of the set, that is at some point Xλ

having some zero component Xλα. Indeed at such a point some other component Xλβ

must be positive, because of the condition
∑nc(λ)

γ=1 Xλγ = 1. Considering then variations of
Xλα = 0 and Xλβ > 0 of the form δXλα = ǫ, δXλβ = −ǫ, ǫ → 0+ (preserving the relation
∑nc(λ)

γ=1 Xλγ = 1), one sees that the resulting variation δfλ of fλ is of the form ǫ ln ǫ+O(ǫ)
and hence negative, so that fλ is not minimum at Xλ.

Hence the minimum is reached in the interior of the set, and may be deduced from the
constrained extremum theorem: gλ(Xλ) denoting the function defined by

gλ(Xλ) ≡
nc(λ)
∑

α=1

Xλα − 1,

at a point where the minimum is reached, there is a scalar ηλ (a Lagrange multiplier) such
that

∂fλ
∂Xλα

(Xλ) = ηλ
∂gλ
∂Xλα

(Xλ) for every α = 1, ..., nc(λ).

This is equivalent to

Qλα + lnXλα + 1 = ηλ ⇒ Xλα = eηλ−1 e−Qλα (α = 1, ..., nc(λ)).

The factor eηλ−1 here must be such that
∑nc(λ)

α=1 Xλα = 1, implying that

Xλα =
e−Qλα

∑nc(λ)
β=1 e−Qλβ

(α = 1, ..., nc(λ)).

This equation provides the values of the components Xλα of that point Xλ where the
minimum is reached. Inserting them into the expression of fλ(Xλ) and using the expression
(21) of the quantities Qλα, one gets equation (24) of the text.
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