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Abstract A new light gauge boson U may have both vec-
tor and axial couplings. In a large class of theories, however,
the new U (1) current Jμ

F naturally combines with the weak
neutral current Jμ

Zsm
, both parity-violating, into a vectorial

current Jμ
U , combination of the B, L and electromagnetic

currents with a possible dark-matter current.
Uμ may be expressed equivalently as cos ξ Cμ+sin ξ Zμ

sm

(“mixing with the Z”) or (1/ cos χ) Ĉμ+ tan χ Aμ (“mixing
with the photon”), with Ĉ coupled to B, L and dark matter.
The U boson may be viewed as a generalized dark photon,
coupled to SM particles through QU = Q+λB B+λi Li , with
strength g′′cos ξ cos2 θ = e tan χ . “Kinetic-mixing” terms,
gauge invariant or not, simply correspond to a description in
a non-orthogonal field basis (rather than to a new physical
effect), with the dark photon in general also coupled to B and
L .

In a grand-unified theory Qgut
U = Q − 2 (B− L) at the

GUT scale for SM particles, invariant under the SU (4) elec-
trostrong symmetry group, with a non-vanishing ε = tan χ

already present at the GUT scale, leading to QU � Q −
1.64 (B − L) at low energy. This also applies, for a very
light or massless U boson, to a new long-range force, which
could show up through apparent violations of the equivalence
principle.

1 Introduction

The possible existence of a light neutral spin-1 boson with a
small gauge coupling, in the ∼ MeV to hundred MeV mass
range and decaying most notably into e+e− pairs, has been
studied for a long time [1–3]. It is generally expected not to
have a significant effect on neutral current phenomenology
at higher q2, as compared to a heavy Z ′, but it could affect

a e-mail: fayet@lpt.ens.fr

the anomalous magnetic moments of the muon or electron,
parity-violation effects in atomic physics, or be produced in
various decays and beam dump experiments, etc.

In an electroweak theory the new boson, referred to as the
U boson, can mix with the Z and with the photon through a
3×3 matrix, borrowing features from both kinds of particles.
The Z weak neutral current as well as the electromagnetic
current, and also the B and L currents, can contribute to
the new current Jμ

U , which has in general both vector and
axial parts. This could, however, lead to too-strong parity-
violation effects [4], with axial couplings also enhancing the
cross-sections for longitudinally polarized U bosons, pro-
duced much like light pseudoscalars [1].

In a large class of spontaneously broken gauge theories,
however, theU couplings to quarks and leptons are naturally
vectorial in the small mass limit. The U current, obtained
from a mixing of the extra-U (1) current Jμ

F with the Z
current, ultimately involves a combination of the baryonic,
leptonic (or B − L), and electromagnetic currents [5,6].
This includes and generalizes, within the framework of an
extended electroweak or grand-unified theory, the very spe-
cific case of a “dark photon” coupled to electric charges,
which has focused much of the experimental attention. This
also applies to an extremely light or masslessU boson induc-
ing a new long-range force, extremely weak, which could
lead to apparent deviations from the equivalence principle
[3,5–7].

The U boson may also couple to dark matter, and can
mediate sufficient annihilations through stronger-than-weak
interactions so as to allow for dark-matter particles to be light
[8,9]. It may provide a possible explanation for the apparent
discrepancy between the expected and measured values of
gμ − 2 [10–12], and be at the origin of many interesting
effects.
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2 A vectorially coupled U boson

In the presence of weak-interactions one may expect the U
couplings to be parity-violating. Still this one may be vecto-
rially coupled to quarks and leptons, as in the specific case
of a “dark photon”, but allowing for more general situations.
This occurs in a large class of models in which the extended
electroweak symmetry is broken by a single doublet; or by
two (or more) as in supersymmetric theories, but with the
same gauge quantum numbers. The symmetry breaking may
then be viewed as induced by a single active doublet ϕ, the
others being “inert”.

2.1 QU as a combination of Q, B, L and Fdark

We express the extended electroweak covariant derivative as

i Dμ = i∂μ − g T .Vμ − g′

2
Y Bμ

︸ ︷︷ ︸

(possibly grand-unified)

− g′′

2
F Cμ, (1)

with the extra U (1)F gauge symmetry commuting with
SU (3)C × SU (2) × U (1)Y , or SU (5) in a grand-unified
theory. The Lagrangian density, expressed as usual in an
orthonormal field basis, includes the couplings of the gauge
fields with the corresponding currents,

L = − 1

4

(

VμνVμν + BμνBμν + CμνCμν

)

− J μ. Vμ − J μ
Y Bμ − J μ

F Cμ + ... . (2)

When quarks and leptons acquire their masses from a sin-
gle electroweak doublet as in the standard model, or sev-
eral but with the same gauge quantum numbers, the gauge
invariance of their Yukawa couplings requires the newU (1)F
quantum number F , and the corresponding current J μ

F , to be
expressed as [5,6]

F = αB B + βi Li + γ Y + Fd ,

J μ
F = g′′

2
Jμ
F = g′′

2
(αB Jμ

B + βi J
μ
Li

+ γ Jμ
Y + Jμ

d ) . (3)

The new U (1) current is naturally expressed as a linear com-
bination of the B and L currents with the weak-hypercharge
current,1 and a possible dark-matter or extra spin-0 sin-
glet contribution associated with a “hidden sector”. The
simultaneous appearance of B, L and Y in (3) is actually

1 Two doublets, such as h1 and hc2 in supersymmetric theories, both with
Y = −1, also allow for a U (1)A symmetry rotating differentially the
two doublets and acting axially on quarks and leptons. Its generator FA
may provide an extra contribution to F and J μ

F in (1)–(3), the resulting
current J μ

U including an axial part. A light U boson is then produced
very much like a light pseudoscalar a, with theU (1)F symmetry broken
at a scale larger than electroweak through a large singlet v.e.v.. This
ensures that this effective pseudoscalar a has reduced interactions, very
much as for an invisible axion [1,2].

required in the framework of grand unification, to ensure
thatU (1)F commutes with the non-abelian grand-unification
gauge group [3,5,6].

For γ = 0 the new interaction, coupled to a linear combi-
nation of the baryon and lepton numbers, is simple to study
in terms of the mass and couplings of the new boson, then
unmixed with the Z and the photon. For the theory to be
anomaly-free the U current may be taken as the B − L cur-
rent (in the presence of νR fields), possibly combined with
the Li − L j and dark-matter currents. The new force may be
of infinite or finite range, and may also act on dark-matter
particles.

We now concentrate on the more elaborate situation of a
U (1)F gauge interaction ofCμ in (1)–(3) involving the weak-
hypercharge generator Y , allowing to normalize g′′ and F so
thatγ = 1. We may again use B−L and Li−L j in expression
(3) of F for the theory to be anomaly-free, including νR fields.
The v.e.v. v/

√
2 � 174 GeV of the doublet ϕ, with Y = 1 ,

breaks the SU (3)C × SU (2) ×U (1)Y ×U (1)F gauge sym-
metry to SU (3)C×U (1)QED×U (1)U , withmW = gv/2. The
three neutral fields W3, B, and C are mixed into the massless
photon field A, the massive Z field and a new neutral field
U , still massless at this stage. They are given by [5,6]

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

A = g′ W3 + g B
√

g2 + g′2 = sin θ W3 + cos θ B,

Z = g W3 − g′B − g′′C
√

g2 + g′2 + g′′2 ,

U = g′′(g W3 − g′B) + (g2 + g′2)C
√

g2 + g′2 √

g2 + g′2 + g′′2 .

(4)

The photon field has its usual SM expression in terms of
tan θ = g′/g. Z and U are obtained by rotating the standard
Zsm = cos θ W3 − sin θ B and the U (1)F gauge field C in
the plane orthogonal to A as represented in Fig. 1, according
to
{

Z = cos ξ Zsm − sin ξ C,

U = sin ξ Zsm + cos ξ C,
(5)

with

tan ξ = g′′
√

g2 + g′2 = g′′

gZ
. (6)

This leads to the 3 × 3 orthogonal mixing matrix in (4).
The U field is still massless at this stage, and coupled to a

conserved current. This one is obtained, in the smallmU limit
in whichU is almost exactly given by (4), as a combination of
theU (1)F current Jμ

F with the standard weak neutral current

Jμ
Zsm

, using sin ξ
√

g2 + g′2 = g′′ cos ξ from (6). Including
as in (2) and (3) the coupling constants g, g′/2, g′′/2 within
the currents J μ we have
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C

Zsm

0

U

Z

ξ
(⊥ A)

Fig. 1 “Mixingwith the Z”, in the plane orthogonal to the photon field
Aμ.Uμis a (small) mixing ofCμ(coupled to F = Y+αB B+βi Li+Fd )
with Zμ

sm, leading to J μ
U as in (7) and (8), with tan ξ = g′′/

√

g2 + g′2

J μ
U = cos ξ

(

g′′

2
Jμ
F

)

︸ ︷︷ ︸

J μ
F

+ sin ξ

√

g2 + g′2 (Jμ
3 − sin2 θ Jμ

em)
︸ ︷︷ ︸

J μ
Zsm

= g′′ cos ξ

[

1

2
Jμ
Y + 1

2
(αB Jμ

B + βi J
μ
Li

+ Jμ
d )

+ (Jμ
3 − sin2 θ Jμ

em)
]

. (7)

With Y/2 (from Jμ
F ) and T3 (from Jμ

Zsm
) combining into Q =

Y
2 + T3 the axial part in the U current for quarks and leptons
disappears in the massless U limit. The resulting current is

J μ
U = g′′ cos ξ

(

cos2 θ Jμ
em + 1

2
(αB J

μ
B + βi J

μ
Li

+ Jμ
d )

)

= e tan χ

(

Jμ
em + 1

2 cos2 θ
(αB Jμ

B + βi J
μ
Li

+ Jμ
d )

)

.

(8)

It is associated with a conserved charge [5,6], normalized
as

QU = Q + 1

2 cos2 θ
(αB B + βi Li + Fd), (9)

with coupling constant

g′′ cos ξ cos2 θ = g′′
√

g2 + g′2
g2 + g′2 + g′′2

g2

g2 + g′2

= ε e = e tan χ � g′′ cos2 θ.

(10)

This coupling is expressed in terms of the elementary
charge e = gg′/

√

g2 + g′2 as ε e with ε = tan χ . The
angle χ may be interpreted from another expression of Uμ,
given in a non-orthogonal basis as (1/ cos χ) Ĉμ + tan χ Aμ

(cf. Eqs. (46), (48), (55), and Fig. 3 in Sect. 5). Ĉμ is in gen-
eral coupled, not only to dark matter and to a spin-0 field σ

in the hidden sector responsible for mU [5,6], but also to B
and L as well. Ĉμ and Aμ, both orthogonal to Zμ in (4), are
themselves non-orthogonal, at an angle π

2 +χ with tan χ = ε

given by (10), very close to π
2 if the extra U (1) coupling g′′

is small.

2.2 Relations between U charges

The U charges in (9), expressed for the first generation of
quarks and leptons as a linear combination of Q, B, and Le,
satisfy the same additivity relations

QU (p) − QU (n) = QU (u) − QU (d)

= QU (νe) − QU (e) = QU (W+) = 1.

(11)

They express the conservation of QU in the limit of a mass-
less U , associated with an unbroken symmetry U (1)U , with
the W± carrying ± 1 unit of QU . The corresponding vector
couplings of the U boson, expressed from (8) to (10) as
{

fνe = εe QU (νe), f p = 2 fu+ fd = εe QU (p),
fe = εe QU (e), fn = fu + 2 fd = εe QU (n),

(12)

must therefore verify

fn = f p + fe − fνe . (13)

This relation expresses in particular that QU remains con-
served in the β decay of the neutron, n → p e ν̄e.

The U is constrained to interact very weakly with elec-
trons, so that the extra contribution δUae to the electron
anomaly be sufficiently small; and with protons, so that the
π0 →γ U decay amplitude, proportional to f p = 2 fu + fd ,
be sufficiently small (cf. Sect. 6). It should also interact suf-
ficiently weakly with neutrinos so as to satisfy the constraint
| fνe fe|/m2

U
<∼ GF from low-q2 νe–e scattering, i.e., [4,8]

| fνe fe|1/2 <∼ 3 10−6 mU (MeV), (14)

valid for mU larger than a few MeVs. The additivity property
(11)–(13) implies that if fe, f p, and fνe are all small, the
coupling to the neutron fn = f p + fe − fνe is expected to
be small as well.

The U (1)F generator in (3) may well involve B and L
through their difference B − L , in view of an anomaly-free
theory (including νR’s), or of grand unification as we shall
see. QU may then be expressed as

QU = Q − λ (B − L) + QUdark. (15)

More specifically with λ � 1,

QU � Q − (B − L) + QU dark (16)

would lead to smaller interactions with the proton and the
electron, i.e.,

small ( f p = − fe), as compared to ( fn = − fν), (17)
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very much as found in [3], in the presence of axial cou-
plings. In a similar way QU close to Q − B + QUd (or
Q − (B − 3Lτ ) + QUd in view of an anomaly-free theory)
would lead to small f p and fνe , with a larger fn � fe, again
in agreement with (13).

Such relations, however, may be avoided in other situa-
tions, with two spin-0 doublets at least, in which the U cur-
rent is not naturally vectorial and conserved in the small mU

limit, so that significant parity-violation effects may have to
be expected. A light U in a longitudinal polarization state
may then be produced and interact significantly, much like
the spin-0 pseudoscalar a associated with the spontaneous
breaking of the global U (1)U [1]. Both effects restrict sig-
nificantly the possible size of axial couplings (cf. Sect. 6.1).

2.3 A new long-range force, and equivalence principle tests

TheU could stay massless, mediating a new long-range force
acting additively on ordinary particles, proportionally to a
linear combination of B (as considered long ago by Lee and
Yang [13]) with L and Q. Or it may acquire a mass if the
U (1)U symmetry gets spontaneously broken. The fact that
both B and L can be present simultaneously in the expression
of QU , and in combination with the electric charge Q, allows
for an extension to grand-unified theories. The fact that Q
may also appear alone illustrates that the popular dark photon
case is included as a specific case of this general analysis.

For ordinary matter QU appears as a combination of the
numbers of protons, neutrons and electrons, or Z , N and
Q, i.e., effectively Z and N only for ordinary neutral matter
[7]. More specifically the new force may act mostly on the
number of neutrons N , as in the case of a “protophobic” U
boson for which QU is close to Q − (B − L) [3].

With QU = Q − λ (B − L) + QUd as in (15) (and also
in the absence of the Q term, if Y does not appear in expres-
sion (3) of F so that the U does not mix with the Z and the
photon), one has

QU (p + e) = 0, QU (n) = −λ, (18)

so that

QU = − λ N , (19)

for ordinary neutral matter. The interaction potential between
two bodies of mass mi and number of neutrons Ni is then
given by

V (r)=− GN m1m2

r
+ (λε)2 e2 N1N2

4πε◦ r
e
− r/ h̄

mU c . (20)

The ratio between the repulsiveU -exchange potential and the
gravitational potential between two neutrons at a distance r
somewhat smaller than h̄/mUc is about

VU (r)

Vg(r)
� − (λε)2 α

(

mPlanck

mn

)2

� − 1.23 1036 (λε)2.

(21)

For a massless or almost massless U boson the new force
could lead to apparent deviations from the equivalence prin-
ciple [5–7], constraining it to be considerably weaker than
gravitation, by ≈ 10−10 at least, corresponding typically to

λε <∼ 10−23, (22)

depending also on mU and λU = h̄/mUc , so that the result-
ing violations of the equivalence principle be <∼ 10−13 [14–
17].

The MICROSCOPE experiment will soon test the valid-
ity of this principle at the 10−15 level [18]. The additivity
property of the new force induced by a spin-1 U boson, fol-
lowing from the linear expression (9) of QU (as opposed to
an hypothetical coupling to mass, or strangeness, …), is also
in contrast with the case of a spin-0 mediator [19], for which
other contributions to the expression of the new force are gen-
erally expected. This may allow for a distinction between
spin-1 and spin-0 mediators, should a deviation from the
equivalence principle be observed.

2.4 Generating a small mass for the U boson

TheU boson can acquire a small mass from a neutral singletσ
withY = 0, directly providing A = sin θ W3+ cos θ B in (4)
as the massless photon field [5,6]. The singlet v.e.v. < σ >

= w/
√

2 generates a mass term mC = g′′Fσ w/2, resulting
in a small U mass

mU � mC cos ξ � g′′Fσ w/2, (23)

with
√

2 	 σ a physical singlet BEH field, possibly (slightly)
mixed with the standard one

√
2 	ϕ0 taken to describe the

new 125 GeV spin-0 boson [20,21].
The massive U field differs very little from its expres-

sion in (4) and (5), through a tiny change in ξ (from ξ◦ to
ξ◦ + δξ ) inducing very small parity-violating contributions
≈ m2

U/m2
Z in the U current Jμ

U . To discuss these small mU

corrections to the U and Z currents we observe that the the-
ory is invariant under a simultaneous change of sign for Cμ

and g′′, acting as

Cμ → −Cμ, g′′ → − g′′, (24)

so that

(A, Z , U ) → (A, Z , −U ),

with (g′′, ξ, χ,mU ) → − (g′′, ξ, χ,mU ).
(25)

Corrections to J μ
U in (7) and (8), odd in g′′ and vanishing

with mU , are thus ≈ g′′ cos ξ m2
U/m2

Z (rather than g′′ cos ξ

mU/mZ ), i.e.,
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≈ e tan χ m2
U/m2

W . (26)

The Z current differs also very little from its standard SM
expression with a small contribution from Jμ

F , by terms ≈
m2

U/m2
Z as obtained from (4) to (8).

2.5 Special case of the dark photon

The special case for which B and L do not participate
in expression (3) of the U (1)F quantum number, simply
reduced to

F = Y + Fd , (27)

provides in an electroweak theory a “dark photon”, with the
U coupled to standard model particles proportionally to their
electromagnetic current, through

J μ
U = g′′ cos ξ cos2 θ

︸ ︷︷ ︸

ε e

(Jμ
em + 1

2 cos2 θ
Jμ
d ). (28)

The coupling g′′ cos ξ cos2 θ may be expressed as in (10) as
ε e in terms of the elementary charge e = gg′/

√

g2 + g′2,
with

ε = tan χ = g′′

g′
g

√

g2 + g′2 + g′′2
� g′′

g′ cos θ, (29)

in the small mU limit.
This simple situation, a special case of the general one,

has been obtained in an extended electroweak theory without
ever referring to a largely fictitious “kinetic-mixing” term.
Such terms are simply associated with a description in a non-
orthogonal field basis, independently of the fact that they are
gauge invariant or not. Adding them explicitly in an initial
Lagrangian density (then under the restrictive condition that
they must be gauge invariant [22,23]) does not provide addi-
tional physical freedom. Indeed the notion of scalar product
is not generalized by adding to its usual expression xx ′ + yy′
in orthonormal coordinates a non-diagonal “mixing term”
ε (xy′+ yx ′) . Discussing a theory in a non-orthogonal rather
than in an orthonormal field basis has no effect on the results.

The simple situation of a “dark photon” has been the
focus of much experimental attention recently [24,25]. But
it appears excessively restrictive as compared to the general
situation for a U boson [5,6], excluding possible contribu-
tions from the B and L currents, which ought to be present
in a grand-unified theory.

3 The U current in grand-unified theories

Indeed within SU (5)-type grand-unified theories [26,27], the
weak hypercharge Y , now a generator of SU (5), is no longer
abelian, while the U (1)F generator F in (1) and (3) should

commute with SU (5). It may then look like gauge invariance
prevents Y from entering in the expression of the U (1)F
quantum number F for the visible particles, requiring ε =
tan χ to vanish at tree level, as commonly believed [25].

This is not true, however, as Y can contribute to F through
the SU (5)-invariant combination involving B − L [5,6],

F = Y − 5
2 (B − L)

=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

− 1
2 : 10 of SU (5) {uL , dL , ūL , e+

L },
3
2 : 5̄ of SU (5) {d̄L , νL , e−

L },
1 : 5H of SU (5) including ϕ.

(30)

One also has F = − 5
2 for possible ν̄L singlets describ-

ing right-handed neutrinos νR , making the theory anomaly-
free, and the U (1)F generator traceless. All Yukawa cou-
plings proportional to 5̄H . 5̄. 10 and 5H . 10. 10 , responsi-
ble for down-quark and charged-lepton masses and up-quark
masses, respectively, have F = 0 and are invariant under
SU (5) ×U (1)F .

The U (1)F current, including its hidden-sector part Jμ
d ,

now reads

Jμ
F = Jμ

Y − 5

2
Jμ
B−L + Jμ

d . (31)

By combining it with Jμ
Zsm

as in (7) and (8) we get the U
current

J μ
U = g′′ cos ξ

(

1

2
Jμ
Y − 5

4
Jμ
B−L + 1

2
Jμ
d + (Jμ

3 − sin2 θ Jμ
em)

)

= g′′ cos ξ

(

cos2 θ Jμ
em − 5

4
Jμ
B−L + 1

2
Jμ
d

)

, (32)

associated with the charge [5,6]

QU = Q − 5

4 cos2 θ
(B − L) + 1

2 cos2 θ
Fd . (33)

The corresponding current Jμ
U involves a term proportional

to the electromagnetic current Jμ
em, with the same coupling

g′′ cos ξ cos2 θ = ε e = e tan χ (34)

as in (10) and (29), and a term proportional to the B − L
current, plus a dark-matter current.

4 QU , the electrostrong symmetry, and B − L

4.1 QU at the grand-unification scale

To understand better the origin and meaning of the new
charge we note that QU in (33), if evaluated at the grand-
unification scale with g′ = g

√
3/5 and sin2 θ = 3/8, would

read
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at GUT scale: Q gut
U = Q − 2 (B − L) + 4

5
Fd . (35)

This Q gut
U is invariant under the SU (4)es (∼ O(6)) elec-

trostrong symmetry group unifying directly electromag-
netism with strong interactions, including SU (3)C×U (1)QED

within SU (5), and commuting with U (1)U . Indeed, forget-
ting momentarily about the 24 adjoint v.e.v. (or extra dimen-
sions) responsible for the breaking of SU (5) [×U (1)F ] into
SU (3)C × SU (2) × U (1)Y [×U (1)F ], the v.e.v. of the
quintuplet 5H (including the electroweak doublet ϕ, with
F = Y = 1), is responsible for the symmetry breaking

SU (5) ×U (1)F
< 5H >−→ SU (4)es ×U (1)U . (36)

It leaves at this stage unbroken the U (1)U group generated
by Q gut

U in (35), commuting with SU (4)es. This remaining
U (1)U may then be broken by the singlet v.e.v. < σ > =
w/

√
2, generating a non-vanishing mU as in (23).

This U charge, invariant at the GUT scale under the
SU (4)es electrostrong symmetry group, is the same for all
components within SU (4)es representations, i.e., for quarks
and leptons

Q gut
U =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

1 : 4̄
(

d̄
e−

)

L+R
,

0 : 6 {u, ū}L ,

2 : 1 νL (+ νR),

(37)

with family indices omitted for simplicity. Dirac quark and
lepton fields (except possibly for chiral neutrinos) are in vec-
torial representations of SU (4)es ×U (1)U , with theU boson
interactions, as well as electrostrong interactions, invariant
under SU (4)es, preserving parity.

For the 24+1 gauge bosons of SU (5) × U (1)F , which
includes SU (4)es ×U (1)U as a subgroup, one has

Q gut
U =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 : 15 {gluons, γ, X±4/3},
0 : 1 + 1 Z , U,

1 : 4
(

Y−1/3

W+
)

,

−1 : 4̄
(

Y 1/3

W−
)

.

(38)

Qgut
U vanishes as required for the {u, ū} self-conjugate sextets

(the U being “u-phobic” at the GUT scale), with

Q
gut
U = Q − 2(B − L) :

⎧

⎪
⎨

⎪
⎩

Q p
U = Q d

U = − 1, Q ν
U = 2,

Q n
U = 2 Q d

U = − 2, Q e
U = 1,

Q u
U = 0.

(39)

p : (1 − λ)

d : −1 − λ

3

u : 2 − λ

3

u : 2 − λ

3 X4/3

4 − 2λ

3

d

d̄

e+ : (1 − λ)

1 + λ

3

⎫
⎪⎬

⎪⎭
π0

p : (1 − λ) d : −1 − λ

3

u : 2 − λ

3

u : 2 − λ

3 Y 1/3

1 − 2λ

3

u

ū

e+ : (1 − λ)

−2 + λ

3 π0

Fig. 2 Two of the diagrams responsible for p → π0e+ in a SU (5) ×
U (1)F theory, showing the values of QU = Q − λ(B − L) + Qdark
and illustrating its conservation. λ = 2 at the GUT scale (with QU = 0
for u and X4/3), down to 1.64 at low energy. QU = 1 − λ � −.64 for
both the proton and the positron emitted in its decay

4.2 QU at low energy

Below the grand-unification scale expressions (35), (37)–
(39) of QU get modified as in (15) according to

QU = Q − λ (B − L) + QU dark, (40)

down to (33),

QU � Q − 1.64 (B − L) =
{

p : −.64 ; ν : 1.64,

n : − 1.64 ; e : 0.64.
(41)

λ = 5/(4 cos2 θ) in (40) decreases from 2 at the GUT scale
to � 1.64 at low energy, with sin2 θ � .238 .

This is in agreement with the conservation of QU (follow-
ing from those of Q and B − L) by all interactions, strong,
electroweak, and grand-unified, in the masslessU limit, with

QU =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

W± : ± 1,

Y±1/3 : ± (Q u
U + Q d

U ) = ± 1 − 2λ

3
,

X±4/3 : ± 2 Q u
U = ± 4 − 2λ

3
,

(42)

and

QU =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

u : 2 − λ

3
, p : 1 − λ,

d : −1 − λ

3
, n : −λ,

ν : λ,

e : λ − 1,

(43)

where λ = 5/(4 cos2 θ) � 1.64 at low energy. The conser-
vation of QU by all interactions, including those induced by
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X±4/3 and Y±1/3 exchanges that could be responsible for
proton decay, still unobserved [28], is illustrated in Fig. 2.

Note that ε = tan χ � (g′′/g′) cos θ is already present
at the grand-unification scale. As Cμ is decoupled from the
visible sector for g′′ = 0 (or tan χ = 0),2 ε = tan χ may be
viewed as a measure of the coupling between the visible and
hidden sectors. Furthermore a non-vanishing ε = tan χ can-
not be generated just from quantum corrections once g′′ = 0
so that ε vanishes at tree level, with Cμ interacting exclu-
sively with the hidden sector, being decoupled from the vis-
ible one.

5 The U as a dark photon also coupled to B and L

5.1 Another orthogonal basis for neutral gauge fields

The U current has been obtained from the mixing (7) and (8)
between the extra-U (1) current Jμ

F and the standard weak
neutral current Jμ

sm, providing, in the smallmU limit, a vector
current Jμ

U including a contribution ∝ Jμ
em, with additional

contributions from B, L and dark-matter currents.
This result may also be described in a complementary

way, by constructing the same current Jμ
U from the electro-

magnetic current Jμ
em combined with the extra current Jμ

d
in the hidden sector (as in the specific “dark photon” case),
but also in general with the baryonic and leptonic currents
Jμ
B and Jμ

Li
. Indeed the weak-hypercharge current Jμ

Y in (1)
and (3) may be viewed as coupled to Bμ and Cμ through the
single hatted combination
B̂ = cos ζ B + sin ζ C, with tan ζ = g′′/g′. (44)

The doublet ϕ, with F = Y = 1, interacts with B̂ with
the coupling constant ĝ′ = √

g′2 + g′′2 . It does not interact
with the orthogonal combination Ĉ , which remains massless
at this stage. < ϕ > generates a spontaneous breaking of
SU (2)×U (1)Ŷ → U (1) ˆQED, leaving also Â massless. With

tan θ̂ = ĝ′/g =
√

g′2 + g′′2/g (45)
this leads one to define the orthonormal basis
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

Ẑ = cos θ̂ W3 − sin θ̂ B̂ = g W3 − g′B − g′′C
√

g2 + g′2 + g′′2
≡ Z in (4),

Â = sin θ̂ W3 + cos θ̂ B̂

= (g′2 + g′′2)W3 + gg′B + gg′′C
√

g′2 + g′′2 √

g2 + g′2 + g′′2 ,

Ĉ = − sin ζ B + cos ζ C = −g′′B + g′C
√

g′2 + g′′2 ,

(46)

2 Even if the notations suggest that Cμ is a free field for g′′ = 0 , we
can return to (2) and (3) to still view as Cμ as possibly interacting with
the hidden sector through the dark current J μ

d .

B

C

0

B̂

Ĉ

ζ

( W3)

Ĉ Ĉ/cosχ

Â

0

U =
tanχ A

+

A

χ

( Z= Ẑ= cos θ̂ Wµ
3 sin θ̂ B̂µ)

Fig. 3 “Mixing with the photon”, in the plane orthogonal to Z . ϕ

interacts with Bμ and Cμ through B̂μ = cos ζ Bμ + sin ζ Cμ, leaving
Ĉμ = − sin ζ Bμ + cos ζ Cμ massless. Uμ is a (small) mixing of Ĉμ

(coupled to B, L and dark matter) with the photon field Aμ, Uμ =
(Ĉμ/ cos χ) + tan χ Aμ, leading to J μ

U = (J μ

Ĉ
/ cos χ) + e tan χ Jμ

em

as in (56) and (59), and earlier in (8)

with θ̂ defined by

tan θ̂ = ĝ′/g =
√

g′2 + g′′2/g. (47)

We can also relate the two orthonormal basis in (4) and
(46), which have Z = Ẑ in common, by writing, for the fields
in the orthogonal plane,
{

Â = cos χ A + sin χ U,

Ĉ = − sin χ A + cos χ U.
(48)

The angle χ between the Â field in (46) and the actual photon
field A in (4) is obtained from the scalar products

cos χ = A. Â = U.Ĉ, sin χ = − A.Ĉ = Â.U, (49)

so that
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

cos χ = g′
√

g2 + g′2 + g′′2
(g2 + g′2)(g′2 + g′′2)

= g′ĝZ
ĝ′gZ

,

sin χ = gg′′/
√

(g2 + g′2)(g′2 + g′′2) = g g′′

ĝ′gZ
,

tan χ = gg′′/g′
√

g2 + g′2 + g′′2 = g g′′

g′ĝZ
,

(50)

giving back in particular (10) and (29) for ε = tan χ .

5.2 The dark photon case

In the specific dark photon case for which F = Y + Fd , stan-
dard model particles do not interact with Ĉ , only with W and
B̂ and thus Ẑ and Â. In the small mU limit, Â in (46) appears
for SM particles as a photon-like field, coupled to them only
through their electromagnetic current, with strength

ê = g sin θ̂ = g

√

g′2 + g′′2
g2 + g′2 + g′′2 = gĝ′

ĝZ
. (51)

The photon field, expressed as A = cos χ Â− sin χ Ĉ where
Ĉ is in this case uncoupled to SM particles, is coupled elec-
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tromagnetically to them with the slightly reduced strength

ê cos χ = e = gg′/
√

g2 + g′2. (52)

At the same time U = sin χ Â+ cos χ Ĉ is coupled with
the reduced strength ê sin χ = e tan χ . The A– Â angle χ ,
i.e., in fact the U–A mixing angle, is obtained from

cos χ = e

ê
= g′

√

g2 + g′2 + g′′2
(g2 + g′2)(g′2 + g′′2)

= g′ĝZ
ĝ′gZ

= sin θ

sin θ̂
,

(53)

as found in (50) in the general case. U is here coupled to
SM particles only through their electromagnetic current, with
strength ê sin χ = e tan χ , i.e.,

εe = e tan χ = g′′ g2

g2 + g′2

√

g2 + g′2
g2 + g′2 + g′′2 = g′′ cos2 θ cos ξ,

(54)

as directly found in (10) from the mixing of Jμ
F with Jμ

Zsm
.

5.3 Recovering in a non-orthogonal basis the general
expression of the U current

The Â/A/U mixing in (46) provides an interpretation for
the fact that the combination between the Jμ

F and Jμ
Zsm

neu-
tral currents provides a U coupling to SM particles through
the electromagnetic current. But is it possible to extend this
interpretation to the general situation involving also B and L
in the U couplings?

To address this question, we express from (48) the U field
in terms of the (non-orthogonal) A and Ĉ fields defined in
(4) and (46), as

Uμ = Ĉμ

cos χ
+ tan χ Aμ. (55)

Its equation of motion reads

∂μU
μν = J ν

U = 1

cos χ
J ν

Ĉ
+ tan χ J ν

em. (56)

With

J μ

Ĉ
= − sin ζ J μ

Y + cos ζ J μ
F

= cos ζ
g′′

2

(

α Jμ
B + βi J

μ
Li

+ Jμ
d

)

, (57)

the U (1) gauge field Ĉ is now coupled, not just to the dark-
matter current as in the pure “dark photon” case, but to a
combination of it with the B and L currents.

Using the identity3

cos ζ

cos χ
=

√

g2 + g′2
g2 + g′2 + g′′2 = cos ξ, (58)

and g′′ cos ξ cos2 θ = e tan χ , we recover from (55) to (57)
expression (8) of J μ

U , or equivalently

J μ
U = ε e

(

Jμ
em + 1

2 cos2 θ
(α Jμ

B + βi J
μ
Li

+ Jμ
d )

)

. (59)

This also reads, in a grand-unified theory,

J μ
U = ε e

(

Jμ
em − 5

4 cos2 θ
Jμ
B−L + 1

2 cos2 θ
Jμ
d

)

, (60)

in agreement with expression (33) of QU , with sin2 θ �
.238 as appropriate for low energies.

The presence of the electromagnetic current, but also of
the B and L currents, first found from the mixing (5) and (7)
between Jμ

F and Jμ
Zsm

(cf. Fig. 1) [5,6], may be interpreted
by expressing Uμ in terms of the non-orthogonal Aμ and
Ĉμ fields as in (55) (cf. Fig. 3). J μ

U is then obtained in terms
of Jμ

em and Jμ
d , Jμ

B and Jμ
Li

as in (56)–(60). The specific
case of a “dark photon” coupled proportionally to electric
charges, simple to discuss and often used as a benchmark
model, appears to be too restrictive, and the possible cou-
plings of the U to the B and L currents should be taken into
account as well.

5.4 “Kinetic mixing” as the effect of a description in a
non-orthogonal field basis

As a side remark, the notion of “kinetic mixing”, popular
now, has been used nowhere. It goes without saying that, as
in any theory (including the standard model itself), using a
non-orthogonal rather than an orthonormal field basis would
introduce in the expression of the Lagrangian density non-
diagonal terms, now often referred to as “kinetic-mixing”
terms. These can always be eliminated by returning to an
orthonormal basis, without any loss of physical content. Fur-
thermore, and in contrast with a general belief, it is not nec-
essary that these “kinetic-mixing” terms be gauge invariant,
provided of course the complete Lagrangian density is invari-
ant, independently of the basis in which it is expressed.

To illustrate this let us rewrite the Lagrangian density
defined in terms of Bμ and Cμ as in (1)–(3), in the non-
orthogonal basis (B̂μ, Cμ), or (Bμ, Ĉμ), represented in
Fig. 3, using from (44) and (46)

Bμ = (B̂μ/ cos ζ ) − tan ζ Cμ. (61)

3 This may be seen geometrically from cos ζ = C. (Ĉ = − sin χ A +
cos χ U ) = cos χ (C.U ) = cos χ cos ξ , and it is verified using the
expressions of cos ξ , cos ζ and cos χ in (6), (44), and (50).
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We get

Lk = − 1

4

(

Wμν
3 W3 μν + BμνBμν + CμνCμν

)

= − 1

4
Wμν

3 W3 μν

− 1

4

1

cos2 ζ

(

B̂μν B̂μν + CμνCμν − 2 sin ζ B̂μνCμν

)

= − 1

4
Wμν

3 W3 μν

− 1

4

1

cos2 ζ

(

BμνBμν + Ĉμν Ĉμν + 2 sin ζ Bμν Ĉμν

)

.

(62)

This is immediately rediagonalized by returning to the
orthogonal fields Bμ and Cμ (or B̂μ and Ĉμ).

The same kinetic terms (62) in L may be reexpressed in
other non-orthogonal basis, involving different non-diagonal
“kinetic-mixing” terms, this time not even gauge invariant.
With

Uμ = Ĉμ

cos χ
+ tan χ Aμ,

or Aμ = Âμ

cos χ
− tan χ Uμ,

(63)

as in (55) one has

Lk = − 1

4

(

Zμν Zμν + Aμν Aμν +Uμν Uμν

)

= − 1

4
Zμν Zμν

− 1

4

1

cos2 χ

(

Aμν Aμν + ĈμνĈμν + 2 sin χ AμνĈμν

)

,

= − 1

4
Zμν Zμν

− 1

4

1

cos2 χ

(

Âμν Âμν+UμνUμν−2 sin χ ÂμνUμν

)

, (64)

where the “kinetic-mixing” terms, which no longer involve
abelian gauge fields only, are not gauge invariant.

The mixing angles between Ĉμ and Aμ in (64), or Ĉμ and
Bμ in (62) are geometrically related by

sin χ = − Ĉ . A = cos θ (− Ĉ .B
︸ ︷︷ ︸

sin ζ

) − sin θ Ĉ .W3
︸ ︷︷ ︸

0

, (65)

thanks to the orthogonality between Ĉ and W3 (cf. Fig. 3),
i.e.,

sin χ = sin ζ cos θ, (66)

easily verified from sin ζ cos θ = (g′′/ĝ′) (g/gZ ) = sin χ .
Altogether there is no real gain in considering such

non-diagonal kinetic terms, immediately rediagonalized by
returning to the original expressions. Considering kinetic-
mixing terms i.e., using non-orthogonal field basis simply
appears as a substitute for the introduction of the appropri-
ate couplings of Cμ in the covariant derivative (1), involving

both the visible and the hidden sectors and leading to the
corresponding current J μ

F in (3). This should not hide that
Cμ may be coupled to B and L as well as to Y and dark mat-
ter, and the U boson to a combination of the electromagnetic
with the B, L , and dark-matter currents.

In addition, a non-vanishing mixing angle χ , and coupling
ε = e tan χ (also relating the visible and hidden sectors),
corresponding to Uμ = (Ĉμ/ cos χ) + tan χ Aμ as in (55),
may be obtained directly even in the presence of a single
U (1) gauge group, as in a SU (5) × U (1)F gauge theory,
with the visible and hidden sectors getting totally decoupled
for ε = χ = ζ = ξ = 0.4 These non-vanishing ε and χ

are obtained here in spite of the non-existence of a gauge-
invariant kinetic-mixing term between non-abelian (SU (5))
and abelian (U (1)F ) gauge fields.

6 Implications for a light U

6.1 Axial couplings are strongly constrained

The axial couplings of the U should satisfy

( f Ae f Vq )
1
2 <∼ 10−7 mU (MeV), (67)

formU larger than a few MeVs, expressing that | f Ae f Vq |/m2
U

<∼ 10−3 GF , to avoid too large parity-violation effects in
atomic physics [4]. A light U with axial couplings (1+)
could also be produced in a longitudinal polarization state
with enhanced effective pseudoscalar couplings to quarks
and leptons [1],

f Pql = f Aql
2mql

mU
, (68)

much like a 0+ pseudoscalar a. The resulting constraints on
the axial couplings to heavy quarks, from ψ or ϒ → γ U
and K+ → γ U decays [3], are rather severe, especially
for a light U with invisible decay modes into νν̄ or LDM
particles. In particular the axial couplings to down quarks
and charged leptons, universal when they get masses from
the same doublet v.e.v. (as in supersymmetric theories) must
then verify [10,29,30]

f Ae,d <∼ (2 to 4) 10−7 mU (MeV)/
√

Binv (69)

(which is typically <∼ 10−5 for a U in the ∼ 10 MeV mass
range). This leads, in such cases where axial couplings may
occur, one to consider a U (1)F symmetry broken at a scale
larger than electroweak through a large singlet v.e.v., very
much as for an “invisible” axion [2].

4 There is thus no need to invoke hypothetical effects of radiative cor-
rections for generating a non-vanishing value of ε, especially when no
coupling between the visible and hidden sectors is present.
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The U lifetime may vary considerably between less than
10−15 s to many years and even infinity, depending on its
mass and couplings. The decay rate for U → e+e− is given
by [1]

�ee � 1

12π

[

( f Ve )2

(

1 + 2m2
e

m2
U

) √

1 − 4m2
e

m2
U

+ ( f Ae )2

(

1 − 4m2
e

m2
U

)3/2
⎤

⎦mU , (70)

including the phase-space factors 3
2 β − 1

2 β3 and β3 for
the vector and axial production of spin- 1

2 particles, with

β =
√

1 − 4m2
e/m

2
U . We also have to take into account the

invisible decay modes of theU into ordinary neutrinos, given
for three left-handed neutrinos with chiral couplings fν by

�νL νL � f 2
ν

8π
mU , (71)

and other possible invisible decays into right-handed neu-
trinos and light dark-matter particles, which could decrease
significantly the branching ratio for U → e+e−.

6.2 Vector couplings should not be too large

Let us thus return to a light U vectorially coupled to SM par-
ticles, as is the case when a single doublet ϕ contributes to
the electroweak breaking (or several but with the same gauge
quantum numbers) [5,6]. Couplings proportional to a combi-
nation of B, Li and Q as in (9), (40), and (60), rather than just
Q, open new possibilities for experimental detection [29].
Experimental results, usually discussed in the (log ε,mU )

plane, should also be considered in terms of these couplings
f = εe QU , through the changes in the couplings to SM
particles,

εe Q → f = εe QU = εe (Q + λB B + λLi Li ), (72)

leading to fn+ fνe = f p+ fe as in (13), and more specifically

εe Q → εe QU = εe (Q − λ(B − L)), (73)

with QU (e) = λ − 1 � .64 in a grand-unified theory. This
usually results in moderate shifts of the various limits when
expressed in terms of log ε; e.g. for an experiment sensitive
to the couplings to the electron, through the change

(εe)2
dark photon → [ fe = εe QU (e) ]2 × Bee. (74)

TheU boson should interact sufficiently weakly with elec-
trons, so that its contribution to the electron anomaly,

δUae � f 2
e

12π2

m2
e

m2
U

� α

3π
[ ε QU (e) ]2 m2

e

m2
U

(75)

for mU larger than a few MeVs, be less than about 3 10−12

[31] (improved over the earlier 2 10−11 leading to | fe| <∼
10−4 mU (MeV) [10]). This requires
∣

∣

∣ fe = εe QU (e)
∣

∣

∣
<∼ 4 10−5 mU (MeV), (76)

or
∣

∣

∣ ε QU (e)
∣

∣

∣
<∼ 1.2 10−3 mU

10 MeV
, (77)

applicable for mU above a few MeVs.
The U should also act sufficiently weakly with protons,

so that the π0 → γ U decay rate be sufficiently small. The
corresponding branching ratio is given, for mU somewhat
below mπ◦ , by 2 (2 fu + fd)2/e2 = 2 ε2 QU (p)2, replacing
the 2 ε2 of the pure dark photon case, typically constrained
to be <∼ 10−6 for mU in the 10–100 MeV range [32]. This
experiment provides similar limits for a U boson decaying
into e+e−, with the replacement

(εe)2
dark photon → [ f p = 2 fu + fd

︸ ︷︷ ︸

εe QU (p)

]2 × Bee, (78)

leading to
∣

∣

∣ f p = εe QU (p)
∣

∣

∣
<∼ 3 10−4 /

√

Bee, (79)

with QU (p) = 1 − λ � −.64 in a grand-unified theory.
For a boson with significant invisible decays into neutrinos

or light dark-matter particles, we have, from the search for the
decay π0 → γ +U inv. [33–35], with a branching ratio fixed
by 2ε2 QU (p)2 < 3.3 10−5 for mU < 120 MeV, the limit
∣

∣

∣ f p = εe QU (p)
∣

∣

∣
<∼ 1.2 10−3 /

√

Binv. (80)

We also have, from a low-q2 νe–e scattering experiment
[36], the constraint | fνe fe|/m2

U
<∼ GF [4,8], i.e.,

| fνe fe|1/2 <∼ 3 10−6 mU (MeV), (81)

valid for mU larger than a few MeV (or | fνe fe|/m2
U

<∼ 10−5

otherwise), also expressed as

ε | QU (νe) QU (e) |1/2 <∼ 10−4 mU

10 MeV
. (82)

If fe, f p, and fν are all small as suggested by the above con-
straints, fn may have to be small as well, as a result of (13).

For an anomaly-free theory the currents may be con-
structed from Q, B − L (with νR’s) and Li − L j , with the
dark-matter current, also vectorial, involving spin-0 or Dirac
spin-1/2 dark-matter particles. With a family-independent
symmetry QU involves B− L as in (15), QU = Q − λ (B−
L) + QU dark, as found in a grand-unified theory, implying

fe = − f p = (λ − 1) εe, fν = − fn = λ εe, (83)

in agreement with (13). More specifically the constraints (81)
and (82) read εe

√|λ(λ − 1)| <∼ 3 10−5 mU (10 MeV) and
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typically imply, in a grand-unified theory with λ � 1.64 so
that

√|λ(λ − 1)| � 1,

ε <∼ 10−4 mU

10 MeV
, (84)

for mU larger than a few MeVs.
Still it may be possible, although at the price of ele-

gance, to arrange for νe, or νe and νμ, not to interact with
U , e.g. through the change B − L → B − 3Lτ , leading to

QU = Q − λ (B − 3Lτ ) + QU dark, (85)

still in an anomaly-free theory. More specifically

QU � Q − (B − 3Lτ ) + QU dark (86)

would lead to QU (n) � QU (e) � QU (μ) � −1, QU (p) �
QU (νe) � QU (νμ) � 0, i.e.,

fn � fe � − ε e, with f p, fνe , fνμ very small. (87)

The U couplings in (9) offer new opportunities for ten-
tative interpretations of possible anomalies. The decays of
excited states of 8Be have long been viewed as potentially
sensitive to the production of light spin-1 U bosons and
anomalous production of e+e− pairs that could signal such
decays have already been reported [37], although these first
indications were not confirmed. A possible new anomaly has
been found recently [38], which remains to be better under-
stood before attempting at an interpretation [39,40]. It does
not seem that it can be attributed to a dark photon coupled
proportionally to electric charges, which would require a too
large ε. Equations (8) and (9) of the U charge and current
[5,6] may help provide an interpretation if the effect is real,
possibly with a U interacting more strongly with neutrons
and electrons than with protons and neutrinos, keeping in
mind relations (11)–(13) associated with a conserved QU in
the massless limit.

7 Conclusions

Expression of QU from Q, B and L

The structure presented here for the interactions of a
light U boson depends on a very small number of rele-
vant parameters, especially ε and mU with QU expressed
as Q + λB B + λi Li [+ Qd ] or Q − λ (B − L) [+ Qd ] .
It provides a consistent framework to deal with a new inter-
action, naturally parity-conserving in the visible sector and
coupled to a conserved charge QU , in the small mass limit.
The U may be viewed as mixed with the Z , or mixed with the
photon, or both at the same time with a 3 × 3 mixing matrix
extending the 2 × 2 electroweak one of the standard model.

Kinetic mixing as an effect of a non-orthogonal field basis

What is often referred to as “kinetic mixing” simply cor-
responds to choosing a description in a non-orthogonal field

basis. This also implies that the kinetic-mixing terms associ-
ated with this basis are not even required to be gauge invari-
ant, in contrast with a common belief. Furthermore, even
with the U viewed as kinematically mixed with the photon,
B and L contributions are generally allowed in its couplings,
and may even be required as in the case of grand unification.

A non-vanishing ε = tan χ within grand unification

The construction is compatible with grand unification,
with a charge QU commuting with the electrostrong sym-
metry between the photon and gluons at the GUT scale, and
a non-vanishing ε = tan χ already present at the classical
level. This occurs in spite of the fact that the SU (5)×U (1)F
gauge group includes a single abelian factor U (1)F , so that
no gauge-invariant kinetic term mixing the SU (5) andU (1)F
gauge fields may be written. Still it is possible to view theU as
(“kinematically”) mixed with the photon as in (55) and (63),
with non-gauge-invariant mixing terms in the Lagrangian
density as in (64), and a U boson also coupled to the B
and L currents.

QU from the SU (4)es ×U (1)U electrostrong symmetry

QU evolves, from Q − 2 (B − L) + QU dark at the GUT
scale, to

QU � Q − 1.64 (B − L) + QU dark (88)

at low energy. This expression, and the more general one of
QU � Q − λ (B − L) + QU dark, motivated by grand unifi-
cation and by anomaly-cancellation, may be used to display
the experimental constraints in the (log ε, mU ) plane as a
function of λ .

TheU current in the visible sector is purely vectorial in the
masslessU limit, in relation with the fact that the theory may
admit at high energy an extended U (4) = SU (4)es ×U (1)U
electrostrong symmetry which preserves parity, with the U ,
photon, gluons, and X±4/3 bosons all coupled to vector
currents. The interactions mediated by the Z and the elec-
trostrong quartet (Y∓1/3, W±), on the other hand, violate
parity.

A large variety of interesting effects may occur, in partic-
ular for a U in the ≈ MeV to hundred MeV mass range. The
U boson, if extremely light or massless, may also lead to a
new long range force, extremely weak, which could become
manifest through apparent violations of the equivalence prin-
ciple. This will soon be tested in space to an increased level
of precision. The characteristics of the new interaction medi-
ated by such a light neutral spin-1 U boson may also play
a role in shedding light on a possible unification of weak,
electromagnetic, and strong interactions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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