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ABSTRACT: We propose an efficient grassmannian formalism for solution of bi-linear finite-
difference Hirota equation (T-system) on T-shaped lattices related to the space of highest
weight representations of gl(K7, Ko|M) superalgebra. The formalism is inspired by the
quantum fusion procedure known from the integrable spin chains and is based on exte-
rior forms of Baxter-like Q-functions. We find a few new interesting relations among the
exterior forms of Q-functions and reproduce, using our new formalism, the Wronskian
determinant solutions of Hirota equations known in the literature. Then we generalize
this construction to the twisted Q-functions and demonstrate the subtleties of untwisting
procedure on the examples of rational quantum spin chains with twisted boundary condi-
tions. Using these observations, we generalize the recently discovered, in our paper with
N. Gromov, AdS/CFT Quantum Spectral Curve for exact planar spectrum of AdS/CFT
duality to the case of arbitrary Cartan twisting of AdS5xS® string sigma model. Finally,
we successfully probe this formalism by reproducing the energy of gamma-twisted BMN
vacuum at single-wrapping orders of weak coupling expansion.
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1 Introduction

In 1931, Hans Bethe analysed the very first example of a quantum integrable model —
Heisenberg SU(2) XXX spin chain — and showed that it can be reduced to algebraic equa-
tions which now bear his name [1]. The roots of these equations, called Bethe roots, enter
the observable quantities only through their symmetric combinations. This is one of many
reasons to work with the Baxter Q-polynomial — a polynomial with zeros at Bethe roots,
Qu) = Hﬁzl(u—uk). Later, several different techniques have been developed to determine
Q(u). For instance, instead of the Bethe equations one can use the Baxter equation

o (s 5) Qo (u-)Qu-9=T@aW. sw=ut, 1)

and search for such solutions that Q(u) and T'(u) are both polynomials.
Another reformulation of the same problem is to demand the Wronskian identity

_ Qi(u+2) Qi(u—15)
W=—— :
P(u) |Qa(u+ 1) Qa(u— 1)

to be satisfied. Indeed, it is easy to show that for any two solutions Q;(u), Q2(u) of the

D=

=1 (1.2)

=

Baxter equation the Wronskian combination W is an i-periodic function. We can further
normalize the solutions so as to put W = 1, resulting in (1.2). Then it is enough to demand
that both @; and Q2 solving (1.2) are polynomials to get solutions of (1.1) describing the
physical spectrum of the spin chain. On this example we see that there are actually two
Q-functions appearing.

The present paper introduces an interpretation of the Wronskian condition (1.2) in a
natural geometric way. Consider C? and denote by ¢; and (s two basis vectors in it. A one-
form is a (u-dependant) linear combination of the basis vectors, i.e. a function of the form

Quy(uw) = Q1(w)¢1 + Q2(u)C2, (1.3)
where (1 and Q2 are a priori arbitrary functions. Any one-form is associated to a u-
dependent embedding V(1y(u) : A = AQ(1)(u) of the complex line C into C*. We will also
denote its image as V{1)(u) = {AQ(1)(u)|A € C} C C?, which can be characterized as the
set of points x satisfying' Q1) Ax = 0. The coordinates Q; of the form @)y are then called
the Pliccker coordinates of the line V.
The Wronskian condition (1.2) can be written as

Qn) <u + ;) A Qq) (U - ;) = ¢(u) (1 A Ca- (1.4)

First, it implies that the lines V(;)(u + %) and V(q)(u — %) are not collinear — except when
u is a zero of ¢. Second, it describes an XXX spin chain if we demand that the embedding
is polynomial (i.e. realized by Pliicker coordinates being polynomial functions of u) and,
as a consequence, ¢(u) in (1.4) is a polynomial which we denote as ¢(u) = [[r_, (u — 0.

Homogeneous spin chains considered in (1.1), correspond to 6; = 0, Vj.

'We denote by the wedge symbol an arbitrary bilinear antisymmetric product such that ¢; A 2 # 0.
Consequently, one has x Ay = det(x,y) (1 A (2.



Figure 1. Q-functions define a fibration of grassmannians over the Riemann surface of the spectral
parameter u. Relation between grassmannians of different rank is restricted by (1.5).

We are ready to establish the following map: to each polynomial embedding V(l)(u),
such that V(;)(u + 5) N V{3y(u — 5) = {0} should correspond an eigenstate of the SU(2)
XXX spin chain of length L in the fundamental representation with inhomogeneities
01,05, ...,0r. The correspondence is established after factoring out elementary symmetry
transformations as it will be described in the text: on the one hand, eigenstates belonging
to the same SU(2) multiplet correspond to the same embedding. And on the other hand,
embeddings related by global GLs transformations should not be distinguished — they
correspond to the same eigenstate.

In this way, we reformulated the solution of XXX spin chain in a geometric fashion.
This point of view can be generalised to integrable systems with a higher rank symmetry
algebras of gl type as follows. Let V(,,)(u) be a u-dependent n-dimensional linear subspace of
C, i.e. we associate to u € C an element Viny(u) of the Grassmannian GR;, — the set of all
n-dimensional linear subspaces of C. Consider a collection Vioy(u), Viy(u) 5 - ., Vi (u)
of linear subspaces of increasing dimensions, and demand the property

Viy(u+1/2) N Vi (u —1/2) = Vi_qy(v), ¥n € {1,2,...,N -1} (1.5)

to hold for any u save a discrete number of points, see figure 1. In principle, equation (1.5)
is equivalent to the existence of IV linearly independent functions @);, as we will see in
section 2. However, the geometric formulation (1.5) provides us with a useful intuition and
prepares us to introduce a richer set of functions: the Q-system.

We will advocate in this article that solving equation (1.5) supplemented with ap-
propriate analytic constraints is equivalent to finding the spectrum of certain integrable
models. For the case of compact rational spin chains equation (1.5) is an analog of fusion
procedure and the analytic constraints are reduced to the demand that Q-functions, which
are defined as Pliicker coordinates for V|,), are polynomials in u. However, this example
is not unique. Equation (1.5) appears to be generic and applies to many quantum inte-
grable systems, including (1+1)-dimensional QFT’s, with gl(N) symmetry or gl(k|N — k)
super-symmetry, or even for non-compact (super)algebras su(K;, Ko|M). It is closely re-



lated to the fact that the transfer-matrices and their eigenvalues, such as the T-function
of eq. (1.1), satisfy the so-called Hirota bi-linear finite-difference equation (2.1) which, as
we will see later, can be solved in terms of Wronskian expressions through a finite number
of Q-functions. The Q-functions are not obliged to be polynomials, as it is the case in
integrable non-compact spin chains and (1+1)-dimensional QFT’s. Moreover, there are
situations when an approach similar to the coordinate or algebraic Bethe ansatz is not
known, and yet the equation (1.5) holds.

Moreover, the equation (1.5) is also central to the spectral problem of integrable two-
dimensional quantum field theories, and in particular sigma-models. It even allows for
a concise and efficient description for exact spectrum of energies (anomalous dimensions)
of AdS5/CFTy duality. It is because the quantum spectral curve (QSC) of the model,
describing the dynamics of quantum conservation laws, is most adequately formulated in
terms of the Q-system based on the equation (1.5) and the psu(2,2|4) superconformal
symmetry algebra [2, 3] related to it.

Since (1.5) is such a generic equation, expected to appear in virtually all quantum
integrable models, its properties deserve to be studied in detail, which is one of the main
goals of this paper.

One should always bear in mind that Q-functions are a way to introduce a coordi-
nate system, hence they are not uniquely defined. For instance, we can replace Qo2 —
Q2 + const x Q1 without any consequence for the Wronskian condition (1.2), and the pos-
sible linear transformations are not exhausted by this example. In addition, the overall
rescaling of all Q-functions by any function of u does not affect the embeddings V{;). In
section 2 we will construct the T-functions as determinants of Q-functions; 7'(u) in the
Baxter equation (1.1) is one of them: T'(u)¢1 A (2 = Q1y(u +1) A Q(1y(u — ). T-functions
should be thought as certain volume elements in C%, i.e. they are represented by a full
form. They are invariant under rotation of the basis but still transform under rescalings.
The fully invariant objects are Y-functions which are certain ratios of T-functions. Al-
though the description in terms of Y’s is a more invariant way to parameterise the system,
the description in terms of V,,(u) has an important advantage since usually the analytic
properties of Q-functions, directly related to T- and Y-functions by Wronskian solutions,
are significantly simpler than the ones of T’s or Y’s.

In this article we discuss the following applications of the proposed approach. In
section 2.6 we show how the Hirota equation (T-system) for integrable systems with gi(V)
type of symmetry is solved in terms of Q-functions and also discuss how the Wronskian-type
formulation (1.5) is related to higher-rank Baxter equations. This is a quite well established
topic in the literature, in particular its geometric interpretation can be easily spotted
from discussion in [4]. We include it into the paper as a simple example which contains
the guiding lines useful for the further generalizations to supergroups and noncompact
representations.

Then, in section 2.8, we generalise the gl(/V) solution and show how to get from our
formalism the generic Wronskian solution of Hirota equation with the boundary condi-
tions of the “T-hook” type, describing the weight space of highest weight non-compact
representations appearing in integrable models with su(K7, K3|M) symmetry. Note that



the T-hook itself was first proposed as a formulation of AdS5;/CFT4 Y-system [5] with
superconformal psu(2,2[4) symmetry. The generic symmetry algebra su(Kj, Ko|M) also
includes two interesting particular cases: the compact supersymmetric algebra su(K|M)
and the non-compact one su(K1, K3), the latter should be relevant for Toda-like systems.
We emphasize here a remarkable fact that the supersymmetric generalization still relies on
the same equation (1.5), with N = Ky + Ky + M. However, a convenient way to properly
treat it is to choose a subspace CM in CV and work with Q-functions in specially re-labeled
Grassmannian coordinates obtained by a Hodge-duality transformation in C™. We pro-
pose a nice interpretation of this re-labeling as a specific rotation of (K + N)-dimensional
hypercube representing the so called Hasse diagram of bosonic u(K + N) algebra.?

The Wronskian solution of Hirota equations on “T-hook” was given for the most in-
teresting case of psu(2,2]4) symmetry by Gromov, two of the authors, and Tsuboi in [6],
and then it was presented for the generic case in the work of Tsuboi [7]. We believe that
the formalism of exterior forms developed here presents these results in a much more con-
cise and geometrically transparent way. We also establish several interesting new relations
among the Q-functions, especially elegantly written in terms of the exterior forms. Some
of them have been extensively used in the study of the Q-system emerging in AdS/CFT
integrability case [2, 3.

In section 3 we discuss how the construction can be amended to include the case of
integrable spin chains with twisted boundary conditions. It happens in a very natural way:
one should gauge the global rotational GL(N) symmetry w.r.t. the space of spectral param-
eter, making it local and hence introducing a new object: a holomorphic connection A. The

non-local relation (1.5) is modified by inserting a parallel transport P exp [ f;f; A(u’)duf]
of the plane V(,,)(u — 1/2), so that the intersection in (1.5) naturally happens at the same
point (see figure 2). This parallel transport precisely realizes the twisting.

The new properties emerging in the twisted case are thoroughly studied, mainly on the
examples of rational spin chains. Especial attention is paid to the untwisting limit which
is singular and quite non-trivial. In particular, we give a detailed description how relation
between the asymptotics at infinity and the representation theory depends on the presence
or absence of particular twists.

The Wronskian solution of Hirota equation (2.1) in the case of super-conformal alge-
bra su(2,2]|4) and the grassmannian structure of the underlying Q-system have played an
important role in the discovery of the most advanced version of equations for the exact
spectrum of anomalous dimensions in planar N'= 4 SYM theory — the quantum spectral
curve (QSC) [2, 3]. In fact, many of the relations discussed and re-derived in the present
paper using the formalism of exterior forms have been already present in [3] in the co-
ordinate form. As an interesting generalization of the QSC, we will present in section 4
its twisted version, in the presence of all (343) angles describing the gamma deformation
and a non-commutativity deformation of the original N/ = 4 SYM theory [8-10]. The
corresponding P — 1 and Q — w equations of [2, 3], as well as all Pliicker QQ-relations,

2Each of all 2" multi-index Q-functions corresponds to a vertex of the hypercube and different
Q-functions are related by Pliicker relations on each 2-dimensional edge.



Figure 2. Deformation of the fibration by introducing a connection. This connection “rotates”
the spaces V() via the parallel transport from point u + % to point u where the equation (1.5) can
be used.

will be essentially unchanged and the whole difference with the untwisted case will reside
in the large u asymptotics of Q-functions with respect to the spectral parameter u, which
are modified due to the presence of twists by certain exponential factors. This is the only
change in the analytic properties of QSC due to the twisting. The algebraic part of the
twisted QSC formulation will be simply a particular (2]|4|2) case of the twisted version of
the general (K1|M|K3) Q-system presented in this paper. One can also note that a similar
twisted version of the QSC was already introduced in [11] for a specific choice of boundary
conditions introduced in [12, 13] at the level of the TBA (see also [14] which appeared
simultaneously to the present paper).

Finally, in section 5 we probe our conjectures for twisted QSC on an interesting case of
~-deformed BMN vacuum of this AdS/CFT duality. For a particular case, S-deformation,
the Y-system and T-system for the twisted case were formulated and tested in [15, 16] (see
also [17, 18] at the level of the S-matrix). We reproduce by our method the one-wrapping
terms in the energy of this state, known by direct solution of TBA equations [19, 20|, which
was also known by the direct perturbation theory computation [21]. A potential advantage
of our method is the possibility to find the next corrections to this state on a regular basis,
by the methods similar to [22, 23] as well as application of the efficient numerical procedure
of [24], but this is beyond the scope of the current paper.

2 Algebraic properties of Q-system and solution of Hirota equations

In this section we show how the Q-system is used to solve Hirota equations on (K;|M|K3)
T-hooks. We also establish notations and algebraic properties of the Q-system. Although
this solution was already presented in the literature [7], we take a look on it from a different,
more geometric point of view, and we believe it will be a useful contribution to the subject
as the technicality of the involved formulae is significantly reduced and the solution itself
is made more transparent.



2.1 Hirota equation in historical perspective

The bi-linear discrete Hirota equation, sometimes also called the Hirota-Miwa equation [25—
27]

1 1
Ta,s <u + 2> Ta,s <u - 2> = Ta+1,s(U)Ta71,s(U) + Ta,s+1(u)Ta,sfl(u) (21)

appears in numerous quantum and classical integrable systems. In these notations, typi-
cally used in the context of quantum integrable spin chains and sigma-models, T}, ;(u) are
complex-valued functions of two integer indices a and s parameterising a Z? lattice, and of
a parameter u € C usually called spectral parameter. Although the parameter u enters the
equation only with discrete shifts and hence can be treated as another discrete variable,
the analytic dependence of 75 s on u is an important piece of information used to specify
the physical model. We will exploit this analytic dependence starting from section 3.

In integrable quantum spin chains with gl(N') symmetry, 75, s appears to be the transfer
matrix in the representation s®, with the a x s rectangular Young diagram, as shown in
figure 3b, while u plays the role of the spectral parameter. Equation (2.1) describes the
fusion procedure among these transfer-matrices [4, 28-31]. The statement generalises to
supersymmetric case [32-35] and, with a particular modification of (2.1), to other semi-
simple Lie algebras, see [4, 27, 30, 31] and the references therein. In integrable 2d CFT’s at
finite size or finite temperature, and in particular in 2d sigma-models, this Hirota equation
first appeared in relation to quantum KdV [36] and more recently it was successfully used
for the finite size analysis, including excited states, for the SU(NN) x SU(N) principal chiral
field (PCF) and some related models [37, 38]. It was also proposed as a version of the
AdS/CFT Y-system [39] appearing in the spectral problem of the planar N' = 4 SYM
theory and it was successfully exploited there for extracting many non-trivial results at
arbitrary strength of the 't Hooft coupling and in various physically interesting limits [40].
The finite-difference Hirota equation (2.1) is also related in different way to the classical
integrability, besides the standard classical limit 7z — 0 of the original quantum system. It
can be obtained from the canonical Hirota equation for 7-function of classical integrable
hierarchies of PDE’s by introduction of discrete Miwa variables [26]. And in particular,
a generating series of transfer-matrices of gl(N) quantum Heisenberg spin chains can be
interpreted as a T-function of the mKP hierarchy [41].

As was shown in the past, Hirota equation admits general and exact solutions for
specific boundary conditions on the Z? lattice. In particular, if one demands Th<o,s = 0
then all T-functions can be expressed explicitly in terms of Ty, and 77 s by

det TLSJFZ;]' (’LL + ﬁ%)

1 = 2

; (2.2)

1

TO,S (U + Z'a+1272k)
k=1
which is a particular case of the Cherednik-Bazhanov-Reshetikhin (CBR) determinant [34,
38,42, 43] formulae. This determinant relation is a generic solution of the Hirota equation in
the sense it can be proven recursively in a assuming T, >0 s 7 0; if T, s = 0 for some positive
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strip to a rectangular Young diagram.

Figure 3. The Young diagrams of compact representations of gl(IN) group are confined to a half-
strip, depicted on figure (a), of width N on infinite representational (a,s)-lattice. The vertices
within this strip are in one-to-one correspondence with rectangular Young tableux of size a X s, as
depicted on figure (b), as well as with corresponding characters or T-functions.

a then (2.2) may be violated, however in practice this affects only T’s which do not have
an explicit physical interpretation, and we choose to define these T’s such that (2.2) holds.

If we impose a more severe restriction on T’s and demand them to be non-zero only
in the black nodes of figure 3a (i.e. for s =0 ora > 0or s > 0,N > a > 0) then we
get the Hirota equation appearing in integrable models with gl(/N) symmetry and related
to the compact representations of the latter. For such boundaries, we can recognise in
CBR determinants a quantum generalisation of standard Gambelli-Jacobi-Trudi formulae
for characters of gl(V) irreps. The analog of (2.2) looks especially simple

Xo.(G) =det(x, . 1 (G))igjks<as (2.3)
where G = {x1,...,xy} is a Cartan subgroup element. This character satisfies the simpli-
fied Hirota equation®

Xa,s(G)Xa,s(G) = Xa+s,s(G)Xa—1,s(G) + Xa,s—i—l (G)Xa,s—l(G) ) (24)

it can be derived directly from (2.5) due to the Jacobi relation for determinants (see e.g.
the appendix of [34]).

In the case of characters, we know that there exists a more explicit, Weyl formula
expressing the character as a determinant involving the Cartan elements:

N—j+s50,,
det x 7 o .
; k 1 if¢>
N if 4
X, (G) = ISihs JN where ©; ; = = (2.5)
' det x, 7 0 ifi<y
1<5,k<N

It is clear that it should be possible to generalize the Weyl formula from characters to
T-functions. Such a quantum generalization was known since quite a while [4] in terms of

3Tt is sometimes called the Q-system in the mathematical literature. We will avoid this in order ot to
confuse it with the Baxter’s Q-functions Qr(u) which we use all over the paper. We rather call the collection
of these Q-functions as the Q-system.



Characters of the GL(N) group T-functions on the GL(N) strip
20d Weyl formula Cherednik-Bazhanov-Reshetikhin formula
_ _ , s Apt LA =[N —j—k
X, (G) = IS;?}%WX(A;CH—]C)(G) Tx(u) ISSEQMT(AHJ%) (u +1 2 )
15t Weyl formula Wronskian expression
1<d§t<N XzﬁNﬁ 20 —2j+ 1+ A|— | V|
= =hE= _ L 25 —2j4+ 14| AN
X,\(G) = det Xiv_j Th(u) = 1§%%)E§NQI§(U +1 2 )
1<j,k<N

Table 1. Expression of the GL(NN) characters and their generalization to T-functions. Represen-
tations are labeled by Young diagrams A = (A1, A2,...,A|5|), and || denotes \;. Characters xx(g)
are written in terms of the eigenvalues (xj,Xa,...,xy) of a group element g. The CBR formula
and Wronskian expression of T-functions are written in this table under specific gauge constraint.
In other gauges they hold up to division by 7oy or Qp, cf. (2.2) and (2.36), the normalisation is
clarified in section 2.6.1.

the Wronskian-type determinant:

1+5(20,:—1) .
.a+ 14520, )—]lj). (2.6)

It gives, up to rescaling of T-functions, the general solution of Hirota equation for
a half-strip boundary conditions of figure 3 in terms of N independent Q-functions
Q1(u),...,Qn(u). More precisely, it applies for the semi-infinite rectangular domain
s > 0,N > a > 0; the rest of non-zero T-functions, corresponding to the black nodes
of figure 3, a = 0,5 < 0 and s = 0,a > N are easily restored.*

The parallels between character formulae and T-functions (or, when meaningful, trans-
fer matrices) extend beyond the rectangular representations s, the equivalent formulae for
arbitrary finite-dimensional representations of gl(/N) algebra are summarised in table 1.

The Gambelli-Jacobi-Trudi-type formulae (2.3) and their quantum counterpart (2.2)
remain unchanged if one generalises the symmetry to the case of superalgebras of gl (or
rather sl) type, including the non-compact cases. They are used, however, under different
boundary conditions outlined in figure 4.

The super-analogues of Weyl-type formulae are not obtained by a straightforward
generalisation, yet they are also known. For the compact case su(K|M) the determinant
expressions for characters were established in [44]. In the non-compact case su(Ky, Ko| M)
certain expression for characters were given in [45] and their determinant version for the
case of rectangular representations® was elaborated in [46]. The generalization to the
quantum case was first presented for finite-dimensional irreps of su(K|M) in [35], then for
su(2,2/4) in [6] (this is the most interesting case for physics as it is realised in the context
of AdS/CFT integrability, see a review [40] for introduction into the subject) and finally

*Indeed, the Hirota equation gives To,s—1 = 1o, Ty o /To,s41, and Tagr,0 = T, 0T, o/Ta-1,0 for a > 0,
allowing to iteratively restore the boundary T-functions.

5Determinant character formulae for non-rectangular highest-weight representation were not published
explicitly to our knowledge.
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KQI =
M s —M> M, S
(a) gl(K|M) “fat hook” (with K = (b) T-hook of size (K1|Mi + M:|K3) (where
3, M = 4) K1=3, K2=2, M1=4 and Mzzl).

Figure 4. Fat hook and T-hook, for supersymmetric symmetry groups.

generalized to any su(K7, Ko|M) in [7]. In the case of rectangular s® irrep, the formulae
of [7] give the generic (up to a gauge transformation, as explained below) Wronskian
solution of Hirota equation (2.1) within the (K7|M|K3)-hook presented in figure 4b (which
was also called T-hook due to its shape). The so-called fat hook of the figure 4a, which
we also call L-hook, is a particular case Ky = 0 of su(K7, K3|M) corresponding to the
compact representations of su(K|M).

In [7], the Weyl-type solution of Hirota equation is presented in terms of an explicit
finite determinant and it summarises the whole progress achieved in this field. However,
the corresponding expressions are extremely bulky which somewhat obscures their nice
geometric and algebraic properties. The main aim of this section is to present a more concise
and more intuitive formalism, based on the exterior forms of Baxter-type Q-functions. It
will clarify the Grassmannian nature of Wronskian solutions for T-functions on supergroups
and allow simple and general proofs for these formulae. We will re-derive several relations
already proven in [7] in this new language and present some new useful relations.

2.2 Notations

The Wronskian solution of Hirota equation (2.1) with boundary conditions shown in fig-
ures 3a and 4 will be written in subsequent sections in terms of a set of Q-functions Qp,p,...
which are labeled by several indices by and which are antisymmetric under permutations of
these indices. There exist relations between the Q-functions, and there are two equivalent
ways to formulate them: either as an algebraic statement — the “QQ-relations” — or as
a geometric statement — in terms of the intersection property (1.5).

Algebraically, the QQ-relations read (in the non-super-symmetric case of sec-
tion 2.6) [47-52]

QaQabe = Q1,Q%, — Q1,7 - (2.7)
All other QQ-relations derived below ultimately follow from (2.7), hence we will pause for

a while to accurately introduce the notational conventions related to (2.7) and to Q-system
in general.



Q123

Figure 5. Hasse diagram for gl(3) Q-functions.

The Q-functions are functions of the spectral parameter u. This dependence is typically
assumed implicitly, and the shifts of u are denoted following the convention

f[i”]:f<uj:n;>, fi:f<ui;>, i=vo1.  (28)
The indices b, ¢ in (2.7) take value in the “bosonic” set B = {1,2,..., N}. The multi-
index A of the bosonic set can for instance contain one single index a € B, or no index at
all (it is then denoted as A = §)), or all indices (which is denoted as A = B = (), etc. The
multi-index 2,1 is different from the multi-index 1,2 (one has Q21 = —Q1,2), and we will
say that the multi-index A = ajay...ay is sorted if Vk < n, ap < ax41. The sum over all
sorted multi-indices of length n is denoted by Z| Aj=n
For a multi-index A, {A} means the associated set (for instance {2,1} = {1,2}), and we
denote by A the sorted multi-index obeying {A} = B\{A} (for instance 1,3 = 2,4,5,..., N).
There are 2V different Q-functions corresponding to the different subsets of B. They
can be arranged as a Hasse diagram forming an N-dimensional hypercube, see figure 5.
Each facet of the Hasse diagram is associated with a QQ-relation: for instance the bottom
facet in figure 5 is associated to the relation

Q2Q123 = Q1,Q53 — Q12Q33 (2.9)

which is the case® A =2, b=1, c=3in (2.7).
Given a basis of N independent elements (1, (s, ...,y and an associative antisymmet-
ric bilinear product “A”, we also introduce the n-form

Qn) = Z Qa Ca,  where Cyby. b, =Coy NGy Ao A,y (and (p=1).  (2.10)
|Al=n

With explicit indices, (2.10) reads: Q) = > Qbiby.. by Coy A Coy Ao A, -
1<bi<ba<--<bp <N
We also introduce the Hodge dual xw of an arbitrary n-form w as the linear transfor-

mation such that
*Ca=€44C, (2.11)

SMore precisely, (2.7) gives the relation Q2Q213 = Q;QQ} — Q2_1Q3_37 which is equivalent due to the

antisymmetry.
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where €p,p,.. 5, 1S the completely antisymmetric tensor with the sign choice €12y = 1. For
instance this definition gives x(13 = —(2.455,... N-
The Hodge-dual Q-functions are denoted using the super-script labelling:

Q4 = M Qi, so that — x Q) = Z Q™ ¢a. (2.12)
|A|=|B|—n
The sign convention for the completely antisymmetric tensor e®1?2-0~ is also e!2~N = 1.

We will interchangeably use upper- and lower-indexed € to emphasise the covariance in
relations.
Note that the inverse Hodge-dual operation given by

Qs=e€aaQ" (2.13)
has certain difference in signs compared to (2.12).

Pliicker identity. Throughout this text, we will frequently use Plicker identities. The
simplest one is

*(Cbl/\Cbz/\"'/\ng) *(Ccl/\CCQ/\"'/\CcN):

= H Gy A Aoy Aley) * oy At Aoy s Aoy AGogpy Ao Aloy), (2.14)
a=1

Wyn

where the Hodge operation “x” simply transforms each product (p, A (py A -+ A (p, into
the number €p,p,.. 5, -
More generally, one has

* (X1 AXa A AXN) *(Y1IAY2 A AYN) =

N
:Z*(xl/\--'/\xN,l/\ya) *(YIN  AYarl AXNAYar1 A AYN), (2.15)

a=1
N N .
where x; = > ;7 %5 and y; = > ., ¥;,;¢; are arbitrary sets of vectors.

Asymptotics. The asymptotic behavior of functions at large u will have some impor-

tance later on in this article. We will then use the notation f ~ g to say that | llim L=
Ul—00
f_

and f ~ g to say that there exists a € C* such that lim g = Q.

|u|—o0

2.3 QQ-relations and flags of CV

The geometric counterpart of the algebraic relation (2.7) is the intersection condition (1.5).
Our nearest goal is to justify this statement.

The functions Q4 with |A] = n should be thought as Pliicker coordinates of the
hyperplane V{,,); they define V|, as the collection of points x that satisfy Q,) A x = 0.
Note that for a generic n-form w,, the condition wAx = 0 does not define an n-dimensional
hyperplane (for instance if w = (3 A (2 + (3 A (4, the condition is satisfied only by x = 0).

- 11 -



However, as it will become clear in this subsection, the relation (2.7) insures that the Q4
are indeed the Pliicker coordinates of n-dimensional hyperplanes.
To derive (2.7) from the intersection condition (1.5) we note that the latter can be
equivalently reformulated as the following union property
vn e {1,2,...,N -1}, Viry Vi = Vinty » (2.16)
which implies, in particular, that the sequence {0} = Vg, C V(Jf) C---C V([;,F)N l=CNisa
maximal flag of CV. The union property should hold for almost all values of the spectral

parameter save a discrete set of points.
Since V(1) is a line there exists a one-form

N
= Z Qala such that  V(;) = {x eCV; QuyNx= 0} . (2.17)
a=1

This defines (1) up to a normalisation, i.e. up to the transformation Q(l)(u) >
f(u)Qy(u) , where f is a C-valued function of u. Next, one can immediately see from (2.16)
that
B L BIR JC s [—n+1]
Vi =Viy V) V) (2.18)
_ {XECN; Q[(’I U /\Q(l) A /\Q[ ”“]/\x_o} (2.19)

We can therefore define the forms Q) by the relation
Quy = QU T A QLT A A QY ifn>1, (2.20)

where f,,(u) is a normalisation freedom that we will have to fix.
The definition (2.20) enforces the coordinates Q4 to obey the relation

+ —
fafiam

QAR Abe fafiarss

= Q@i — Qup Qi (2.21)
a proof is given in appendix A.l, and it is based on a simple application of the Pliicker
identity (2.15).

The equation (2.7) corresponds to a particular choice of normalisation such that
f\:\+1f|,_4|+1 flafiave, e fo = % for some function g. Note that (2.7) can be
modified if one decides to use a dlfferent prescription for f,; equation (2.21) is an invariant
version of (2.7). Still, we stick to the normalisation choice of (2.7) in this paper, this is

also a common choice in the literature.

Plugging the expression f, = Hn ]1 into (2.20) and using g~ /gt = fo = Qy, we finally
get
[n—1] 3] [1-n]
AL A 099
Q) = . Q[n—Qk} (2:22)
1<k<n-—1 0
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or equivalently, when written in terms of coordinates,

det [n+1—2k]
: b;
1<5,k< J
Qbibs...by = ]Hn QU (2.23)
1<k<n-—1 0

It is easy to see that the above expression is the general solution to QQ-relation (2.7),”
which proves that the geometric statement (1.5) is equivalent to QQ-relation (2.7).

In what precedes, we defined the Q-system by a very simple 3-terms bilinear rela-
tion (2.7). It implies many other, in general multilinear, equations relating Q-functions.
Equation (2.23) is one example of such a relation and a few other relations are given
throughout the text and in appendix A.3.

2.4 Hodge duality map

Whereas the form @)(,) defines a plane V) of dimension n in CV, it can be also used to
define a plane of dimension N — n in the dual space. It is easy to see that the intersection
condition (1.5) and the union condition (2.16) exchange their roles in the dual space and,
hence, we can devise a Q-system for the dual geometric construction which, quite naturally,
is simply given by Hodge-dual Q-functions (2.12). In practice, this means that Q-functions
with upper indices obey exactly the same algebraic relations as the Q-functions with lower
indices. For instance, one can derive

bj [n+1—2k]
1§C}'§ct§n(Q )

[n—2k]
m o

1<k<n—1

QUib2-bn

(2.24)

ete.

Note that, technically speaking, Hodge duality is not a symmetry of a given Q-system,
in the sense that it relates Q-functions with different set of indices. We can think about
it as a map, a natural way to construct another collection of Q-functions obeying (2.7) —
i.e. another Q-system — differing from the original one by a relabelling of the Q-functions.

2.5 Symmetry transformations on Q-systems

In this section we discuss other symmetries of the equation (2.7). Like the Hodge transfor-
mation, they map a given set of Q-functions (Q-system) to another Q-system. By contrast
with the Hodge transformation, which maps the spaces V) to the dual space, the trans-
formations we will consider essentially leave the spaces V/,) invariant.

We have seen that the QQ-relations is a way to rewrite the geometric intersection
property in a coordinate form. But any coordinatisation is sensible to a choice of basis,

"The statement is true if there is no A such that Q4 = 0. For instance, if N = 4, and Qy = 1,
Quy = Z?:l Cir Q2) = 0= Q3), Qray = 1 A2 A (3 A s, then the QQ-relations (2.7) hold, whereas (2.22)
do not hold. A singular situation with Q4 = 0 may appear in practical applications, we observed it in
cases related to short representations of supersymmetric algebra, see section 3.3.4. In the situations we
encountered, (2.22) holds even if Q4 = 0 for some A.

~13 -



hence there exist transformations which change a basis but do not affect the relation (2.7)
itself. These basis-changing transformations of Q-system are of two types: rescalings and
rotations.

2.5.1 Rescalings (gauge transformations)

Pliicker coordinates are projective: rescaling them does not change the point in Gras-
mannian that they define. Hence the transformation Q4 — gj4/Qa is a symmetry of the
QQ-relation (2.7). As we saw in the last section, this rescaling, defined by arbitrary N + 1
functions go(u), g1(w),...,gn(u), modifies f; in (2.21). As we agreed to work in the nor-
malisation compatible with (2.7), only 2 out of N + 1 functions remain independent. We
can summarize the admissible rescalings that preserve (2.7) in a compact form as

A —|A
Qs g Alg 1 g, 225)
where g4 are certain combinations of g;.
These rescaling transformations are also known as gauge symmetries of the Q-system.
Indeed, they are local transformations because g(+) depend on w.

2.5.2 Rotations

One can also rotate® the basis frame, that is to choose different basis vectors (1, ..., (.
However we cannot rotate the frames independently at different values of the spectral
parameter as the QQ-relations are non-local. Therefore, the following transformation

Qb= > e Qe (2.26a)

ceB

of single-indexed Q-functions together with the transformation

~ 1], [n—1 -1
Qorpntn = > WA Qe (2.26b)
€1,C2,...,cn€EB
of multi-indexed Q-functions is a symmetry of the QQ-relation (2.7) if hy. are i-periodic
functions of u:
hi = hy,,. (2.27)
The transformations (2.26) will be called H-transformations [53] or simply rotations.
Note that the case hp. = hdp. can be viewed as a particular case of the rescaling
symmetry with g)g) = 1 and ga)g(__) = h. Hence one may restrict to the case of

unimodular H-transformations:

(et hye=1. (2.28)

In contrast to two local rescaling symmetries, rotations should be thought as a global
symmetry. Indeed, periodic functions, e.g. (2.27), in the case of finite-difference equations
play the same role as constants in the case of differential equations. Eventually, we will
gauge the rotational symmetry, in order to formulate a twisted Q-system in section 3. But
until then, this symmetry will remain global.

8In this article we allowed a freedom of speech to call any linear non-degenerate transformation as
rotation. There is no metric to preserve, hence it does not lead to confusion.
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Figure 6. Infinite horizontal strip.

2.6 Solution of Hirota equation on a strip

This section is devoted to solving the Hirota equation (2.1) on a strip. One case of our
interest is the semi-infinite strip of figure 3 which corresponds to compact representations
of gl(N). We remind that in this figure T-functions are identically zero outside the nodes
denoted by black dots. The solution for these boundary conditions had been already written
in [4] and then analysed in a handful of follow-up works. We revise this case as a warm-up
for our subsequent studies of T-systems related to non-compact supergroups.

The semi-infinite strip should be thought as a special reduction® of an infinite horizontal
strip shown in figure 6, i.e. related to the solution such that 7Ty s is identically zero outside
the band 0 < a < N. We write down the generic solution for this case as well. It was
already successfully used in [37, 38, 54] for the study of TBA and physical Y-system for
the spectrum of principal chiral field (PCF) model at finite space circle.

On the infinite horizontal strip of figure 6, the generic solution to the Hirota equation
is given by!®

Tos =% (Q[(Z)s] A P([;,‘ﬂa» when 0 <a <N and T, s = 0 otherwise. (2.29)

By letters P and () we denote two independent sets of Q-functions, each of them expressed
through (2.22).!!
On the semi-infinite strip of figure 3a, a solution to the Hirota equation is given by:

Tos =% (Q[(Z)s] A Q[(;Vs:a];ﬂ) when s >0and 0 <a < N (2.30)

In components, the last relation becomes

Ta7s _ (_1)a(Nfa) Z QE:S](QA)FS*N] ) (231)
|Al=a
The solution (2.30) has to be supplemented with Ty, = T(;,Fs+1T()7,s+1/TO,S+2 =

*Q([Z:FS}Q[(]_VS)_N] for s < 0 and Too = T," ) T, 10/Ta20 = *Q%—a}Q[&—)N] for a > N.

a

9Up to minor adjustments, namely the question is about the vertical line s = 0 in figure 3. We can
replace this line, for the same solution of Hirota equation, by the horizontal line a = N and demand that
T-functions are non-zero on this horizontal line instead.

10The only purpose of Hodge x-operation is to convert (N)-forms to (0)-forms, as x((1 AC2 A---AlN) = 1.

[n—1] , ,ln—3] [1—n]

P(l) /\P(l) /\-->AP)E1>
oy

[Mi<k<n—1 Pq[) ]

""This means in particular that P, =
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We will now discuss what are the symmetry transformations of Hirota equation and of
formulae (2.29) and (2.30), then we will give a proof that (2.29) and (2.30) are indeed the
generic solution of the Hirota equation on the corresponding strips.

2.6.1 Gauge symmetry of the Hirota equation

Hirota equation, for any “shape” of non-zero T-functions, is invariant under the transfor-
mation
[+a+s] [+a—s] [—a+s] [ a—s]
To,s(u) = I++) Y+ 9=+ Y- Ty s(u), (2.32)
where g4 1), 9(+-)» 9(—+) and g(__y are four arbitrary functions of the spectral parameter
u. This transformation is usually called the gauge transformation.

One can reformulate the Hirota equation (2.1) as a Y-system:

Yo,s(u + %)Ya,S(u - %) N (14 Yo s1(w)(1+ Yo s 1(u))

— , 2.33
VartaVao1a(@) (L4 Yarr )1+ Yor(w) (239
+ —
using the Y-functions defined as Y, s = % The Y-functions are obviously invariant

under the gauge transformation (2.32). Typically, physically relevant quantities can be
expressed only through the gauge-invariant functions.

If the gauge functions g(+4) are i-periodic, i.e. if they obey gt = g—, then the gauge
transformation is the multiplication of T, s(u) with a single i1-periodic function. Such
transformation will be called a normalization. For instance,'? the prefactor (—l)a(N —a)
in (2.31) can be removed by an appropriate normalisation.

As T-functions are determinants of Q-functions, unimodular rotations of the Q-basis
have no effect on T-functions. By contrast, the rescaling gauge transformation of Q-
system precisely generates gauge transformations of the T-functions. Indeed, one can spot
from (2.29) that the rescaling

All [-]A All -
Qarr gfMgl Q. Pa s gh g4 Py (2.342)
induces the following gauge transformation'3
Tas . g[a+s] [N—a— s] [ a+s] [a s— N]T (234b)
In a more restrictive case of (2.30), the rescaling of Q-functions generates only two gauge
transformations:
04 '_>g[|A|] [— \AHQA’ T, |_>g[1a+s}g[ a—s}gg—a—&-s}ggﬁ-a—s—QN]Ta’s‘ (2.35)

In fact, the solution (2.30) is written in a specific so-called Wronskian gauge in which
Tio = To,—1 and Tny1,0 = Tn1- In arbitrary gauge, the the semi-infinite strip solution
should be written as

f[a+s} [a—s—N] . N
Too= 12w (Q A Q)))  whens>0and0<a <N,  (236)
fi f2
[7

. [+a] . al
2For instance (—1)*W~% can be written as (—1)(N_1)“‘) / ((=1)(N—Diu . One should note
that in this example of normalization, the functions g(4+4) are not all periodic, but their product is.
13This transformation clearly matches (2.32) up to relabeling the functions g and their shifts.
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where fi and fs are two additional arbitrary functions of the spectral parameter u. Hence,
obviously, we speak about (2.30) as a general solution modulo gauge symmetry.

One can use (2.35) to set, for instance, Qp = Q5 = 1. We note that if Qy = 1 then
256a,j—2j+1+a—s)
2

the expression (2.30) becomes a determinant Tp ¢(u) = 1<d2t<N Qr(u+1
_]7 —

which coincides (for rectangular Young diagrams) with the determinant expression written
in table 1.

2.6.2 Proof A: existence of solutions to Hirota equation

Let us first prove that (2.29) provides a solution to the Hirota equation (2.1). Since the
Hirota equation is invariant under the gauge transformations (2.34), it is sufficient to prove
that it is satisfied when Fy = Qp = 1.

We can start by writing

Ty Th =*x1Axa A= AXN) * (Y1 AY2 A= AYN), (2.37)
where
(x1,%2, -, %a) = QL Qi L), (2.38)
(Rat1:Xasa, - xn) = (P, e plsttmentl o plem ity o (2.39)
(1,2, ¥a) = Q0 Qi (240)
(Yorts Yasos - ) = (P([;)erNfa]’ ([lf)erNfan}’ y "P([557N+a+2])' (2.41)

We can use (2.15), and notice that N — 2 terms of the sum in the r.h.s. vanish because
they contain a factor x; A yx4+1 (which is zero if k # a). This gives

TL;ST;,FS:*(XI/\"'/\XN—l/\YQ *(XN/\yg/\~-/\yN)
FHXIA - AXNIAYat1) K (YIA - AYaAXN AYar2 Ao AYN) (2.42)

ie. T T =Tor15Ta-15 + Tas—1Tust1, (2.43)

a,s*a,s

which proves that the Hirota equation (2.1) is then satisfied for 0 < a < N. Also, the
Hirota equation reduces to TIsTa_,s = Tos+1Ta,5—1 (resp 0 = 0) if a = 0 or a = N (resp
a < 0ora> N),so that it is clearly satisfied at the boundaries of the strip as well.

It is also clear that the T-functions given by (2.30) obey the Hirota equation for s > 0,
since they are a particular case of (2.29). At the line s = 0, the Hirota equation reduces
(if a > 0) to T;D 0.0 = Tat1,0T4a-1,0, and it indeed holds because T, o = Q(%G_N]. Similarly
it holds on the line a = 0 (arbitrary s), explicit formulae are given after (2.31). Now it is
immediate to see that it holds if we put T, s = 0 outside the black dots of figure 3.

2.6.3 Proof B: uniqueness of the solution to Hirota equation

We showed above that if T-functions are expressed by the Wronskian ansatz (2.29)
(resp (2.30)) then they obey the Hirota equation. We now focus on the opposite ques-
tion: given a solution of the Hirota equation, does there exist Q-functions such that (2.29)
(resp (2.30)) holds?
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The answer is generically yes, as one can convince oneself by a simple counting argu-
ment: if the functions T, ; are non-zero within the infinite strip of figure 6 then a solution
of the Hirota equation is characterized by the 2N + 2 independent functions 75 ¢ and T, 1
(where 0 < a < N), whereas the T-functions written in (2.29) are characterized by the
2N +2 independent function Qy, Q1, Q2, ..., QN, Fy, P1, P», ..., Py. Similarly in the case
of the semi-infinite strip of figure 3a, the solution of the Hirota equation is characterized
by the N + 3 independent functions Ty, 7170 and 7j 1, whereas the T-functions written
in (2.36) are characterized by the N + 3 independent function fi, fa, Qp, Q1, @2, ..., @N-

In this subsection, we however provide a constructive proof that Q-functions exist for a
generic solution of Hirota equation. We will focus on the case of the infinite strip, whereas
the generalization to the semi-infinite strip is done in appendix A.2.

Furthermore, there exist degenerate solutions of the Hirota equation, for which some
T-functions are identically zero, which cannot be expressed in terms of Q-functions by the
Wronskian expression (2.29). An example of this is given in appendix A.4.

Construction of the Q-functions. Let us first notice that if Tj, ; is given by (2.29),
then the single-indexed Q-functions are solutions of the following finite-difference “Baxter
equation” [4] (see explainations below):

N N N N
+2r —so+r —so—1+r —so—N+1+4+7r
>l ) (oo ) o (Lrimivte ) aon (a0
=0 r=0 r=0 r=0
(2.44)
for any sg € Z, where g, 1, ..., ¥n are a set of variables such that the antisymmetric

product ¥g A1 A--- Ay does not vanish. For instance, if N = 2, this equation takes the
form

Qi Q[+2] Q[+4]
Vso €N,  Vief{l,2}, Tl e e =0 (2.45)
—so—1 —s0—2 —so—3
Tl[,sogrl } T1[,303~2 ] Tl[,so(jl»3 ]

The equation (2.44) is a consequence of (2.29): indeed, (2.29) implies that Vk €
0,1,...,N — 1}, SN rlo by = N ag (z,{i . QL“’"%), where aq), =
(P%)[=250=2K This implies that all the N + 1 vectors in the wedge product (2.44) are linear
combinations of N vectors ny: 0 Q£+2T]wT, hence the vanishing of the 1.h.s. of (2.44).

Let us now show that this Baxter equation (2.44) can be used to define the Q-functions
for a generic solution of Hirota equation, and express the T-functions by the relation (2.29).
To this end, we assume that for a given value of sy the Baxter equation (2.44) has N
independent solutions @1, @2, ...Qnx. We also assume that for this value of sg, the
vectors T, = Zivzo T{:}T;fllwr (where k = 0,1,...,N — 1) are independent.'* Then the
equation (2.44) states that N independent vectors Qa = ny: 0 LHT]sz belong to the
N-dimensionnal space spanned by the vectors fk, which implies that the fk are linear

1YWhile we use the forms notation (2.10) for combinations of the basis elements (4, we use the arrow
for combinations of the variables .
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combinations of them, i.e. there exists functions «; (u) such that T, = Zf\i 1 Qak Qu (for
k=0,1,...,N — 1), i.e. such that

N
T =5 a1, k=01,...,N—1, r=0,...,N. (2.46)
a=1

One can see that the coefficients o, are not independent: for any & > 1 (and any

so— Cso—(k— (2]
r=0,...,N—1), if we plug the condition T1[ ri)sol—flrer] = (Tl[ Ti)lifoj,thﬂ]) into (2.46),

we obtain Zi\f:l (aa’k - a([;lf]_1> Q([fm = 0 . Hence the independence of Q1, Q2, ..., QN
implies that a3, = ozg_,i]l, ie.

i = o™ (2.47)
We therefore define @)y, P? and the functions P® (where 1 < a < N) as follows:'
To,s = QPO Pt =l (2.48)

One defines the Q- and P-functions for arbitrary multi-indices by (2.23) and by apply-
ing (2.24) for the functions P.

Then the functions Ta, s =% (QE;F)S A P([;,‘ﬂa)> provide a solution to the Hirota equation,
which coincides with T;, ; when a = 0 and when a = 1 and s = 59,50 +1,...,50+2N —1. It
is then easy to see that one can iteratively show that Tms = T, s using the Hirota equation
(assuming that Tj ¢ is generic, i.e. T, s # 0 for all a, s inside the infinite strip). This
concludes the proof that, with the functions P and @) defined above, Ty,  is given by the

relation (2.29).

2.7 On finite-difference (Baxter) equation and Backlund transforms

In the previous sections, we reproduced the previously-known generic solution [4] of Hi-
rota equation, using fact that this solution is of a Wronskian type. There exists also an
interpretation of the Q-functions from a Bécklund flow [4, 55-57]. Here we remind the
main points of this construction, as it gives an intersting point of view on the Wronskian
solution. In particular, we will relate it to the known method of “variation of constants”,
a standard trick used in the resolution of differential or difference equation.

In the proof for wronskian relation 7' — @ above, the existence of finite-difference equa-
tion (2.44) (Baxter equation) played the decisive role. Let aside for a while the goal of solv-
ing Hirota equation and discuss some generic finite-difference equation of the N-th order:

N

> QP =0. (2.49)

n=0

15The existence of two functions Qg and P? such that To,s = Qg”s] (Pm)[“] is a consequence of the Hirota
equation at a = 0, which reads T&'STO_’S =T0,s+170,5—1-
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If Q1,Q9,...,QnN are N independent solutions, the equation can be also rewritten as

Q Q+2] Q[ZN}

[+2] [2N]
Q@@ (2.50)
v it i

Suppose we know one solution of (2.49), say @)1. What simplification in the search for
other solutions could we made? The standard trick (known as “variation of the constant”) is
to write the ansatz Q = ¥ ()1 and to derive the equation on W. After simple manipulations,
this new equation can be written as an equation of degree N — 1 for the function

W= QP (v — vl (2.51)

where we introduced the prefactor QlQ[f} for further convenience. The message is clear:
we reduced the problem of solving a degree-N equation to solving the equation of degree
N — 1 plus solving the linear equation (2.51). The linear equation can be always solved, at

least in terms of a semi-infinite sum!¢

— the analog of integration in the case of differential
equations.

Notably for us, the determinant representation for the equation on W is

w w2 wN=2]
Q+ [3] [2N—1}
12 12 - 12 _ O, (2‘52)
3 2N — 1
@iy UV - @[

which implies that N —1 solutions for W are Q12, Q13, . ,QTN, where 4 are precisely the
Q-functions that we discuss in this paper (in the gauge Qp =1, i.e. Qup = QF Q, — Q5 Q;).

Obviously, the argument is repeated recursively. If we happened to find one solution
for W, say QIQ’ we can further reduce the degree of equation by one and get the equation
which is solved by Q123, [122]4, cee Q12N etc.

Hence, resolution of any degree-N finite-difference equation is inherently linked to the
construction of a Q-system. A part of this construction is to determine N Q-functions in
the set Qp, , Qvyby, --- 5 @b,..by- The Backlund flow precisely realises this goal, but now
for Q-functions of the specific finite-difference equation (2.44).

A Bécklund transform (one step in the Béacklund flow) is introduced as follows. For
any Wronskian solution T, s (2.30) of the Hirota equation on the semi-infinite gl(/V)-strip
of figure 3a, one can notice that for any b € BB, the function

Fos=x% <Q[+S A QEJ_VS:IJXZ;} A Cb) when s >0and 0 <a < N —1 (2.53)

18For instance, solving equations like (2.51) is routinely performed in the perturbative computation of
the AdS/CFT spectrum [22].
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is a solution of the Hirota equation on the GL(N — 1)-strip of figure 3a, which obeys the
Lax pair condition [4]

+
Ta+115F;:s - T(j,_sFa-i-l,s = a_t,_l,s_lFa,s—i-l (254&)

Ta75+1Fa:s - T;sFa’5+1 — Ta+1,sF(;7175+1 . (254b)

If T obeys the Hirota equation and F' obeys (2.54), then F' is called the Bécklund transform
of T, and it automatically obeys the Hirota equation. Moreover, one can impose the
following gauge conditions on 7', and see that they automatically propagate to F' (due
to (2.54)):

TO,s = T(%T()S] FO,s = FQ[,_()S]
Too=TH = Fuo=F5" . (2.55)
Ty, =Ty Fy-1s=Fy

One can then iterate this procedure: a Backlund transform of F' is a solution of Hi-
rota equation on the gl(IN — 2)-strip. The simplest example of a sequence of Bécklund
transformations is given by characters , i.e. for the case when T, s(u) = xas(G) for
some G € GL(N). We can denote by G®1:b2-bn) ¢ GL(n) a matrix with eigenval-
Ues Xpy, Xpy, - - - Xp, (Where xq,xz,...xy are the eigenvalues of G), and for any multi-index

A C {1,...,N} denoting the nesting path, we set

—iu—|A|—2=g=1

T = Xa,s (G(A)) I % . (2.56)
je{A}

Then each function T is a Bécklund transform of T(4%) (for any b ¢ {A}). These suc-
cessive Béacklund transforms, labeled by a multi-index A C {1,..., N} can be represented
by Hasse diagram (see figure 7) [35].

From this example, as well as from the boundary condition in (a, s) space, we see that
each Bécklund transform can be viewed as a decrease by one of the rank of the symmetry
group, as one might already guess from the “variation of constants” method described above
which decreases the degree of the finite-difference equation by one at each step as well.

Since the Backlund transform of T-functions fits into the same Hasse diagram as for
these characters, one can define Q-functions as

Qalu) = Ty <u + ;\A\> . (2.57)

Let us now call nesting path a sequence of Backlund transforms from 7O o 7O (e.g.
such as the green sequence of arrows on figure 7). Each nesting path is associated to a
sequence of multi-indices Ay, A1, ..., An, where

D= {Ao} C {41} C - C{Ay} =B, (2.58)
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Figure 7. Hasse diagram for gl(3) T-functions. T(23) is the original T-function out of which a
sequence of Backlund transforms is constructed. Each arrow corresponds to a Backlund transfor-
mation, reducing by one the number |A| of indices labeling the function 7'4). One should note
that different sequences of arrows having the same starting and ending point (e.g. the different
types of wavy arrows) correspond to sequences of Bécklund transformations resulting in the same
T-functions. The double arrows form a nesting path, i.e. a sequence of arrows from T to T,

such that |A,| = n: for instance the green nesting path of figure 7 is associated to Ay = (),
Ay =3, Ay =13, A3 = 123. Then one can show [4, 55] from (2.54) that

s] 188, _ —-N —
ZTl[,t* }e 50 = Qé’)l ]WAN§AN—1WAN—1§AN—2 e WA1;A0Q@ (2.59)

s>0
ith rr=1|1-— e ,
7 F1—I[] AH+1-]T
Q[I 111] QB /1]

(2.60)

where el f(u) = f(u + 1)el% and where (1 — fel?)™1 =1 4 feldu 4 feldu feidu

One can then show (see [6, 58]) that the QQ-relation (2.7) arises'” from the constraint
W aab; AaW Aa:A = W aab; AbW ap: 4, i.e. the statement that two sequences of Backlund trans-
formations having the same starting point and the same endpoint in the Hasse diagram (e.g.
the red and blue arrows in figure 7) should give rise to the same T-functions. Moreover,
one can show that each function 74 is then given by

T =% (Q[(Z)S] A QU AT A CA) A4 whens>0and0<a<|A.  (2.61)

Another interesting remark is that Backlund flow suggests a different way to generate
the Baxter equation:

[OY - Q(u+is/2) Jjaen =0, (2.62)
where O(u’ a, 3) = Tas-1 e%au*aaﬁ — T;_S 6_83_(9“#. We present the proof in ap-

pendix A.5. Note that equations (2.62) and (2.44) do not coincide literally. We need to
extensively exploit the Hirota equation to show their equivalence.

Although the Béacklund flow was introduced for the case of Hirota equation on semi-
infinite strip, the logic survives if we consider the case of the infinite strip of figure 6. For
instance, (2.62) holds in either of cases.

"More precisely, this procedure gives the QQ-relation up to an i-periodic constant factor which can be
viewed as an irrelevant normalisation, analogous to the factors f|4) in (2.21).

- 29 —



2.8 Solution of Hirota equation on an L- or T-shaped lattice
2.8.1 Bijection between supersymmetric and non-supersymmetric Q-systems

In this section we will describe quite a remarkable fact: one does not need to change the
geometric description to accommodate the Q-system for integrable systems with gl(K|M)
supersymmetry. One can still use the same Q-system as was used for gl(K + M) case. Le.
one still considers u-dependent hyperplanes of CV and imposes the same intersection prop-
erty (1.5), however one needs to introduce a different set of coordinates to parameterise it.

Consider a decomposition

cN=cleocM (2.63)
and choose coordinate vectors &1, ..., &y of CV such that first K of them span C¥ and the
latter span CM. Correspondingly, we introduce a set of “bosonic” indices B = {1,2,--- , K}

and a set of “fermionic” ones F = {K + 1,K +2,...,N}. Since we will see that in most
setups, there is no risk of confusion'® between “bosonic” and “fermionic” indices, one may
also label the latter as F = {1,2,..., M}.

The Q-functions which were used in previous paragraphs will be denoted here by small
q to avoid a clash with notations introduced below. The labelling of ¢’s is done according to
the decomposition (2.63), i.e. gar, where A is a multi-index from B and [ is a multi-index
from F, denote the components of the (p;q)-form

Upa) = Z qaréar, (2.64)
|Al=p,|I|=q

where &by, byivin..iq = Eor Aoy N &by Ny A - &, The sum of (n — k; k)-forms

q(n) = Z U(n—ksk) (2.65)

is nothing but the n-form (2.10) which defines the hyperplane Vin) obeying (1.5).
We define the Q-functions @) 47, which form what will be called the supersymmetric
gl(K|M) Q-system, by a simple relation!'?

Qar = aar, where {I} = F\ {I}, (2.66)

i.e., it is a simple relabeling of the purely bosonic Q-functions. In geometric terms, the
supersymmetric Q-system is obtained by the partial Hodge transformation along C* di-
rection of C of the non-supersymmetric Q-system.

This partial Hodge transformation can also be viewed as a rotation of the Hasse dia-
gram, see section 3.1 and figure 9.

The supersymmetric Q-system of gl( K |M)-type was introduced in [56](see also [33, 35].
In [6], it was observed that the inverse of relation (2.66) can be used to map from gl(K|M) to

18We should still view the two symbols 1 € B and 1 € F as two distinct objects, but the context will
allow to know which of them is referred to when we use the symbol 1.
19No summation over 1.
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gl(N) system and it was named “bosonisation” (or “fermionisation”) trick. We extensively
rely on this mapping in various places of the paper.

As should be clear from (2.66), Qq;..q,li;...i, 15 antisymmetric under a permutation of
bosonic a-indices and under a permutation of fermionic i-indices. Correspondingly, the
graded Q-forms are defined by

Quip= D, Qaréard, (2.67)

|A|=n,|I|=p

where (’s are some anti-commuting variables independent of £ ((’s and &’s are defined to
anti-commute between them as well).

For the following discussions, it would be convenient to introduce the Hodge duality
map. It is induced from (2.11) which can be written more explicitly as xCar = €747 47 =
(—1)Hl |A|6AA€Ij£Aj. One deduces that the hodge-dual Q-functions should be defined by:

QM = (—1)Ml |i|eAA6HQA|I-. (2.68)

Finally, for the sake of notational simplicity, we will also sometimes denote Q4 = Q 49 and
Qp = Qp)p (and the same for Q-functions with upper indices).

The bijection between supersymmetric and non-supersymmetric Q-systems is quite a
remarkable property; we spend the remainder of this subsection discussing it.

One thing to note is a possibility to rewrite the Hodge transformation as a Grassman-
nian Fourier transform. Namely, introduce the sums

N-M M

qlu; &1, ... EN] = Zq = Z Z Z qar §AEr (2.69a)
n=0

n=0 m=0|A|=n,|I|=m
— M

Q[u;é-l?"')SNfMué-iu"wCM = Z Z M7m+1 Z QA|[£AC[, (269b)

n=0 |Al=n,|T|=m

Then they are related by the Grassmann integral

Q= [[Lazacte. (2.70)

ieF

This representation suggests adopting a Dirac sea point of view on the bijection transfor-
mation. Whereas the description in terms of ¢’s corresponds to “excitations” of the “bare
vacuum”, description in terms of Q)’s corresponds to “excitations” of the “sea” created by
filling the bare vacuum with all the excitations from the set F. Such an interpretation has
a close relation to the Grassmannian construction in the works of Jimbo and Miwa [26].

A similar relation exists between the characters of gl(K|M) and gl(/N) algebras. The
characters of compact representations are, correspondingly, the Schur symmetric polyno-
mials s)(x) and Schur supersymmetric polynomials sy(x|y), where X is a Young diagram,
see e.g. [59]. Schur polynomials form a ring

S)\ 8y = Z CXuSv s (2.71)

v
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where CKM are the Littlewood-Richardson coefficients which are the same for the ordinary
and supersymmetric cases. Hence, in the limiting case of M — oo and K — oo when none
of sy is zero due to the bound on a group rank, the rings of ordinary and supersymmetric
Schur polynomials are isomorphic. It is not difficult to construct the isomorphism mapping
explicitly. We can do this by exploiting the 2" Weyl formula from table 1, the reader
may also focus on the most important case of rectangular representations when the
Weyl formula reduces to (2.3) and can be derived directly from the simplified Hirota
equation (2.4). The 2"¢ Weyl formula expresses all the characters through x1s — the
characters for the representation A = (s,0,0...). On the other hand, the generating
function for xi s(x|y) of gl(K|M) is known:

[[A+eyi) o«

iEF

116—117_6)( ZES X1, (X[y) - (2.72)
CL

aeB s=0

Hence the map between supersymmetric and non-supersymmetric characters is induced
by the replacements

l+ey< (2.73)

1—ex
in the generating function. The mapping becomes an isomorphism in the limit when
the numbers of y’s and x’s are infinite. This relation can be thought of as a statement
(equivalent to the partial Hodge transformation) that “adding a fermionic index” is the
same as “removing a bosonic index”. Indeed, adding a fermionic index or removing a
bosonic index is realised by multiplication of the generating function by a factor 1 + ea
(where « is either —y or x). See also section 2.8.5 for a motivation of this principle in
terms of Backlund transforms.

2.8.2 QQ-relations with a grading

As explained in the previous section, the supersymmetric Q-system is obtained by a simple
relabelling of ordinary Q-functions: we just use Q4 ; instead of g,;. Therefore, all the
QQ-relations in the supersymmetric basis would be, eventually, an algebraic consequence
of (2.7). Nevertheless, despite the simplicity of (2.7), the emergent algebraic structure
turns out to be very rich.

First of all, the original QQ-relation (2.7) splits into three equations due to possibility
of multiplying Q-functions with different gradings [50, 52, 56, 57, 60, 61]

Qa1Qaab)r = QL\IQZI;U - Q;aHij\I’ (2.74a)
QAa|IQA|Ii - QX&\HQZ\I - QX\IQZMI@' ) (274b)
QA|IQA|Iij = QX”ZQ;”U - QIZIIZQj4_|Ij s (2740)

It is easy to see how they correspond to (2.7), especially if to note the general rule that
adding a fermionic index in () 4|7 is equivalent to removing this index from g,;.

Now, we present a handful of algebraic relations which all follow from (2.74). Their
derivation is given in appendix A.6.
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Firstly, we have the obvious relations
n—1] [n—3] [1— [p—1] [p—3] (1—p]
Q ajo) N Q) N A 1\0 o = Qo N Quopy A A Qo)
n—2k ’ Olp 2k ’
[Ti<k<n—1 Q ! H1<k<p 1Q[p !

which are identical to the relations of section 2.6 because they do not mix “bosonic” and

Qnjo) = (2.75)

“fermionic” indices. Secondly, the following expressions give all Q-functions in terms of

Qu, Quijo): Qeojy and Qqyjry:

n(n 1) n(n—1)
QY —1)" =z~ A CA
Qalr) = (-1 ' () _ (=1) ' = Quu NQun A Qu) (n times) (2.76)
n! QV)IQ‘ n! QW
[t]
Qnlp) = C(;ED) A Q(n—pl0) where n > p
0
and te{n—p,n—p—2,...,—n+p} (2.77)
[t]
Q(n\p) = (_1)n(p+1) (nln) /\ Q 0‘p n) Where n S p
Qy
and te{p—n,p—n—2,...,—p+n}. (2.78)

These expressions were already implicitly incorporated into sparce determinants of [35],
and rewritten in terms of forms in [3] for the psu(2,2[4) case without proofs.

These relations can be recast into equations for the components @ 4; of these forms:
the relation (2.76) becomes

det Qg
a'ee? ol 1<C}e‘t<n @oils,
Qajr = 75~y or more explicitly — Qp, by bulfr forfn = 7 (279)
(Qp) (Qo)
whereas the equation (2.77) (resp (2.78)) states that if |A| = n, and |I| = p with n > p
(resp n < p), then for any ¢t € {|n —p|,|n —p| —2,...,—|n — p|} we have
(_1)p(n+1)
Qajr = ] > QBu Qcyp 04, (2.80)
Qg [BI=]1
|C|=]Al=|]
—1)np+1)
esp Q= CLT S 0ot 231
@y 1714
|K|=|1]-]A]
where 5{112]22 lJ" = 1<clllebt<n 53;’ (2.82)

Note that the role of e.g. 65 in (2.80) is to anti-symmetrise the index BC.
Another interesting class of relations is obtained by using both Q-functions and their
Hodge duals:

200ne should note that Qg, Q1j0)s Qeo,1) and Q(1}1) are not independent: they are related by (2.74b),
which states that Q(l‘()) N Q(O\l) = Qz—lll)Q@_ — Q(_l\l)Qa_'
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—1)nJI
Quy = T S gangl when n = |B| — |F| + |J] = 0

(] AlJ
010 Al=n andt € {-n,—n+2,....,n—2,n}, (2.83)
—1)nlAl
Qup = " S Uil when n = |F| — |B] + ] 2 0
gl 1Jl=n and t € {-n,-n+2,...,n—2,n}, (2.84)
S QuuQA = (~)VUFED ST 61 UMy, when |J] — 1] = |F - B 20, (2.85)
|Al=|1] |L|=[J|=|1]
0 tF1] ey —

Z Qi — (—D)IBHFFL QN2 Q, ?ft = +n where n = |B| — |F| >0 (2.86)
B 0 ifte{n—2,n—4,...,—n+2},
Y QaQ"=(Q)QF — (@)@, if |B] = | 7] (2.87)

a€B

Note that equation (2.84) is obtained from (2.83) by interchanging bosonic and fermionic
indices. Obviously the same can be done for any other relation. For instance it follows
from (2.86) that

> QY = (—1) BT QhEQETY when n = |F| - [B] > 0. (2.88)
ieF

Similarly, one can take the Hodge dual of each relation, i.e. perform the substitutions
Quir QA QA s (~)IHITNAN G, (2.89)

which leave the QQ-relations invariant, and are compatible with the sign in (2.68). For
instance (2.83) becomes

Yl
Q" = (@ > Qup@') when 7 = |B| — |F| + || 2 0
‘ |=n and t € {-n,—n+2,...,n—2,n}, (2.90)

where the sign (—1)"1 is obtained by simplifying the expression (—1)"7I+4l 4 obtained
from the substitution (2.89).

Examples. It turned out [3] that in the case of AdS/CFT (where T-hook in figure 8 has
K1 = Ky = M; = My = 2; and Q@\@ = Q@I@ = 1), the above-listed relations are very useful.

We give below some of them specified to this particular case:

e Setting |J| =1 or |A] =1 in (2.83), (2.84), one gets two interesting relations

Qui == Q05 Qup=->_ Q" (2.91)

a %

which correspond to (4.14al)-(4.14b1) in [3]. The other relations (4.14) are obtained
by Hodge duality (2.89).

e Setting |/| = |J| = 1 in (2.85), one gets »_, Q“"QQU = —(5;, which is the relation
(4.15a) in [3].
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Figure 8. The right, left, and upper strip of the T-hook are delimited by the diagonals (dashed,
gray). The figure corresponds to K1 =3, Ko =2, M7 =1 and My = 2.

e In the AdS/CFT case, the r.h.s. of (2.87) vanishes, giving the relation (4.16a) in [3].

We did not describe all possible relations in this section. For instance, another in-
teresting class worth mentioning involves equations of finite difference type of order > 2.
Such kind of Baxter-type relations were exploited for instance in [53]. Very recently, the
fourth-order equation having Qgj; as four solutions played the decicive role in the derivation
of the BFKL equation from the AdS/CFT integrability [62].

We see that the algebra of Q-functions is indeed very rich. We should think about
these relations as an opportunity for discovering short-cuts through the Q-system that
link the physically most-improtant Q-functions for practical problems to solve. For each
particular problem or calculation, one should look for a specific, most convenient subset
of these relations.

2.8.3 Expression for T-functions in a T-hook

At the level of Q-functions, we have seen that it was necessary to introduce two different
sets of indices, which we called “bosonic” and “fermionic”, and which are distinguished in
the QQ-relations (2.74). If we denote by K (resp M) the number |B| (resp |F|) of bosonic
(resp fermionic) labels, then the Q-functions are related to the algebra gl(K|M).

At the level of T-functions which obey the Hirota equation (2.1) on a generic T-hook
figure 8, one should also specify a real form: it is su(K7y, K3|M) in the most general case,
with K7 + Ky = K). As a consequence, the set B of bosonic indices should be split into a
union of two non-intersecting sets By and Ba:

B=B By, where ‘Bl‘ =Ky, ‘BQ‘ =K. (2.92)

With these two sets, we introduce graded and ungraded forms in the same way as in,
respectively, (2.67) and (2.64):

Q(n1,nalp) = Z Qrrir ERNEL NG, (2.93)
|R|=n1,|L|=n2,|I|=p
9= Z qrrr ER NEL NET RCBi,LCBy,ICF. (2.94)

|R|=n1,|L|=n2,|I|=p
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With these notations, the Hirota equation on the (K1|M; + Ms|K3) T-hook has the
following solution

Ta,s = er(a, s) *( ao‘o /\QK1 0. Ko |M)) if 5> a, (2.95a)
[+a] [—a] et s

Tos = cula, s) * (Q (o —s) N Qo] KQ\M2+3)) if @ > |3| (2.95b)

Tos = 21(a,8) % (QL) 1erapiny A Qi) if5<—a (2.95¢)

where M1 + Ms = M and the choice of My and M, is arbitrary and defines the origin of
the T-hook, as in figure 4b. In (2.95), we used the notations

- - —Ki+ Ko+ My — M, K-M
$=8— 8¢, a=a—ag, Sp = ) ag = )
2 2
erla,s) = MO ()R gi(a,s) = iV (—p)D, (2.96)

and Eu (CL S) M(a s)( 1)(a+K)(M2+s)+K2(K1+M)'

The practical meaning of these notations is: (sg,ag) is the coordinate of the intersection
of the diagonals on figure 8, and (§,a) are the coordinates, with respect to this point, of
an arbitrary node on the T-hook.

The proof that (2.95) indeed solve the Hirota equation is given in appendix A.7. There
we use, in particular, a possibility to represent the solution in terms of the bosonised
functions (2.94).

The semi-infinite strip of figure 3a is the case K1 = N, Ko = M; = My = 0 of
the T-hook. In this case, the above expressions of T-functions match the expressions of
section 2.6 up to an overall redefinition of the (shift of the) Q-functions:

Q — Q[3N/2 , (297)

which obviously leaves all QQ-relations invariant.

Other interesting special cases of the Wronskian solution (2.95) include: the compact
real form su(M|K3) corresponding to By = () and L-hook shape of non-zero T-functions
shown in figure 4a; the compact real form su(Ky, |M) corresponding to By = () and a mirror-
reflected L-hook;?! and, finally the non-compact and non-supersymmetric case su(K7, Ko)
which corresponds to F = () and the “slim-hook” shape first discussed in [46] (see e.g. figure
1b in [63]). The slim-hook is solved using purely bosonic Q-system constructed on CK1+£2,
We expect that Hirota equation on such a hook will appear in affine Toda integrable models.

2.8.4 Symmetries

Similarly to its bosonic version, the graded Q-system has rotational and rescaling symmetry.

*1For real forms we use notations of [63], a more detailed exposition is planned in [64]. Although the real
form su(K1,|M) is isomorphic to su(K:|M) and hence comma is usually not written, we should distinguish
the case with comma and without when su(K1,|M) and su(M|K2) are simultaneously subalgebras of a
bigger non-compact algebra su(K, |M|K).
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Gauge transformations. It is suitable to parameterise two available rescalings (gauge
transformations) by

Qapr gglAI*III]ggIAHIIHQA‘I (2.98)

which replaces (2.25).
This transformation generates the following two gauge transformation of T-functions:

Ta,s sy g[la—&—s—so]gg—a—&-s—so}gg—a—s—l-so—&—K—M]gga—s—l—so—K—l—M] Ta,s (299)
Another two gauge degrees of freedom of T-functions (cf. (2.32)) are actually fixed for
what concerns the solution (2.95). This solution was specially written to satisfy the
Wronskian gauge:

TKl-I—l,Ml = TKl,Ml—‘rl and TKQ—}—I,—MQ = TKQ,—MQ—I ) (2100)

which immediately implies, by virtue of Hirota equation,

TK1+n,M1 = TKl,M1+n and TK2+n’_M2 = TKQ,—MQ—'IZ) n>0. (2.101)

and reflects the fact that the corresponding characters are equal: Xk, +n. M = XK, M;+ns
XKa+n,—My = XKz,—Ma—n -

The signs &, &, and ¢; in (2.95) were chosen, in particular, to ensure the Wron-
skian gauge condition (2.100). Hence, as in the case of semi-infinite strip, we understand
that (2.95) is a general solution modulo two gauge transformations.

Rotations. The graded gl(N — M|M) Q-system is algebraically equivalent to its
bosonised version and hence it is in principle invariant under GL(N) H-transformations
originating from (2.26). However, the obvious explicit rotations are only a subgroup
GL(N — M) x GL(M) which leaves invariant the decomposition (2.63). All other rotations,
implicitly there, would not preserve the T-functions and hence should not be considered.
Furthermore, the T-functions of T-hook are invariant only under unimodular rotations
from GL(K1)xGL(K2)x GL(M) which preserve the grading of the forms (2.93). It is impor-
tant to realise that prior to constructing a T-hook, one has to agree how to decompose in-
dices into sets B1, B, and F and then stick to the bases which respect such a decomposition.
Also, it is possible to exchange the role of bosonic and fermionic indices and, in particular,
decompose into sets B, F1, F» . The choice of a basis and decomposition into sets depends
on a real form one wishes to associate to T-hook and how this real form is related to ana-
lytic properties of Q-functions. From the same GL(K |M)-system we can construct different
T-hooks. It is an additional question to justify which of the T-hooks (maybe several) are
physically meaningful in a given explicit problem and what is their physical interpretation.

2.8.5 Baéacklund flow in supersymmetric case

One can also introduce Q-functions from a sequence of Bécklund transformations. It was
demonstrated already for the bosonic case in section 2.7, and we saw that QQ-relations
can be interpreted as the fact that different paths on the Hasse diagram (see figure 7)
correspond to the same transformation.
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This approach can be generalized to the super-symmetric case, i.e. for L-hook [56]
and T-hook [65]. The relation to Wronskian determinants was shown in [7]. We remind
the arguments for the L-hook case only. Consider the Lax pair condition (2.54) near
the internal boundary of the hook, namely set (a,s) = (K — 1,M) in (2.54a) and
(a,s) = (K,M — 1)) in (2.54b). One can see that if 7" obeys the Hirota equation on a
(K|M) fat hook, then F' can obey it on a (K — 1|M) or a (K|M + 1) fat hook. The
transformation from a (K|M) to a (K —1|M) fat hook is the exact analog of the Backlund
transformation of section 2.7, and corresponds to the removal of a “bosonic” index from
the Q- and T-functions. By contrast, it is the inverse of the transformation from a (K|M)
to a (K|M + 1) fat hook which can be regarded as a Bécklund transformation removing
a “fermionic” index; in this case, the function T of (2.54) is the Bécklund transform of
the function F. Hence we see that the same transformation “adds a fermionic index” or
“removes a bosonic index”, justifying the partial Hodge transformation (2.66), and the
analogous observation (2.73) at the level of characters.

Furthermore, one finds out from the linear system (2.54) and the definition (2.57) that
the generating series (2.59) can be generalized to the L-hook. To this end, we encode a
nesting path as a sequence of labels

(A0|Io = ®|@) C A1|Il C A2|I2 [GEEENE (AK+M|IK+M = B|]:), (2.102)

which are included into each other and obey |A,| + |I,| = n. Each step n of the nesting
path is a Bécklund transform which can be either associated to a “bosonic” index (then
|Apt1] = |An] + 1 and I,41 = I,) or a “fermionic” index (then A,41 = A, and |[I,+1] =
|I,| + 1). Then, the generalization of the generating series (2.59) is

ZTJrSJr (M—-K)/2] nsBu Q[l K+M] W Wiani—1 ... Wi Qa7 (2103)
s>0

QU= Anl+Inl] Q[flf\An_ﬂHIn_ﬂ] -1

Apl|In Apn—1lin—1 10y : _

b QUF L IARTFITAT (=4, TN ;i An] = [An—a| +1
with W, = el ol

1—|An|+|In]] Q[+3 [Ap_1l+Tn_1l]

Q) i .
L= T SR e if |In] = [In—1] +1
QA”‘I”' QAn 11n—1
(2.104)
As an illustration (which will be used in the next section), the coefficient of ¢i% gives

K+M Q[+25n [ A |+|In|—s0] Q[ 2en— \An 1+ In—1]—s0]

_ <M [80 An lln [—80
=0 2 e Q[ ALl QElA T @ (2.105)
|In 1

M — K
5

n=1 nlln

where ¢, = (—1)|I”|*u”‘1| and sg =
The QQ-relations (2.74) can be easily deduced!” from this generating series [6] (see

also [58]). All T-functions can be expressed from (2.103) and (2.2), and the result which
comes out coincides with the Wronskian expressions (2.95).
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3 Polynomiality and twzist

In the previous sections, in our study of general Wronskian solutions of Hirota functional
equations with particular “hook” boundary conditions, as well as the QQ-relations, we
had no need to precise the analyticity properties of the functions of spectral parameter
u. If we now try to do it, generically it will impose severe restrictions on the analyticity
properties of the whole ensemble of these functions. For instance if they are assumed to be
polynomial or meromorphic functions, or having a given set of singularities we will have
rather strong restrictions on the type and position of the singularities and zeros due to
the Hirota and QQ functional relations. It turns out that the analyticity of the T- and
Q-functions is an extremely important ingredient to characterise a given physical model.
In this section, we discuss a well-known example of rational spin chains which correspond,
in the case of compact representations, to polynomial T-functions, with polynomial Q-
functions. In particular, we discuss the effect of the twist on polynomiality conditions. In
the section 4, we will consider the AdS/CFT Q-system which corresponds to multivalued
analytic Q-functions with specific monodromy properties.

3.1 Polynomiality and spin chains

The spectra of periodic rational spin chains in compact representations of su(K|M) with
integer fermionic Dynkin label are encoded in the polynomial solutions of the QQ-relations,
with certain constraints on the polynomials that precise the details of the spin chain con-
sidered (length, representation, inhomogeneities). There are various ways to establish the
correspondence between the spectrum of a spin chain and the QQ-relations, probably the
most direct one is to construct the Q-operators acting in the quantum space of the spin
chain (several constructions are available in the literature [41, 52, 66-68]) and identify
Q-functions with the eigenvalues of these operators.

In appendix C, we list the required constraints on the polynomials for a generic case.??
In this section, we discuss one of the most simple and probably the most important examples
— a homogeneous rational spin chain of length L in the defining representation. For this
spin chain one imposes

Qu=1, Qrl =Ty o =", (3.1)
where sy = %

It is remarkable that, algebraically, the Q-system is the same for all symmetry al-
gebras su(K|M) with given value of K + M. The difference appears only in how the
constraints (3.1) appear on the Hasse diagram. This phenomenon is illustrated in fig-
ure 9, where we see that the “bosonization trick” (2.66) amounts to a rotation of the Hasse
diagram.

Note also how the Hodge duality map acts. It flips the Hasse diagram (upside-down),
hence the boundary conditions (3.1) change to QEO} =ul, Qp = 1. These new boundary

conditions correspond to the conjugation of the defining representation. It is not difficult

22The discussion of the appendix applies beyond the polynomial case and includes any highest-weight
type representations.
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(a) Hasse diagram for an su(3) (b) Hasse diagram for an su(2|1) spin chain’s Q-

spin chain’s Q-functions: the Q- functions: two different equivalent orientations of
functions of figure 5 are not writ- the Hasse diagram are presented. In the notations
ten explicitly, only the conditions of (2.66), the diagram to the left corresponds to
Qp =1 and Q(%SO] = u” are made functions ga; while the diagram to the right cor-
manifest (the shift [so] is omitted). responds to Q 4|;-

,,,,,, QB [

“Qa------ Qo - +  QiQc—QuQ5=QsQp

,,,,,, QD e

(c) Notation for the orientation of Hasse diagram: the dashed red lines indicate how to
write the QQ-relation for a given facet.

Figure 9. Boundary conditions and orientation of the Hasse diagrams.

to guess then that the Hodge duality performs an outer automorphism E;; — —FE;; from
the point of view of representation theory.

Although there are no other constraints than (3.1) on the structure of the polynomial
Q-functions, the QQ-relations themselves strongly constrain possible polynomials, and one
ends up with only a discrete set of possibilities. All of them can be found by solving Bethe
equations for super-symmetric rational spin chains [69, 70] which are a set of algebraic
equations for the roots of the polynomials.

The QQ-relations directly imply the Bethe equations as follows [56]: if Q447 has a
zero at position u = 6, then equation (2.74a) implies that € is also a zero of QJAT‘IQLJW —
QJAF:{'IQAZ,‘I and of QZUQzabU + QEJUQAbII' Hence it is a zero of the linear combination

Yot - ~ A= At ,
Al QAab 19 a0 1 T Qa1 Q a1 Q Aq 1> @0d We get the equation

s Qa1(0 + 3)Qaa)r(0 — 1)Q aapr (0 + 3)
Quar(0 — $)Qua1(0 + 1)Qagp (0 — 5)

This equation involves the Q-functions corresponding to two successive “bosonic” Bécklund

2 where Q 4q7(6) = 0. (3.2)
2

transformations along the nesting path (2.102).
If one has two subsequent “fermionic” Bécklund transformations, we get analogously

- Qa1 (0 + 5)Quy1i (0 — 1)Quayri; (0 + §)
Qa0 — %)QA\H(@ +1)Q 4)7i5 (0 — O

where Q 47;(0) = 0. (3.3)
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Finally, one also derives

_ Qa9+ 5)Qay (6 — :)
Qair(0+ 2)Quari(0 — 1)

if a “fermionic” Bécklund transformation is followed by a “bosonic” one (case Q 44)7(¢) = 0)

,  where Quq7(0) =0,  or Qqpu(0) =0, (34)

or if a “bosonic” Bécklund transformation is followed by a “fermionic” one (case
Qari(0) =0).

There is a special case when all there terms of (2.74a) (or (2.74b), or (2.74c)) become
zero at some u = . Such zero can be an “exceptional” root of Bethe equations which was
accidentally trapped into a singular point, we can resolve this singularity by introducing a
twist, see (3.7). Another possibility, which is not realised for defining representation but
is possible for other cases, is that such zero is not demanded to be a solution of Bethe
equation; instead, it belongs to a source term thus specifying the type of a spin chain, see
appendix C for further details.

When exceptional Bethe roots are properly accounted, a solution of the Bethe equa-
tions allows to restore the Q-functions and vice versa, hence the Q-system and the Bethe
equations encode the same information. This is another way to see that the polynomial
ansatz with boundary conditions of type (3.1) indeed corresponds to a rational sp