Serious games to teach social interactions and emotions to individuals with autism spectrum disorders (ASD)
Charline Grossard, Ouriel Grynszpan, Sylvie Serret, Anne-Lise Jouen, Kevin Bailly, David Cohen

To cite this version:
Charline Grossard, Ouriel Grynszpan, Sylvie Serret, Anne-Lise Jouen, Kevin Bailly, et al.. Serious games to teach social interactions and emotions to individuals with autism spectrum disorders (ASD). Computers and Education, 2017, 113, pp.195-211. 10.1016/j.compedu.2017.05.002. hal-01525828

HAL Id: hal-01525828
https://hal.sorbonne-universite.fr/hal-01525828
Submitted on 22 May 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Serious games to teach social interactions and emotions to individuals with autism spectrum disorders (ASD)

Charline Grossard¹, Ouriel Grynspan², Sylvie Serret³, Anne-Lise Jouen², Kevin Bailly², and David Cohen¹,²*

¹Department of Child and Adolescent Psychiatry, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre et Marie Curie, 47 bd de l’Hôpital, 75013, Paris, France
²Institut des Systèmes Intelligents et Robotiques, CNRS UMR 7222, Université Pierre et Marie Curie, 1 place Jussieu, 75005, Paris, France
³Department of Child and Adolescent Psychiatry and Centre de Ressource Autisme, Université de Nice, Fondation Lenval, 57 Avenue de la Californie, 06200, Nice, France

*Corresponding author at: Department of Child and Adolescent Psychiatry, APHP, CNRS UMR 8189, Groupe Hospitalier Pitié-Salpêtrière, Université Pierre et Marie Curie, 47-83 bd de l’Hôpital, F-75651 Paris cedex 13, France.
Tel.: + 33 1 42 16 23 51; fax: + 33 1 42 16 23 53.
E-mail address: david.cohen@psl.aphp.fr (D. Cohen).

¹Address: Groupe Hospitalier Pitié-Salpêtrière, 47-83 bd de l’Hôpital, F-75651 Paris cedex 13, France.

Short title: Serious games and ASD

Word count
Abstract: 243 words
Text: 4475 words
Tables: 3; Figures: 3
Supplemental materials: 1
References: 71
Serious games to teach social interactions and emotions to individuals with autism spectrum disorders (ASD)

Short title: Serious games and ASD

Word count
Abstract: 243 words
Text: 4475 words
Tables: 3; Figures: 3
Supplemental materials: 1
References: 75
Abstract:

The use of information communication technologies (ICTs) in therapy offers new perspectives for treating many domains in individuals with autism spectrum disorders (ASD) because they can be used in many different ways and settings and they are attractive to the patients. We reviewed the available literature on serious games that are used to teach social interactions to individuals with ASD. After screening the Medline, Science Direct and ACM Digital Library databases, we found a total of 31 serious games: 16 that targeted emotion recognition or production and 15 that targeted social skills. There was a significant correlation between the number of reports per year and the year of publication. Serious games appeared promising because they can support training on many different skills and they favour interactions in diverse contexts and situations, some of which may resemble real life. However, the currently available serious games exhibit some limitations: (i) most of them are developed for High-Functioning individuals; (ii) their clinical validation has rarely met the evidence-based medicine standards; (iii) the game design is not usually described; and, (iv) in many cases, the clinical validation and playability/game design are not compatible.

Future research agendas should encompass (i) more robust studies in terms of methodology (large samples, control groups, longer treatment periods, follow-up to assess whether changes remain stable, etc.) to assess serious game efficacy; (ii) more collaboration between clinical and computer/game design experts; and (iii) more serious games that are adapted to Low-Functioning ASD individuals.

Keywords: Autism, Information Communication Technologies, Serious Games, Evidence-based Medicine, social skills.
1. Introduction

Autism spectrum disorders (ASD) are developmental disorders that affect individuals to different degrees. The core symptoms include impairments in communication and social interactions, with deficits in social emotion reciprocity, in non-verbal communication and in developing and maintaining relationships, all of which fall under the umbrella term of “social skills”. Social skills can be defined as “the ability to perform those behaviours that are important in enabling a person to achieve social competence” [64]. They include verbal (e.g. speech intonation, clarity of speech) and also non-verbal behaviours (e.g. eye-contact, facial expression, gestures). These behaviours have to be combined in order to achieve complex social goals such as initiating an interaction or selecting appropriate topics for conversation. Thereby, disabilities in these skills complicate the integration of persons with ASD into schools and society. Teaching social skills to individuals with ASD is a considerable challenge. Recently, many studies have considered the use of information communication technologies (ICTs) in therapy [14]. Indeed, children with ASD enjoy playing video games, just as many typical children do [24]. They commit to virtual environments because they are predictable and reassuring [48]. Moreover, technology is a way to easily re-create different situations of normal life, and, as such, they provide many possibilities for the therapist [40]. In this context, the use of virtual environments enables practice with social situations that closely approximate real life.

ICT-based interventions can be classified in three main categories [14]. First, iPods and iPads Apps aims to facilitate a specific aspect in social life. Kagohara et al. recently review the literature on App used in individuals with developmental disabilities including ASD [41]. Despite some promising apps (e.g. Rubycube apps or Social Detective App), most available apps have received limited empirical clinical validation. The 15 studies reported by Kagohara et al. encompassed only 47 individuals in total [41]. Second, ICT-interventions
include the use of robots with children with ASD [14, 23, 38, 59]. In this sub-domain, clinical validation is also limited as many studies focused on the development of novel social skills for robots thus narrowing down the expectation for social training [38]. Finally, ICT-interventions include serious games. Serious games can be described as "digital games and equipment with an agenda of educational design and beyond entertainment" [51]. Many serious games have been created to improve social interactions in individuals with ASD. They exist on multiple supports or platforms: computers, tabletop formats, robots, etc. Despite exciting preliminary results, the use of serious games in ASD remains limited [56]; most of the current serious games dedicated to ASD have limited relevance to the actual interactive conditions of real life experiences, and they have often not been validated beyond proof-of-concept studies [14]. Continued research is needed to provide a definitive answer about their efficacy and generalisation to everyday life [32].

Several reviews have focused on serious games [49, 50, 55, 56, 58, 70]. However, none were exhaustive, as they usually targeted some specific aspects of serious games (e.g., domains of training [49], methods and results [58]), and none described the games’ design and playability. The accumulated evidence from meta-analytical screening suggests that ICT-based interventions are indeed effective [34]. The present review seeks to supplement the current state of knowledge by examining the gaming and educational design of the software used in these interventions. Therefore, it focuses on the notion of “serious games”.

Here, our aim was to review the literature on the serious games that are used to teach social interactions to individuals with ASD, focusing on the principles and theory that underlie the games, their clinical validation as well as their playability and design.

2. Methods
2.1. Search procedure / analysis

Between January and June 2014, we performed a computerised search of the Medline (PubMed version), Science Direct and ACM Digital Library databases. In all three, the search was limited to articles written in English and published in peer-reviewed journals between January 2001 and April 2014. The search used the following keywords: autism or ASD and “serious games” or “video games” or “games” or “virtual reality”. We screened all identified reports, studies and reviews by reading the titles and abstracts. In addition, the reference lists of the studies that met the inclusion criteria were reviewed to identify additional studies for inclusion. Finally, we added one paper that had been submitted by our group and that described a novel gaming platform to improve social skills in ASD (Bono et al., in revision) [13].

2.2. Inclusion procedure

The studies included in the analyses met the following criteria: (i) they reported on serious games on computers (including tabletop computers); (ii) they reported on serious games that trained on social interactions; and (iii) they targeted individuals with ASD. We excluded the current applications on digital tablets that did not match the definition of a serious game (“digital games and equipment with an agenda of educational design and beyond entertainment”). We also excluded all games that were only cited in reviews and not described in the scientific literature (such as games that are only available on the web). Figure 1 summarises the flowchart of the study. We ultimately found 40 studies on 31 serious games that corresponded to our criteria; some games were mentioned in more than one paper.

2.3. Data extraction and quality quantification
For each selected study, we extracted the targeted skills and populations, as well as the games’ designs and principles. We also examined whether the game was based on a specific treatment model (e.g., theory of mind, applied behaviour analysis, etc.) and whether it had been tested in a clinical population. To assess the quality of the clinical validation, we extracted the following study variables (population, duration, study design (e.g., open trial vs controlled study training)) and scored it according to the Connolly, Boyle, MacArthur, Hainey & Boyle (2012) scale [20]. The Connolly et al. scale focuses on the following criteria: the type of study, method and analysis, generalisability (size and representativeness of the sample), pertinence, and confidence in the results. We pooled the data for each game from the corresponding studies. Each game received a rate for each criterion (3=high; 2=medium; 1=low) and a total score (maximum=15). We also summarised the main results of each study.

To better characterize the games, we also summarised the attributes of each serious game based on Yusoff’s (2010) work [74]. Yusoff proposed a conceptual framework that describes a list of attributes based on cognitive, behaviourist and constructivist theories that the serious games’ creators may use to reach their educational agenda. These attributes include: incremental learning, linearity, attention span, scaffolding, transfer of learned skills, interaction, learner control, practice and drill, intermittent feedback, reward, situated and authentic learning, and accommodating the learner. They are described in Table 1. We built a scale based on these attributes by rating each game and its attributes (0 if the attribute is absent, 1 if it is partly present, and 2 if it is fully present). We rated a total score by summing the attributes’ ratings (maximum score=24). Here, a higher total score does not indicate a higher conceptual quality, but rather higher conceptual complexity and that the authors’ provided a better description given for their game. The data were blindly extracted by two of the co-authors (CG and AJ). The intraclass correlation coefficients (ICCs) were excellent for the total Connolly scale ($ICC_{Connolly \ Total} = 0.95$) and Yusoff scale ($ICC_{Yusoff \ Total} = 0.90$) scores.
The subscores of the Connolly scale had good to excellent ICCs, ranging from 0.72 to 0.94, with the exception of the pertinence criterion (ICC$_{\text{Connolly pertinence}}$=0.36). The subscores of the Yusoff scale had good to excellent ICCs, ranging from 0.62 to 0.94. We found a weak correlation between the total scores from the Yusoff and Connolly scales (r=0.3, p=0.1), indicating that the two instruments did not measure the same characteristics.

3. Results

We found a total of 31 serious games that were designed to improve social skills. Sixteen of these games specifically targeted facial emotion recognition or production and 15 were aimed at training on more general social skills, such as interaction, collaboration, and adaptation to specific social contexts. Beginning in 2001, there was an increase in publications (Fig 2); we found a significant correlation between the number of articles per year and the year of publication ($\rho=0.65$, p<0.05). Seventeen additional games were only available through the internet (16 games and 1 online community) and had no clinical validation. They are described in Annex 1. To simplify the presentation, we elected to separate the 31 games as a function of the game target (facial emotion vs. general social skills).

3.1. Games targeting emotion recognition or production

Although social skills required in real life involve rich combinations of perspective taking, emotional regulation, cognitive flexibility, appropriate use of language and so on, the literature search conducted here emphasized that a significant part of the effort devoted to
serious game design has been focusing on the basic ability of emotion recognition, which sustains those more complex forms of social competencies. Table 2 summarises the main characteristics of the 16 games that specifically targeted emotion recognition. Many of these games focus on recognising emotions in pictures, drawings, audio or video recordings. Although emotion recognition is multimodal in nature [69], visual facial stimuli were the most frequent, audio stimuli were less frequent and body posture presentations were only proposed once. Four games also trained on producing emotions, often by having individuals mimic a model. Among them, only LifeIsGame [26] includes emotion production exercises in a social context with no visual support. Professionals in autism (such as clinicians and developmental disorder and education professionals) were involved in designing the games, with the exception of two games that were created by students in computer sciences [51, 65].

Supplementary Table S1 summarises the scale scoring from the Connolly et al. study regarding clinical validation. Excellent scores (≥ 12) were obtained for The Junior Detective Program [9], Emotion Trainer [66], FaceSay2 [39], JeStimule [61], Let’s Face It [66], Mind Reading [31] and The Transporters [30]. Regarding the targeted populations, 6 serious games are available exclusively for high-functioning (HF) ASD or Asperger syndrome (AS) individuals, with no adaptation for low-functioning (LF) ASD patients. Two other games require that players have good reading skills. Among the 16 games, 10 were assessed in populations with ASD. Only 7 studies used a control group, including a few with sample sizes of 30 or more children per group. Only 4 studies were randomised (Table 1). As a result, we only found one study (which assessed the serious game Let’s Face It!) [66] that included both a control group and an ASD group matched for developmental age and diagnosis (AS or PDD-NOS) and more than 30 children per group. In terms of efficacy, the individuals who played Mind Reading [31], The Transporters [30], JeStimule [61], FaceSay2 [39], The Junior Detective Program [9], and Emotion Trainer [66] showed improvement after training but their
results cannot be extended to the whole spectrum of autism disorders given the limited representativeness of their samples. Also, no study showed evidenced of clinical relevance meaning that by playing with a serious game that focuses on social interaction skills, the children were not shown to improve clinical social interaction scores (like ADOS or Vineland).

Supplementary Table S2 summarises the presence or absence of the different attributes of serious games described by Yusoff (2010) [74]. Games usually included several attributes (mean=8.5; range: 5-11). However, three attributes appeared to be used less frequently: attention span, reward and accommodating the learner. Each game was very different with variations based on the authors’ choices. To illustrate this diversity, we briefly describe two games. The first game, CopyMe [65], is very simple in its architecture and principles and has not been tested in a clinical study. The second, JeStimule [61], is more complex in its computation and was tested in an open stratified clinical trial. The first game, CopyMe [65], targets only facial expression production; the game is designed for an iPad. The player must look at a picture of a facial expression with the name of the expression written underneath it and then she/he has to reproduce it. There are 3 levels of difficulty: the easy level includes happy and sad emotions; the intermediate level includes happy, sad, angry and surprised; and the difficult level includes happy, sad, angry, surprised, scared and yucky. A facial expression recogniser was built for this game.

The second game, JeStimule [61], is a computer game that targets expression recognition in context. This game is separated into 2 modes, training and the game itself. The particularity of this game is that it is possible for LF-ASD (Low Functioning Autism Spectrum Disorders) individuals to play using colour codes that are associated with specific emotions (yellow for joy, for example). Players learn these codes in the training mode. During the game, the player moves her/his avatar in a 3D environment and is exposed to different
scenarios during which she/he has to recognise an emotion. Different levels of recognition exist: (1) recognizing the emotion expressed by a virtual character due to a specific event (e.g. a child falls down); (2) the same task but the face of the virtual character is hidden; (3) recognizing the emotion conveyed by the non-verbal communicative behaviour of a virtual character speaking with another virtual character when the verbal exchange is made inaudible.

3.2. Games that target general social skills

Table 3 summarises the main characteristics of the 15 games that target general social skills; the majority (7/15) focused on collaborative skills (negotiation, turn taking, planning together, etc.). These seven serious games were based on the principle that cooperative games support social skills and force participants to communicate and work together in order to finish the game. The rules in these games did not allow players to succeed alone. Each individual required the intervention of another participant to move forward; the 2 players had to execute actions together, with each player controlling separate elements of the game. Therefore, players had to interact with each other in order to accomplish the tasks. The seven other games provided training on appropriate behaviours in specific social situations (café, birthday party, etc.); these games relied on virtual environments. Finally, one game focused on the child’s responses and initiative actions with a virtual character in a virtual interactive garden.

Supplementary Table S3 summarises the scoring scale from the Connolly et al. study regarding clinical validation. None of the games reached excellent scores (≥12), indicating that the clinical validation is rather limited in this group of games (mean=8.53; range: 7-11). Indeed, although autism professionals were involved in the design of all of these games, 8 games were designed exclusively for HF-ASD (High Functioning Autism Spectrum...
Disorders) or AS (Asperger) individuals, 11 were assessed on a sample of individuals with ASD, only 2 studies included a control group, and none of the clinical studies included samples of more than 30 individuals with ASD or were randomised (Table 2).

Supplementary Table S4 summarises the presence or absence of the different attributes of serious games described by Yusoff (2010) [74]. The games usually had several attributes (mean=8.73; range: 6-12). However, four attributes appeared to be used less frequently: incremental learning, attention span, reward and accommodating the learner.

The games were designed in different ways and aimed to train on different skills. For example, the Cooperative Puzzle Game aimed to train on collaborative skills [6]. This game used the Diamond touch, a multi-user screen that can support small group collaboration, where 2 players have to assemble a puzzle using a model; the pieces could only be moved through a joint action performed by the 2 players. The Cooperative Puzzle Game included 6 puzzles (extracted from the movie “Shrek 2”) arranged by level of difficulty, and the levels were defined after testing with typical boys. Another example is a game that relied on collaborative virtual learning environments [16] and intended to enhance empathy. The player operated an avatar in a virtual fast-food restaurant, with the help of a clinician. S/he interacted with a teacher who played her/his own avatar in the game. Four social scenes were used (someone jumps ahead in a restaurant queue; someone comes in and sits down in an unoccupied seat next to the subject while the subject is eating; a drink is spilled on the floor; or a passer-by slips and falls). During the game, the virtual characters asked questions by text or voice on the participants’ feelings regarding the unexpected events related to the scenarios. The teacher helped the player to understand and answer correctly.

| INSERT TABLE 3 |

4. Discussion
Even when we excluded current smartphone and iPad applications that did not correspond to the narrow definition of a serious game from our study, we found that many serious games had been proposed for training or overcoming social interaction impairments in individuals with ASD since the year 2000. The number of serious games has even increased in the last few years; 23 of the papers that were reviewed in the current report were published in 2010 or later (Fig 2). In total, we found 31 games that aim to help people with ASD manage social interactions. The majority targeted children or adolescents with ASD. However, adults with ASD also face challenges in social cognition and interactions but have received less attention in the serious game research community [15].

Many games are intended for people with HF-ASD (e.g., [29]) or AS (e.g., [48]), whereas many individuals with ASD have comorbid intellectual disability [4]. Some games require good reading skills and are, therefore, not accessible to a large portion of those on the spectrum (e.g., [30]). A small number of games attempt to work around this challenge with oral explanations. However, for most people with ASD, oral comprehension is difficult, and they might find it hard to play with these games. The focus of training with these individuals tends to emphasize basic communication needs such as attention to faces and eye-contact. Unfortunately, only a few serious games have addressed such basic nonverbal skills that are nevertheless relevant for HF and LF ASD. This is a major limitation in terms of serious game availability for the broad spectrum of individuals with ASD.

Nearly all serious games that have been reported in research papers have included at least one ASD expert in the game design. They are only two exceptions [51, 65], and the quality of these works may be questionable. In another report [42], the therapeutic support was provided by an online game that was not dedicated to ASD. Even if part of the game was customized by professionals specifically for ASD and included only what they consider of interest in terms of education needs, the potential benefits for ASD remained limited.
A major limitation in the current literature is the lack of or limited clinical validation. As shown in Tables 2 and 3 (Connolly scale total scores), among the 31 games described in this review, 16.1% (N=5) were not tested on subjects with ASD. For another 12.5% (N=4), we only found studies that assessed the games’ usability in small samples of individuals with ASD. The studies described whether the players enjoyed the games, but did not report whether the interventions produced any changes in their social skills. For the last group of studies (N=22), the effects of the interventions on social abilities were assessed. However, based on evidence-based guidelines, the overall quality of these clinical studies is poor [60]. For the majority of the studies, the samples are too small to allow us to draw conclusions on any real effects of the computer games. Moreover, a large part of the games were tested for short periods that were not sufficient to assess the interventions’ long-term efficacy [15]. A number of authors have already observed that longitudinal studies are warranted in this field [68, 75]. In addition, many studies did not include a control group that matched the exposed group (e.g., [11]). Another important issue is the transfer of acquired social skills to everyday life. In many cases, the pre- and post-treatment measures focused on the skills that were directly targeted in the serious games. However, working on discrete social abilities is only a first step towards improving social communication skills. For instance, although memorizing and identifying facial expressions can be considered a building block of nonverbal communication, it provides no guarantee that the individual will be able to process the emotional information thus retrieved to engage fluidly in an ongoing and ever-changing social interaction. Therapists or teachers generally agree that effective interventions should produce improvements in social skills in real-world situations [61]. As a consequence, more research should be developed to assess the link between serious game interventions and improvements in real-life.
Another limitation is the difficulty in defining a serious game. Most of the studies focused on the therapeutic objectives and did not pay attention to the accessibility and enjoyability of the game. Most of the games are designed like exercises, without all of the characteristics of a video game. For many studies, we do not have much information about the design process of the game and can only find the methods and results for the behavioural and cognitive testing. Notwithstanding, some of the studies describe how the game was designed (e.g., Piper, O'Brien Morris & Winograd [54]). However, most of these studies did not evaluate the impact of the game on the social skills of individual with ASD. Indeed, figure 3 shows both the total Yusoff and Connolly scores for each game. As shown here, we found a weak positive relationship between the two total scores, indicating that the researchers who pay attention to the validity of the methods and results are not necessarily those who care about the ergonomics and usability of serious games. An interpretation may be that the fields of developmental psychology and child psychiatry do not interact efficiently with the fields of engineering and the serious game specialty.

This lack of interest in design coincides with the lack of framework describing how to create a serious game for teaching social skills to individuals with ASD. To date, different frameworks for designing serious games have been proposed. They detail the design process to help the team during the different steps of game creation [21, 46, 72]. The existing frameworks focus on integrating behavioural and cognitive models within the game [74]. However, these frameworks do not usually focus specifically on ASD or teaching social skills. Recently yet, Khowaja & Salim [43] tried to summarize the main components of ASD serious game design.
The lack of frameworks explains the heterogeneity between serious games. It also complicates the manner in which we evaluated the design of the different serious games. In this review, we used Yusoff’s [74] proposal to evaluate the presence of the different attributes of serious games. In his work, the search for these attributes enables the rater to judge the quality by describing how the authors designed a serious game. Therefore, the raters’ scores depend on the description of the game in the paper and its overall complexity (as evidenced by the number of attributes found). This can be a limitation for this work, especially because many authors focused on the clinical study methods and testing rather than describing the game operation.

Despite these limitations, we believe that the use of ICTs may offer opportunities for individuals with ASD. A recent meta-analysis that focused on ICTs that had been tested in controlled trials (N=14) found that remediation through serious games was effective [35]. The authors included all types of serious games (including those targeting language skills, reading, spatial planning, emotions, and general social skills) in their meta-analysis and used the mean effect sizes of the studies’ primary variables to assess any pre- and post-treatment changes. The efficacy in the controlled studies (N = 14) was significant, with a mean effect size approaching the medium range. Regarding social skills training, our review included 6 games that suggested promising results in at least one controlled trial that included nearly 50 individuals: Mind Reading [31], JeStimule [61], FaceSay2 [39], Emotion Trainer [66], Junior Detective program [9] and the Transporters [30]. All target emotion recognition or production.

We separated the serious games reported on here into 2 groups: those that mainly teach facial emotion recognition and production and those that teach social skills such as
collaboration and adapting to environments. The work on facial emotions has been particularly investigated. The importance of emotion recognition in the cognitive impairments of individuals with autism is not consensual [39], although some authors consider emotion processing one of the major deficits in ASD [5]. Among the 16 games, 11 manipulated contextualized emotion. The aim is to promote functional generalisation to real life and help ASD individuals understand others’ thoughts. However, it cannot be assumed that teaching an individual to recognize emotional facial expressions will be enough to foster her/his social skills in real life dynamic interactions. Unfortunately, we found very few games that offered training in producing emotions, particularly in social context [26, 51]. The last point is the playful aspect of the games. Most games that train on facial emotions present a static environment that does not offer the player any possibility of interaction within the game. The majority use photographs and written sentences, and the player has to click on the mouse to select the correct answer. Some games attempt to be more fun with colours or drawings (e.g., FaceSay); their designs are warmer and more attractive. This can help players focus on the game but can also increase stimulation and distract them.

In contrast, serious games that train on collaborative or general social skills usually require greater player participation, unlike games that train on emotion recognition. In practice, half of the games training social skills are just a support for interactions between players. They do not work explicitly on social skills but train on them by constraining players to interact with their partners. These games do not train on one particular skill but rather require multiple players. The other half of the games is based on virtual environments that simulate real life. However, these games allow working only on few specific situations, and functional generalisation of behaviour may not be efficient, as social rules change with context.
Some games, such as ECHOES [11], use gesture controls with sensors, for instance via RGB cameras; these require greater player participation. Other games, such as Junior Detective Agency, are based on realistic scenarios with story progressions; these computer interventions are closer to video games than scholarly exercises. According to the parents who participated in semi-structured interviews in the study by Abirached, Zhang & Park [1], games of this type allow for deeper immersion and greater interest for children with ASD. This is also the rationale for games that use virtual reality environments that resemble real life [61]. Finally, it could be interesting to incorporate modules with cutting-edge technologies that support social skill improvement, such as joint attention or visual exploration [22], or that give feedback during the game by automatically extracting social signals.

A critical issue regarding the research in the field of ICT for ASD is whether the value added from ICT research also stems from the engineering systems that offer activities that would not otherwise be possible through therapist/patient education methods. A number of projects designed software that displayed pictures or photographs that could also be presented in a more classical format using a pen and pencil [12, 25, 39, 66]. In addition, researchers should seek to exploit the full advantage of computing systems that can automatically respond to user input. Novel technologies enable the detection of subtle social non-verbal signals in a way that is much more difficult for therapists to achieve alone. For instance, gaze-contingent interfaces are used to capture users’ gaze orientations in real time and provide them with feedback about their own gazes [33, 44, 67] Algorithms that detect facial expressions in real time are also currently being developed and tested in the serious game JeStimule for a second version of the game that offers feedback on the participants’ emotion production (see: http://jemime.isir.upmc.fr/). The Autism Spectrum Condition-Inclusion (ASC-Inclusion) EU project aims to combine multiple state-of-the-art technologies in one software program that will analyse children’s facial expressions, vocal intonations and gestures (using standard
microphones and webcams); train children to recognise their own, and others’ facial expressions, tones of voice and body gestures through interactive games, text communication, animations, and video and audio clips; personalise the settings according to children’s individual needs; and support professionals, parents and caregivers with professional information, reports on the children’s progress and forums to interact with other professionals and caregivers (see: http://asc-inclusion.eu/project/overview-2/).

5. Conclusion

The use of information communication technologies (ICTs) in therapy offers new perspectives for treating individuals with autism spectrum disorders (ASD) because they can be used in many different ways and settings and they are attractive to the patients. For training on social skills, serious games are very promising. They can be used to train many different skills and can favour interactions in diverse contexts and situations, some of which resemble real life. However, the currently available serious games present some limitations in terms of the evidence of their clinical benefits. It now appears necessary to measure the efficacy of ICTs and the use of serious games for remediation through more robust studies in terms of methodology (large samples, control groups, longer treatment periods, and follow-up to assess whether changes remain stable). We also need to pay more attention to game design and develop a specific framework for this type of serious game to propose games that challenge and engage the patients. Moreover, we still need to develop more serious games that are adapted to LF-ASD individuals and that are based on recent advances in computing systems that can automatically respond to user input. The current state-of-the-art has put much emphasis on the specific skills related to emotion recognition in faces. In the future, researchers should also promote other subsets of competencies that are essential to non-verbal social communication such as join attention or gestures. Features that characterize cognitive
functioning in ASD should also be taken into account. Given that individuals with ASD are often reported to be visual thinkers [57], future studies ought to take full advantage the opportunities afforded by the visual representations inherent to serious games.
Bibliography

FIGURE CAPTION

Figure 1. Flow diagram of the search method used in this study

Figure 2. Number of publications describing serious games to train social interaction and emotion to people with autism spectrum disorder, according to the year of publication

Figure 3. Clinical validity and game playability/design as evidenced by the Connolly and Yusoff scale scores, respectively, in all games training social interaction and emotions to people with autism spectrum disorder (ASD)
Table 1: Definition of the attributes used in the Yusoff scale

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental Learning</td>
<td>Tutorial, examples and presentation of material and exercises</td>
</tr>
<tr>
<td>Linearity</td>
<td>Logical sequence of exercises and a steadily increasing difficulty level</td>
</tr>
<tr>
<td>Attention span</td>
<td>Taking into account the capacity of attention and adapted duration of exercises</td>
</tr>
<tr>
<td>Scaffolding</td>
<td>Average used to help the patient comprehend and progress in the game, such as visual support</td>
</tr>
<tr>
<td>Transfer of learned skills</td>
<td>Reuse of the learned skills in other exercises</td>
</tr>
<tr>
<td>Interaction</td>
<td>A way to allow the player to stay interested and engaged in the game. The game must be challenging and fun.</td>
</tr>
<tr>
<td>Learner control</td>
<td>Possibility for the player (or the supervisor) to control different functions in the game, such as the duration, order of the exercises, and development.</td>
</tr>
<tr>
<td>Practice and drill</td>
<td>Using new skills repetitively to ensure the acquisition of the skills</td>
</tr>
<tr>
<td>Intermittent feedback</td>
<td>Feedback during the exercises, such as points won or auditory feedback.</td>
</tr>
<tr>
<td>Reward</td>
<td>A reward upon the completion of an exercise is given</td>
</tr>
<tr>
<td>Situated and authentic learning</td>
<td>Work with context</td>
</tr>
<tr>
<td>Accommodating the learner</td>
<td>Possibility for the player to personalize or adapt the game to his/her tastes</td>
</tr>
</tbody>
</table>
Table 2: Serious games that target emotion recognition or production (N=16) in individuals with autism spectrum disorder

<table>
<thead>
<tr>
<th>Project (Study publication)</th>
<th>Targeted participants</th>
<th>Targeted skills</th>
<th>Support</th>
<th>Clinical study</th>
<th>Main results</th>
<th>Models and comments</th>
<th>Connolly scale score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aprende con zapo (Lozano et al., 2011) [45]</td>
<td>Children with ASD (8 to 18 years), able to read</td>
<td>Facial recognition with and without context and theory of mind</td>
<td>Drawings and photos</td>
<td>Open pilot study of 9 children aged 8 to 18 years, with a developmental age from 5 to 7, for 45 min per week over 20 weeks.</td>
<td>Pre-test and post-test of emotional skills (no information on the test): all children show better results for emotion recognition and prediction of people’s actions from their true or false beliefs.</td>
<td>Theory of mind Redundant character (Clown Zappo)</td>
<td>7</td>
</tr>
<tr>
<td>CMotion (Finkelstein et al., 2009) [27]</td>
<td>Individuals with HF-ASD</td>
<td>Recognise facial expressions and emotions in context</td>
<td>Virtual moving characters in 3D</td>
<td>No</td>
<td>No</td>
<td>Culturally situated design tools Fun design</td>
<td>6</td>
</tr>
<tr>
<td>CopyMe (Tan et al., 2013) [65] (Harrold et al., 2014a) [35] (Harrold et al., 2014b) [36]</td>
<td>Children with ASD</td>
<td>Mimicking facial expressions from a model</td>
<td>Pictures of real persons</td>
<td>The game was used with children aged 8 to 10 years in a childcare centre in Sydney. However, no assessment was reported.</td>
<td>No</td>
<td>Deformable model fitting (Saraghi et al, 2010) with ofx FaceTracker add-on in the OpenFrameworks C++ toolkit using the OpenCV Library. Visual feedback in real time. The design did not involve an autism professional. An online questionnaire is available for caregivers to judge the game</td>
<td>5</td>
</tr>
<tr>
<td>Computer-based program (Bölte et al., 2002) [12]</td>
<td>Adolescents and adults with HF-ASD or AS</td>
<td>Identify basic facial emotions</td>
<td>Photos</td>
<td>Open pilot study of 10 adolescents with HF-ASD or AS, 5 of which were randomly assigned to receive 2 hours training per week for 5 weeks. The others served as controls</td>
<td>Improved post-test measures related to training (facial emotion recognition). No generalisation based on the International Affective Pictures System.</td>
<td>Theory of mind Executive dysfunction Weak central coherence Feedback in function of the answer</td>
<td>9</td>
</tr>
</tbody>
</table>
The Junior Detective Training Program (Beaumont et al., 2008) [9]

| Children with AS (7.5 to 12 years) | Emotion recognition and social skills in context | Game in 3D with real scenarios | Randomised controlled study N=49, 26 were randomly assigned to intervention, 23 controls. Groups were matched on age, IQ, and social competences (measured by the Social Skills Questionnaire). 7 sessions (1 per week) with game time and group therapy | Significant improvement in the intervention group for social skills (based on SSQ and ERSSQ) and emotion management. Significant improvement in emotion recognition for both groups. A significant improvement in social skills at the 5 month follow-up. | http://www.sst-institute.net/au/professionals/computer-game-workshop |

Emotion Trainer (Silver & Oakes, 2001) [63]

| Individuals with AS | Recognise and predict emotions with and without context | Photos | Nonrandomised controlled study 11 AS between 10 to 18 years, ≥ 7 years developmental age. 11 AS controls matched for age and gender. 10 sessions of 30 minutes during 3 weeks | Significant improvement for the treatment group in cartoon emotion recognition and theory of mind. No significant difference in emotion recognition between groups. | Theory of mind |

Facial expression recognition serious game (Christinaki et al., 2013) [18]

| Pre-schoolers with ASD (2 to 6 years) | Recognise basic emotions with and without context | Photos | No | No | Piaget’s model Kolb’s experiential learning theory Gestural control by Kinect |

FaceSay2 (Hopkins et al., 2011) [37]

| Children and adolescents with LF- and HF-ASD | Discriminate and recognise facial expressions and joint attention | Photos and drawings | Randomised controlled study 49 participants (25 LF-ASD, 24 HF-ASD) aged 6 to 15 years. Developmental age from 6 to 10 years. 11 LF and 13 HF trained 2 times a week during 6 weeks. Session duration: | Significant improvement in emotion recognition for the individuals with HF-ASD in the treatment group. The improvement in emotion recognition for the individuals with LF-ASD in the treatment group was not shown for |
JeStimule (Serret and al., 2014) [61]

- **Participants**: Individuals with LF and HF ASD
- **Skills**: Recognise emotions without or with context
- **Type of tool**: Serious game in 3D with real scenarios and avatars
- **Study Design**: Stratified open trial on 33 patients with ASD aged 6 to 18 years
 - Stratified for age and developmental age
 - Trained 2 times a week for 4 weeks.
 - Session duration: 1 hour
- **Results**: Descriptive data showed suitable adaptability. Significant effect for session on avatars and on pictures of real-life characters. Significant effect for session × task × emotion interaction for avatars and near significance for pictures of real-life characters.
- **Notes**: Play with the mouse or Joystick

Let’s face it (Tanaka et al., 2010) [66]

- **Participants**: Children, adolescents and young adults with ASD and AS
- **Skills**: Face recognition
- **Type of tool**: Randomised controlled study
 - 42 participants (mean IQ=93.6) played during 20 hours
 - 37 controls with ASD (mean IQ=95.9)
- **Study Design**: The Let’s Face It skills battery was used to assess social skills pre- and post-treatment. The authors found no significant differences for most of the subtests. Only the subtest Part/Whole identity showed significantly better results in attention to eyes and mouth for the treatment group compared to the control group after the training sessions.
- **Notes**: Hierarchical face processing model (Tanaka et al., 2003)
 - Participants were not included if the clinician thought they would not understand the instructions.

LifeIsGame (Fernandes et al., 2011) [26] (Abirached et al., 2011) [2]

- **Participants**: Individuals with LF and HF autism
- **Skills**: Recognise and produce facial emotions with and without context
- **Type of tool**: Cartoon with avatar in 3D
 - On computer
- **Study Design**: Only a qualitative assessment of the design by 9 participants.
 - No evaluation.
- **Results**: Participants enjoyed playing this game. The children seemed to match images more than they recognised
- **Notes**: 4 game modes
 - Real-time automatic facial analysis => Active Appearance Model
 - Positive and negative
<table>
<thead>
<tr>
<th>Game</th>
<th>Target Population</th>
<th>Tasks</th>
<th>Methodology</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LifeIsGame (Alves et al. 2013) [3]</td>
<td>“</td>
<td>iPad 4</td>
<td>Pilot study 11 children tested the game once for 15 min. Parents and professional opinions collected</td>
<td>Good comprehension of the game and ease of use with the iPad 5 game modes Positive feedback</td>
</tr>
</tbody>
</table>
| Mind Reading (Golan et Baron-Cohen, 2006) [31] | Individuals with AS or HF-ASD | Recognise emotion from faces and voices, with and without context | Experiment 1: Controlled study 19 participants with AS or HF-ASD matched with 22 controls with AS or HF-ASD and 24 children with typical development. Training from 10 to 15 weeks.
Experiment 2: 13 participants with AS or HF-ASD used Mind Reading alone 2 hr/week for 10 weeks and in small groups with a tutor 1 time/week for 10 weeks.
13 participants in the control group took part in 10 sessions of social skills training.
13 typical participants were matched to experimental and control groups. | Experiment 1: Significant improvement in the participants’ abilities to recognise complex emotions from voices and faces compared with their performance before training and the control group’s performance. Improvement was limited to close but not distant generalisation tasks.
Experiment 2: Significant improvement in the participants’ abilities to recognise complex emotions from voices and faces compared with their performance before training and the control group’s performance. Improvement was limited to close but not distant generalisation tasks. |
<table>
<thead>
<tr>
<th>Study</th>
<th>Target Group</th>
<th>Task</th>
<th>No/Yes</th>
<th>Framework/Model</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmileMaze (Cockburn et al., 2008) [19]</td>
<td>Children with ASD</td>
<td>Recognition and production of facial emotions using smileys</td>
<td>No</td>
<td>Informal field-testing showed that children with ASD enjoy playing the game.</td>
<td>Computer Expression Recognition Toolbox: Players need to mimic an emotion to progress through a maze.</td>
</tr>
<tr>
<td>Theory driven serious game framework (Park et al., 2012) [51]</td>
<td>Individuals with ASD able to read</td>
<td>Recognise and produce emotions with and without context using photos and writings</td>
<td>No</td>
<td>No/Yes</td>
<td>Piaget’s model; Kolb’s experiential learning theory: 6 levels: recognising, matching, observing, understanding, generalising, mimicking An ASD professional was not involved in the game design.</td>
</tr>
<tr>
<td>The transporters (Golan et al., 2010) [30]</td>
<td>Children with HF- and LF-ASD (3 to 8 years)</td>
<td>Emotion comprehension in context using series of 3D video animations</td>
<td>Controlled study of 20 children with ASD (4 to 7 years) and 2 matched control groups: 18 children with ASD and 18 children with typical development. The exposed children watched at least 3 episodes every day for 4 weeks.</td>
<td>Significant improvement in the results for familiar close generalisation, unfamiliar close generalisation, and distant generalisation tasks. The results for the experimental group were identical to those for the control groups. After training, the results from the experimental group were the same as those from the typical children.</td>
<td>Empathising-Systemising theory: One episode of 5 minutes per emotion (15 emotions). Watch a video and then respond to a quiz (matching faces to faces, emotions, and situations). The number of episodes watched varied widely between participants.</td>
</tr>
<tr>
<td>(Young & Posselt, 2012) [73]</td>
<td>13 participants with ASD and 12 controls with ASD between 4 and 8 years. The controls watched a “Thomas, the Tank”</td>
<td>Randomised control study</td>
<td>Significant improvement in emotion recognition for the participants, but not for the controls. The social behaviours in both groups were</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Individuals with AS</td>
<td>Emotion recognition, Theory of mind, Conversational skills, In context</td>
<td>Use of a character in 3D in virtual environment</td>
<td>Open pilot study 8 individuals with AS No controls. 10 sessions over 5 weeks</td>
<td>Significant improvement in recognising emotion from faces and voices. Some theory of mind measures improved significantly. No significant improvement in conversational skills. The 6 month follow-up questionnaire showed that participants felt that they were helped by the intervention.</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>

ASD=Autism spectrum disorder; HF-ASD=High functioning ASD; LF-ASD=Low functioning ASD; AS=Asperger syndrome; 3D=3 dimensions; IQ=Intellectual quotient; SSQ= Social Skills Questionnaire; ERSSQ=Emotion Regulation and Social Skills Questionnaire.
Table 3: Serious games targeting general social skills (N=15) in individuals with autism spectrum disorder

<table>
<thead>
<tr>
<th>Project (Study publication)</th>
<th>Targeted participants</th>
<th>Targeted skills</th>
<th>Support</th>
<th>Clinical study</th>
<th>Main results</th>
<th>Models and comments</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaborative virtual learning environment (Cheng et al.2010) [16]</td>
<td>Individuals with HF-ASD</td>
<td>Empathy</td>
<td>3D environment on computer</td>
<td>Open pilot study of 3 boys ages 8 to 10 years with basic cognitive and reading skills and an IQ<70, 40 minute sessions over 5 months</td>
<td>Each child performed better on the Empathy Rating Scale after the training sessions.</td>
<td>Virtual environment: a fast-food restaurant</td>
<td>7</td>
</tr>
<tr>
<td>Computer-assisted instruction (Bernard-Opitz et al., 2001) [10]</td>
<td>Children with ASD and normal IQ</td>
<td>Problem solving</td>
<td>Pictures and animations on a computer</td>
<td>Controlled study of 8 ASD children aged 5.8 to 8.5 years matched with 8 children with typical development. 10 training sessions and 4 test sessions for 10 weeks</td>
<td>The performances of both groups increased across the four test sessions (children gave more suggestions for solving a conflict).</td>
<td>Based on training program “I Can Problem-Solve” (Shure, 1992) Reinforcement after a good answer 8 conflicts to solve Children have to suggest the most solutions to solve the conflict.</td>
<td>10</td>
</tr>
<tr>
<td>Cooperative Puzzle Game (Battocchi et al., 2008) [6]</td>
<td>Individuals with HF-ASD</td>
<td>Enhance collaborative skills</td>
<td>Multi-touch tabletop</td>
<td>Open group study of 22 typical boys aged 8 to 11 years and 3 boys with ASD aged 13 to 15 years, borderline IQ Case studies of 1 team with 2 typical boys (aged 10 years) and 1 team with 2 boys with ASD (aged 10 and 12 years)</td>
<td>Typical boys and boys with ASD enjoyed the game. Case studies: Interaction patterns differ between the 2 pairs. Boys with ASD began by playing separately and needed adults’ intervention. At the end, they began to change their interaction patterns and to collaborate more effectively</td>
<td>Enforced collaboration paradigm The children have to solve a puzzle. Each piece needs 2 players to move it. The puzzles are extracted from the movie “Shrek 2.”</td>
<td>8</td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Participants</td>
<td>Intervention</td>
<td>Platform</td>
<td>Measures</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Battochi et al., 2009a) [7]</td>
<td>“”</td>
<td>“”</td>
<td>“”</td>
<td>Experiment: 70 boys with typical development</td>
<td>A positive effect on collaboration, although it appears to be associated with a more complex interaction. For children with ASD, the enforced collaboration was also related to a higher number of “negotiation” moves.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Battochi et al., 2009b) [8]</td>
<td>“”</td>
<td>“”</td>
<td>“”</td>
<td>Experiment 2: 16 boys with ASD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECHOES (Bernardini et al., 2013) [11]</td>
<td>Individuals with LF- and HF-ASD</td>
<td>Joint attention, Symbol use</td>
<td>Digital screen</td>
<td>Open study of 19 children aged 4 to 14 years with ASD and/or other disabilities. Varying number of 15 min sessions for 6 weeks</td>
<td>Calculation of the number of responses and the initiation of interactions with the agent or the practitioner. The children responded significantly more often to the practitioner after the sessions. They seemed to use the agent as a real interlocutor. Other measures did not change significantly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasion of the wrong planet (Marwecki et al., 2013) [47]</td>
<td>Individuals with HF-ASD and AS</td>
<td>Enhance collaborative skills</td>
<td>Multi-touch tabletop</td>
<td>No</td>
<td>Based on the TEACCH approach: intervention based on learning, particularly for players with ASD, using virtual supports to support autonomy and comprehension. Players must defend the planet from alien invaders.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Join-in Suite (Giusti et al., 2011) [28]</td>
<td>Individuals with HF-ASD</td>
<td>Improve collaboration skills</td>
<td>Diamond touch</td>
<td>Open pilot group study: 8 boys with HF-ASD aged 9 to 12 years. Children play in pairs in 1-hour sessions with a</td>
<td>No measures. Good playability and level of engagement by the children. Cognitive behavioural therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kidstalk (Cheng, 2002) [17]</td>
<td>Individuals with HF-ASD and AS</td>
<td>Improve social skills</td>
<td>Drawings and texts</td>
<td>No</td>
<td>No</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>PAR: collaborative multitouch game (Silva et al, 2014) [62]</td>
<td>Individuals with LF- and HF-ASD</td>
<td>Improve collaboration</td>
<td>Multi-touch tabletop</td>
<td>Open pilot group study of 3 boys and 2 girls aged 10 to 17 years. They played in pairs. Training sessions for 9 days over 1 month. Testing sessions for 15 days over 6 weeks.</td>
<td>Relevant interactive situations. The game encourages social interactions and appears to be motivating.</td>
<td>Based on 4 collaboration patterns described in Giusti et al. (2011). Game subject: dress a team of soccer players.</td>
<td>8</td>
</tr>
<tr>
<td>Raketeer (Van Veen et al., 2009) [68]</td>
<td>Children with PDD-NOS</td>
<td>Improve basic collaboration skills</td>
<td>Multi-touch tabletop</td>
<td>Open pilot study of 13 boys and 1 girl with ASD aged 8 to 12. 20 min sessions per day over 4 weeks.</td>
<td>The scale to measure collaborative skills (filled by teachers) showed an increase between the pre- and post-treatment sessions. Only one subject showed a significant improvement in social skills in the classroom</td>
<td>Game subject: find elements to construct a rocket for a company involved in space travel. 6 levels</td>
<td>9</td>
</tr>
<tr>
<td>SIDES: Shared Interfaces to Develop Effective Social Skills.(Piper et al., 2006) [54]</td>
<td>Individuals with AS</td>
<td>Train social skills through a multiplayer game</td>
<td>Diamond touch</td>
<td>Session 1: 5 male students with AS (aged 12 to 14 years) play 6 times for 30 min Session 2: Comparison of 2 groups: one with four of the students who know the game (group 1) and 4 who do not know the game (group 2)</td>
<td>Session 1 allows for adjustment. Session 2: measures positive, aggressive and non-response behaviours in the presence of rules (no rules vs computer rules vs human rules). Games encourage positive behaviours. The rules provided by the computer appeared more easily adapted.</td>
<td>Piaget’s theory Vygotsky’s theory Players have to build a pass to allow a frog to move from a departure to a finish point.</td>
<td>10</td>
</tr>
<tr>
<td>StoryTable (Gal et al. 2009) [29]</td>
<td>Individuals with HF-ASD who could read and write</td>
<td>Improve collaboration skills</td>
<td>Diamond touch Virtual environment</td>
<td>Open pilot group study of 6 children aged 8 to 11 years. Play with peers. 8 sessions for 3 weeks</td>
<td>Few or no autistic behaviours during the game. Children produced more</td>
<td>Manipulate object and characters, each child has different characters</td>
<td>10</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Intervention Details</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeachTown (Whalen et al., 2010) [71]</td>
<td>Children with ASD and a developmental age from 2 to 7</td>
<td>Social and emotional skills, language arts, language development, adaptive skills, cognitive skills, mathematics</td>
<td>Pictures, photos, videos Controlled study of 15 children with ASD who were trained and compared with 25 children with ASD matched for severity (CARS score). 20 min per day for 3 months. Children progressed in the software program. Children in the treatment group performed better than the control group on the Brigance Inventory of Early Development, but these differences were not significant.</td>
<td>Applied behaviour analysis Different lessons with exercises and tests.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trollskogen « the troll forest » (Zarin et Fallman, 2011) [75]</td>
<td>Children with ASD</td>
<td>Train on behaviours in social situations Multi-touch tabletop</td>
<td>Game designed during work with 6 children with ASD or Down’s syndrome aged 5 to 8 years. No evaluation.</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual Café (Mitchelle et al., 2006)[48] (Parson et al., 2004) [53]</td>
<td>Individuals with AS</td>
<td>Teach social understanding Computer</td>
<td>7 teenagers with AS aged 14 to 16 years. Participants watch 1 video at the beginning, one at 3 weeks and one at the end of the session, which contains a real café and a bus, and they must indicate where they will sit. They play for 3 weeks (between video 1 and 2 or video 2 and 3) in the virtual environment. One participant had to be excluded. The participant took more time to finish a session on some levels. On some levels, the participant’s performance increased with the number of sessions. Choosing a place to sit during the video sessions was better adapted after sessions in the virtual environment. Comments from 2 adolescents with AS</td>
<td>Based on the work of Parson et al. (2004) Building on the work of Parson et al. (2006) [52]</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOLIAH</td>
<td>Children with</td>
<td>Teach imitation and Gaming</td>
<td>Open pilot study of</td>
<td>Good participation during</td>
<td>Based on the Early Start Denver</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
(Gaming Open Library for Intervention for Autism at Home (Bono et al., in revision) [13]

| (Gaming Open Library for Intervention for Autism at Home (Bono et al., in revision) [13] | ASD (IQ>60) | joint attention during a cooperative task | platform (11 game in total) on two connected computers or tablets (one for the patient, one for the parent or therapist) | 5 children with ASD aged 5 to 9 years. A 1-hour session 4 times per week for 6 weeks over 3 months. | the study (~80%), All children completed all of the games. The number of sessions dedicated to each game varied and could be tailored through automatic scoring. Parents (55%) observed enhanced parent-child relationships. | Model (Rogers and Dawson, 2009) |

ASD=Autism spectrum disorder; HF-ASD=High functioning ASD; LF-ASD=Low functioning ASD; AS=Asperger syndrome; 3D=3 dimensions; IQ=Intellectual quotient; PDD-NOS=Pervasive developmental disorder-not otherwise specified; CARS=Children autism rating scale; TEACH: Treatment and Education of Autistic and Related Communication-Handicapped Children.
Connolly (max=15) and Yusoff (Max =24) scale total scores according to the 31 games training social interaction and emotions to people with ASD.
Screening of the following databases with autism or ASD AND “serious games” or “video games” or “virtual reality” or games

ACM Digital Library
N = 59

Pubmed
N = 99

Science Direct
N = 468

Total data set
N = 626

Systematic search through abstracts

Excluded papers:
- Review (N = 12)
- Only abstract available (N = 76)
- Other topics (N = 498)
- Other (N = 4)

Additional reports through screening relevant papers and reviews (N = 2)
- 2 reports from our group

Total relevant papers
N = 40
Highlights

- The paper reviews 31 serious games targeting social abilities for ASD
- It provides brief overview and assessment of the 31 games in terms of clinical validation and playability/game design
- It lists current limitations about serious games targeting social skills and emotion recognition for ASD
- It proposes future research agendas to improve serious games validity for ASD
Conflicts of interest: CG, OG and KB have no conflict of interest to declare. ALJ and DC participated in GOLIAH serious game platform development. SS participated in JeStimule serious game development. However, ALJ, DC and SS were all working for public University with non-profit contract. These previous researches were conducted in the absence of any commercial or financial relationships that could be considered as a potential conflict of interest.

Funding: This work was supported by the Agence Nationale pour la Recherche (ANR) in the frame of its Technological Research CONTINT program (JEMImE, project number ANR-13-CORD-0004), by the European Commission (FP7: MICHELANGELO under grant agreement no. 288241), and the Fondation Initiative Autisme