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Abstract

This paper presents a new computational method for consistent calculation of mass and momentum fluxes
in a two-phase flow simulation. The problem of inconsistency of the mass and momentum transfers has
been long known in the two-phase flow context. Once the density ratio between fluid phases becomes high,
and/or the momentum of one phase differs significantly from that of the other, a decoupling phenomenon
causes a non-physical transfer of momentum, rendering most codes unstable. Original works of Rudman
[31] have addressed this by proposing a way to couple the mass and momentum flux transport. To ensure
this consistency between both fluxes in a staggered configuration, Rudman introduces a finer sub-grid to
transport the volum of fluid.

In our paper, we present a way to adopt Rudman’s approach without this subgrid, but always in a
stagerred grid. The method is presented along with validation test cases and example applications, including
very demanding momentum-dominated 3D simulations.
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1. Introduction

Many atomization processes are characterized by large density ratios coupled with large shear. A large
velocity difference between fluid phases is required to destabilize the spray. For example, the fuel is injected
at high velocity in Diesel engines but, in case of assisted atomization, found in cryotechnic applications,
the liquid jet (ergol) is surrounded by a gas flow with quite high velocity to produce shear atomization.
Numerical simulations of these configurations are known for becoming unstable . The main reason being
insufficient coupling between mass and momentum numerical schemes.

In the VOF context, Rudman [31], in 1998, proposed an approach to ensure consistency between mass
transport and momentum transport. This method allowed to perform two phase numerical simulations with
high density ratio. The momentum flux calculations are directly obtained from VOF fluxes and require
a finer sub-grid for the transport of the interface when using staggered grid. Many authors adapted this
method to their numerical schemes. Among them, Bussman [22] adapted it to a collocated mesh and did
not need subgrid strategy to transport the interface. This method is used by François & al.[9] and with an
unsplit VOF algorithm by Le Chenadec and al. [18]. More recently, the method was modified for Level Set
(LS) algorithms [28, 7, 12], in order to obtain the best approximation of flux momentum from the distance
function. A simple LS approach was introduced by Raessi in 2009 [26, 7] but the flux calculations were
one-dimensional and so did not take into account the orientation of the interface passing through the control
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volume. Later, in 2010, a more sophisticated approach [27, 28] for two-dimensional cases was developed.
Ghods and Herrmann [12] and Desjardins et al [6] succeeded in 2013 in proposing a three-dimensional
discretization for flux calculation. Some of these methods were successfully applied to numerical simulation
of liquid jet atomisation with high density ratio [6, 18, 28].

Sussman [33] introduced an extrapolated liquid velocity to provide stability in high speed flow with high
density ratio, without previous treatment for the consistency between mass and momentum. The velocity
field of the fluid with the largest density is extrapolated on some nodes in the lightest fluid, and introduced
in the discretization of convective term. This method is also used by Li et al. [19] and Xiao et al. [36] to
simulate the primary breakup of a liquid jet. The method is stable and gives good results. Desjardins and
Moureau’s approach [7] decouples gas and liquid velocities by introducing two distinct vector fields that are
defined in all the domain. Velocity field of each phase is extended in the other phase thanks to the Aslam [2]
method. Both fields are then advected and they are finally coupled through the pressure Poisson equation
to obtain a single field.

Because our solver is a coupled levelset/VOF [25, 3] on a staggered grid, the Rudman approach seems to
be the best approch to ensure consistency between mass and momentum transport [35]. Nevertheless, the
finer grid increases the computational cost of our CLSVOF method motivating the development of a single
grid approach.

The structure of this paper is as follows: in the first section, we briefly present the numerical methods
employed in our solver. Then the implementation of Rudman’s method without a subgrid for the advection
of the interface on a staggered formulation is detailled. Finally some test cases are presented validating the
new method and showing the improvements when compare to previous results.

2. Two phase incompressible Navier-Stokes Solver

Interface advection.
The interface description is performed with a CLSVOF algorithm in which the Level Set function Φ describes
geometric properties and the VOF function C ensures mass conservation. Both functions are simultaneously
advected as presented in [34, 25]. Because the advection of VOF is the key point for the conservative
mass/momentum advection method, it is briefly recalled how it is performed.
The equation to solve is :

∂C

∂t
+∇.(CU) = C∇.U (1)

which is split in (2D description):
for the x direction :

C̃i,j =
Cni,j + ∆t

∆x (fni−1/2,j − fni+1/2,j)
1− ∆t

∆x (uni+1/2,j − uni−1/2,j)
(2)

and for y direction :

Ĉi,j =
C̃i,j + ∆t

∆y (f̃i,j−1/2 − f̃i,j+1/2)
1− ∆t

∆y (vni,j+1/2 − vni,j−1/2)
(3)

At each solver time step, x-y directions are switched.
The final expression of VOF is given by :

Cn+1
i,j = Ĉi,j − Ĉi,j

∆t
∆y (vni,j+1/2 − vni,j−1/2)− C̃i,j

∆t
∆x (uni+1/2,j − uni−1/2,j) (4)

In Eq. (2), fi+1/2,j denotes the VOF flux through the face (i+ 1/2, j) between the cells (i, j) and (i+ 1, j):

fi+1/2,j = ui+1/2,jci+1/2,j
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and ci+1/2,j represents a volume fraction (Fig. 1) defined by :

ci+1/2,j =





∫ yj+1/2

yj−1/2

∫ xi+1/2

xi+1/2−ui+1/2,j∆t
H(~ni,j .(~r − ~ri,j) + αi,j)dxdy

ui+1/2,j∆t∆y ⇔ ui+1/2,j > 0
∫ yj+1/2

yj−1/2

∫ xi+1/2+|ui+1/2,j |∆t

xi+1/2

H(~ni+1,j .(~r − ~ri+1,j) + αi+1,j)dxdy

|ui+1/2,j |∆t∆y ⇔ ui+1/2,j < 0

(5)

H(.) is the Heaviside function, the interface is represented with a linear segment in 2D (plane in 3D)
whose equation is derived from on a linear Level Set recontruction ΦRi,j(~r) = ~ni,j .(~r − ~ri,j) + αi,j . Here
αi,j represents the value of the reconstructed Level Set on the center point of the cell (~ri,j = (xi, yj)). The
integrals in both equations can be computed with geometrical computations, e.g. using the VOF tools of
Lopez & Hernandez [21] or cube chopping method [13].

Figure 1: Schematic representation of VOF advection on x-direction in the case of ui+1/2 > 0

The density ρ in Navier-Stokes equations is computed using the volume fraction [13] :

ρi+1/2,j = Ci+1/2,jρl + (1− Ci+1/2,j)ρg (6)

where

Ci+1/2,j = Ci+1/4,j + Ci+3/4,j

= 1
∆x∆y

(∫ yj+1/2

yj−1/2

∫ xi+1/2

xi

H(ΦRi,j)dxdy +
∫ yj+1/2

yj−1/2

∫ xi+1

xi+1/2

H(ΦRi+1,j)dxdy
)

(7)

Note that, in our notation, Ci+1/4,j and Ci+3/4,j are between [0, 0.5].

Navier-Stokes equations resolution.
To obtain the pressure and velocity fields, the incompressible Navier-Stokes equations are solved :





∇.U =0
∂U
∂t

=− (U.∇) U + 1
ρ

(−∇P +∇. (2µD) + F)

(8a)

(8b)

Where

• U is the velocity field (u, v, w).

• µ is the dynamic viscosity.
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• ρ is the density.

• P is the pressure.

• D is the strain rate tensor D = 1
2

(
∇(U) +∇(UT )

)

• F = FV + FST represents the body force and the surface tension force, FST = σκδI~n

σ is the surface tension, κ the curvature of the interface,~n is the normal vector to the interface and δI is the
Dirac function centered on it.

A standard projection method is used to solve the system. In a first step the momentum equation is
solved without the pressure term to obtain an intermediate velocity U∗.

U∗ = Un + ∆t
(
− (Un.∇) Un + 1

ρn+1∇. (2µ
nD) + 1

ρn+1F

)
(9)

Which is linked to the pressure and velocity at time n+ 1 by :

Un+1 = U∗ + 1
ρn+1 (−∇P ) (10)

We apply the divergence operator (∇.) to the equation (10) to obtain the following implicit expression
for pressure:

∇.
(

1
ρn+1

(
−∇Pn+1)

)
= ∇. (U∗) (11)

Once the pressure field is determined, we are able to compute velocity field Un+1 from (10).

Viscosity and density are written as function of the phase indicator (φ) (VOF or Level Set).
The temporal integration is performed through a 2nd or 3rd order TVD Runge-Kutta scheme. The

viscosity term is discretized following the method presented by Sussman [33]. The WENO scheme is imple-
mented to discretize convective term in non-conservative form (U.∇U) or in conservative form ∇.(U⊗U).
The Ghost-Fluid [8] method is employed in the spatial discretization of the Poisson equation (11) to take
into account the surface tension force FST , treated as a jump of pressure. This equation is solved by a
Conjugate Gradient preconditioned by a Multigrid Method (MGCG) [37].

3. Development of the consistent, conservative mass/momentum advection method

3.1. Consistency between mass and momentum
As mentioned by Rudman [31], the convective term should be written in the mass-conservative form to

give consistency between mass and momentum transports. We focus on the mass transport equation and
on the momentum equation (for clarity, we assume no viscosity , no gravity and no surface tension) :





∂ρ

∂t
+∇.(ρU) = 0

∂ρU
∂t

+∇. (ρU⊗U) = (−∇P )

(12a)

(12b)

The mass transport equation (12a) is not explicitly solved, but it is deduced thanks to VOF advection
equation (1), ∇.U = 0 property and the definition of density from VOF (ρ = Cρl + (1− C)ρg).
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Figure 2: Representation of control volumes (S)(and there corresponding contours Σ) for VOF/mass (black
line) and for momentum (u : dotted line, v : dashed line) on staggered grid

The convective term is discretized using a finite volume approach. For simplicity, description of the
method is given for 2D configuration and thus integration of the system is given on a surface (control
volume). We also apply the inverse Green-Ostrogradski theorem to the convective term to work with mass
and momentum fluxes :





x

SC

∂ρ(C)
∂t

dS +
∮

ΣC

(ρ(C)U).~n dΣ
︸ ︷︷ ︸

I

= 0

x

Su,v

∂ρ(C)U
∂t

dS +
∮

Σu,v

(U⊗ ρ(C)U).~n dΣ
︸ ︷︷ ︸

II

=
x

Su,v

(−∇P ) dS

(13a)

(13b)

Equation (13b) leads to two expressions for u and v velocity components. In the staggered grid approach
velocity components are defined at the center of control volume faces, thus equations (13a and 13b) are
spatially integrated around different control volumes (Su, Sv) centered on velocity u and v (Fig. 2). The
mass equation (13a) (deduced from VOF equation (1)) is integrated around a control volume (SC) centered
on VOF value.

Discretization must be carried out with consistency between the transport of mass and momentum. We
note that the mass flux (I) and the momentum flux (II) in Eqs. (13a) and (13b) have common term ρ(C)U .
The mass flux (I) is computed using VOF advection and must be included in the momentum flux (II) to
ensure consistency, but their respective control volumes are different in a staggered grid strategy. This is
why Rudman introduces a refined grid for VOF (Fig. 3 rhs) which is not required when a collocated grid is
used [22, 9] (Because ΣC = Σu = Σv) (Fig. 3 lhs).
In the three following sections (3.2-3.4), we present our approach to avoid the subgrid (Fig. 3 center). We
detail how to extract mass fluxes from VOF fluxes on the faces of u and v control volume to inject them in
the momentum equations.

6
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known VOF/mass fluxes

Figure 3: Representation of known and unknown VOF (mass) fluxes on cell faces is the case of collocated
grid, staggered grid, and staggered with a dual grid for VOF advection. Only u and C control volumes are
shown.

3.2. Mass flux computation
The equivalence of mass and VOF allows to deduce the mass flux (noted fm,x = ρu for x-direction and

fm,y = ρv for y-direction) from VOF flux (previously noted f = u× c) during the interface advection.
For face (i+ 1/2, j), located on the right side of ΣC , we have the following relation :

fm,xi+1/2,j = ui+1/2,j(ci+1/2,jρl + (1− ci+1/2,j)ρg) = fi+1/2,jρl + (ui+1/2,j − fi+1/2,j)ρg (14)

Our strategy to obtain mass flux through the outline of Su and Sv with a single grid is now detailed. It is
split in two steps. The first step describes how to compute mass fluxes on surface given by ΣC ∩ Σu (and
ΣC ∩ Σv) during advection of the interface. In the second we compute mass fluxes on the part of Σu (and
Σv) given by Σu|i+1/2,j − ΣC |i,j ∪ ΣC |i+1,j , noted later Σu − ΣC , (respectively Σv − ΣC), performed when
the advection of interface is finished.

• First, the term ci+1/2,j is written as (Fig. 4):

ci+1/2,j = ci+1/2,j−1/4 + ci+1/2,j+1/4 (15)

if ui+1/2,j > 0 is considered, the expression of the right side terms of Eq. 15 are :

ci+1/2,j−1/4 =

∫ yj

yj−1/2

∫ xi+1/2

xi+1/2−ui+1/2∆t
H(ΦRi,j)dxdy

ui+1/2,j∆t∆y
(16)

ci+1/2,j+1/4 =

∫ yj+1/2

yj

∫ xi+1/2

xi+1/2−ui+1/2∆t
H(ΦRi,j)dxdy

ui+1/2,j∆t∆y
(17)

7
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Figure 4: (a) Representation of ci+1/2,j−1/4 and ci+1/2,j+1/4 (respectively horizontal and vertical bands)
normalized by ui+1/2,j∆t∆y, (b) c̃i−1/4,j+1/2 and c̃i+1/4,j+1/2 normalized by vi,j+1/2∆t∆x

The corresponding VOF flux is given by :

fi+1/2,j = fi+1/2,j−1/4 + fi+1/2,j+1/4 (18)

where fi+1/2,j±1/4 = ui+1/2,j × ci+1/2,j±1/4 and the corresponding mass flux :

fm,xi+1/2,j±1/4 = ρlfi+1/2,j±1/4 + ρg(
ui+1/2,j

2 − fi+1/2,j±1/4) (19)

The total mass flux on face (i+ 1/2, j) is :

fm,xi+1/2,j = fm,xi+1/2,j−1/4 + fm,xi+1/2,j+1/4 (20)

Once this procedure is performed on faces (i + 1/2, j) and (i, j + 1/2), the following mass fluxes are
known on each cell : fm,xi+1/2,j−1/4, f

m,x
i+1/2,j+1/4, f

m,y
i+1/4,j+1/2 and fm,yi−1/4,j+1/2. as shown on Fig. 5. Note

that the left and bottom faces have similar fluxes incoming by neighbouring cells.
If we observe the control volume of u (Fig. 6), only two faces have unknown fluxes (same in 3D)
corresponding to the part of Σu given by Σu − ΣC .

8
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Figure 5: Representation of mass flux computed for each cell

Figure 6: Representation of u control volume with known and unknown fluxes (denotes by question symbol)

• To calculate the first missing flux, a balance of mass is performed on a half-cell (Fig. 7). For the left
part of control volume Su, we obtain :

ρn+1
i+1/4,j = ρni+1/4,j −

∆t
∆y (fm,yi+1/4,j+1/2 − f

m,y
i+1/4,j−1/2)− ∆t

∆x (fm,xi+1/2,j − f
m,x
i,j ) (21)

where ρli+1/4,j = Cli+1/4,jρl + ( 1
2 −Cli+1/4,j)ρg is given by VOF at time l = n and l = n+ 1 (note that

ρli+1/4,j ∈ [ρg/2, ρl/2], see remarks at the end of this section).
Because the advection of interface is performed, the only unknown term in Eq. (21) is fm,xi,j which can
thus be easily deduced.
The last unknown flux fm,xi+1,j is computed in the same way when the balance of mass is performed on
the left part of the control volume Su of the neighbouring cell ui+3/2,j .

9
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Figure 7: Representation of half control volume of u and v where mass balance is done. Known and unknown
fluxes are shown.

Remarks:

1. The VOF transport is not changed, but ci+1/2,j is now split in two parts (ci+1/2,j+1/4 and ci+1/2,j−1/4).
To simplify implementation, with ci+1/2,j already computed for VOF advection, ci+1/2,j+1/4 is com-
puted as the same time. That means VOF fluxes (fi+1/2,j and fi+1/2,j+1/4) and mass fluxes (fm,xi+1/2,j
and fm,xi+1/2,j+1/4) can be directly deduced at the same time.
To compute any flux on the face (i + 1/2, j − 1/4) we use Eqs. (15,18 and 20) as they are required
later for momentum flux computation (Eqs. (26) and (27)).

2. The above description concerns face (i+ 1/2, j). It can be easily generalized for the face (i, j + 1/2).
The other face (i− 1/2, j) and (i, j − 1/2) quantities are obtained by neighbouring cells. As it is done
in regular VOF solvers.

3. It is important to note that we made the choice to define some variables as "half quantities" : thus
c.±1/4 ∈ [0, 0.5] (thus f.±1/4 and fm,..±1/4 ), C.±1/4 ∈ [0, 0.5] and ρ..±1/4 ∈ [ρg/2, ρl/2]. It is linked to the
computation of mass balance on a half cell. Indeed, if we write the equation of mass transport Eq.
(13a) on a half-cell, we have :

∂ρ
∣∣∣
i+1/4,j

∂t

∆x
2 ∆y + (ρv

∣∣∣
i+1/4,j+1/2

− ρv
∣∣∣
i+1/4,j−1/2

)∆x
2 + (ρu

∣∣∣
i+1/2,j

− ρu
∣∣∣
i,j

)∆y = 0 (22)

The coefficients 1
2 are included in the density to obtain :

∂ρi+1/4,j

∂t
∆x∆y + (fm,yi+1/4,j+1/2 − f

m,y
i+1/4,j−1/2)∆x+ (fm,xi+1/2,j − f

m,x
i,j )∆y = 0 (23)

with fm,yi+1/4,j±1/2 = vi,j±1/2(ci+1/4,j±1/2ρl + (1/2− ci+1/4,j±1/2)ρg).

4. In 3D, both with ci+1/2,j+1/4,k and ci+1/2,j−1/4,k, two more fluxes are necessary on the face (i +
1/2, j, k), namely ci+1/2,j,k+1/4 and ci+1/2,j,k−1/4. That means four integrals are needed on each face
(Fig. 8).
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Figure 8: Representation of the face (i+ 1/2, j, k) in 3D with the areas of necessary fluxes.

Noting that:

ci+1/2,j,k = ci+1/2,j+1/4,k + ci+1/2,j−1/4,k = ci+1/2,j,k+1/4 + ci+1/2,j,k−1/4

we can compute only three above terms, ci+1/2,j,k, ci+1/2,j+1/4,k and ci+1/2,j,k+1/4. (Remark 1 holds)
We recall that (for ui+1/2,j,k > 0) :

ci+1/2,j+1/4,k =

∫ zk+1/2

zk−1/2

∫ yj+1/2

yj

∫ xi+1/2

xi+1/2−ui+1/2,j,k∆t
H(ΦRi,j,k)dxdydz

ui+1/2,j,k∆t∆y∆z (24)

ci+1/2,j,k+1/4 =

∫ zk+1/2

zk

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi+1/2−ui+1/2,j,k∆t
H(ΦRi,j,k)dxdydz

ui+1/2,j,k∆t∆y∆z (25)

3.3. Momentum flux computation
All mass fluxes are now known on all faces of u and v control volumes. They are now used for the

computation of the convective terms II in Eq. (13b):

∮

Σu

(u⊗ ρU).~n dΣ =∆y(ūi+1,jf
m,x
i+1,j − ūi,jfm,xi,j )

+ ∆x
(
ūi+1/2,j+1/2(fm,yi+1/4,j+1/2 + fm,yi+3/4,j+1/2)− ūi+1/2,j−1/2(fm,yi+1/4,j−1/2 + fm,yi+3/4,j−1/2)

)

(26)∮

Σv

(v ⊗ ρU).~n dΣ =∆x(v̄i,j+1f
m,y
i,j+1 − v̄i,jfm,yi,j )

+ ∆y
(
v̄i+1/2,j+1/2(fm,xi+1/2,j+1/4 + fm,xi+1/2,j+3/4)− v̄i−1/2,j+1/2(fm,yi−1/2,j+1/4 + fmyi−1/2,j+3/4)

)

(27)
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where ū and v̄ are unknown velocities which are interpolated, using a WENO 5 scheme [15] to ensure a
higher interpolation order even close to the interface. However, our scheme is coupled with a limiter (first
order upwind scheme) near interface (less than 2∆x).
In the projection method, the intermediate velocity U∗ is then obtained by :

U∗ = 1
ρn+1

(
ρnUn − ∆t

V

∮

Σ
(U⊗ ρU)n~ndΣ

)
(28)

with V = ∆x×∆y.

3.4. General algorithm
To summarize, we rephrase the complete procedure for 2D case, representing a classical Euler step. All

following points should successively be performed for all cells and/or faces :

1. Compute the densities (ρni+1/2,j and ρni,j+1/2) at time n for control volumes Su, Sv and for a half part
of these, for example the left part and bottom part : ρni+1/4,j and ρni,j+1/4.

2. Advect the VOF with the "split" algorithm. Apart from classical VOF fluxes fi+1/2,j and f̃i,j+1/2,
compute the additional half-fluxes fi+1/2,j+1/4 and f̃i+1/4,j+1/2.

3. Compute corresponding mass fluxes fm,xi+1/2,j , f
m,y
i,j+1/2 using Eq. (14) and fm,yi+1/4,j+1/2, f

m,x
i+1/2,j+1/4

from Eq. (19) .
4. Repeat step 1 for time n+ 1.
5. Deduce fluxes fm,xi,j and fm,yi,j from balance of mass on half cells (Eq. (21)).
6. Deduce mass fluxes fm,yi−1/4,j+1/2, f

m,x
i+1/2,j−1/4 from (Eq. (20))

7. Compute interpolated velocity ū on faces (i, j) and (i + 1/2, j + 1/2), and v̄ on faces (i, j) and (i +
1/2, j + 1/2).

8. Compute convective terms given by Eqs. (26) and (27)
9. Compute U∗ using Eq. (28)

10. Compute pn+1 using Eq. (11)
11. Compute Un+1 using Eq. (10)

This Euler step is then used in a predictor-corrector method instead of Runge-Kutta TVD schemes.

4. Numerical results

4.1. High density droplet
This test case was first introduced by Bussmann [22] in 2002, and is described in several papers [7, 28,

12] dealing with high density ratio flows in context of momentum conservation. Indeed, the test case is
characterized by a very high density ratio (1 : 106) between the liquid droplet and air. Initially, a droplet of
radius R = 0.1 m is located at the center of a square field with L = 1 m. Velocity is initialized as:

u =
{

1m/s in the liquid
0m/s in the gas

v = 0

Boundary conditions are periodic. Surface tension force, viscous forces and body forces are all assumed
zero. Ideally, after 1 second, the droplet must have completed a full turnover and thus recover its initial
position with no deformation. This is however possible only if numerical scheme is adapted to significant
density ratios.

Four discretizations of the convective term are compared here: the non-conservative and conservative
forms (which were both originally implemented in the Archer3d solver), the original Rudman’s method with
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a refine grid for VOF transport and the new method using a single grid. Simulations are performed on three
different grids: 16 x 16, 32 x 32, 64 x 64. For the original Rudman’s method, the mesh size is given for
Navier-Stokes equation (no-refine grid), then it is twice finer for interface (VOF and Level Set). However,
following representation of interface (represented by zero level set curve) and error computation are done
on the Navier-Stokes mesh.

In Fig. 9 results are given for non-conservative and conservative forms of convective term, the droplet
is strongly deformed and no grid convergence is observed, illustrating the failure of standard discretization
for high density ratio configuration.

a - non-conservative form

b - Conservative form

Figure 9: In black the reference shape, blue is 16x16, red is 32x32 and green is 64x64

Figure 10 presents the results with original Rudman’s method and with the new scheme (grids up to
1282 are presented). In both cases, results are much better than those obtained with previous discretization.
Moreover, increasing the resolution improves the quality of the solution as visible in the enlargements
presented in Fig. 10.
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a - Interface after one lap with original Rudman
method with subgrid for VOF. b - Interface after one lap with the conservative

momentum method on single grid

Figure 10: Initial and final stages of the droplet advection. The reference shape is drawn with black line,
blue is the result on a 162 grid, red 322, green 642 with the 1282 result shown in violet. The insets show a
zoomed region.

To quantify this improvement, we present in Table 1 advection errors measured as differences between
original and final interface positions1. Subsequent table rows present varying grid refinements up to 1283. It
is easily noticeable that both variants of Rudman method present convergence of (roughly) first order and
comparable error values.

Table 1: The convergence of advection error for the high-density droplet test case. Approximate order
convergence is given for both the single-grid method and the original (dual grid) Rudman’s method.

Gridpoints New Method Order Dual-Grid Order
162 2.7 · 10−2 – 3.2 · 10−2 –
322 1.3 · 10−2 1.03 1.15 · 10−2 1.39
642 5.0 · 10−3 1.3 3.7 · 10−3 1.55
1282 1.7 · 10−3 1.47 1.2 · 10−3 1.54

The high-density droplet advection test case has been also utilized to measure any differences in CPU
cost between the newly proposed, single grid method implementation and the clasical dual grid variant.
This has been performed by measuring the wall-clock time duration titer of entire solver iteration over entire
simulation , for both methods, using the 642 grid. Mean values < titer >

1 and h < titer >
2 for single- and

dual-grid methods respectively have been found, showing that

< titer >
1

< titer >2 ≈ 0.59

1The L1 norm of difference between VOF fraction function values for t = 0s and t = 1s.
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meaning that a 41% gain can be attributed to application of the new method. This estimation is however
coarse, the CLSVOF method is solved on the twice finer grid for original rudman’s technics in all the domain,
that means LS and VOF transport and redistance algorithm.

4.2. Droplet oscillation
In this second test case, we study the oscillations of a viscous, two-dimensional droplet due to surface

tension effects. The same test case was previsouly presented by Raessi and Pitsch [28] to show the improve-
ments in energy conservation with their momentum conserving method. Note that the same case has been
extensively studied (using Archer with classical momentum schemes) by Aniszewski et al. in 3-D [1].

The droplet is initialized as an ellipse with semi-major x and semi-minor y axes of 0.15 and 0.1 respec-
tively, located at the center of a square domain of side 1. Physical properties of the fluids are reported in
Table 2.

liquid gas
ρ 1000 1
µ 7.510−3 7.510−3

σ 0.1

Table 2: Physical properties of liquid and gas

As viscous forces damp the energy of the system, the oscillation amplitude decreases with time. Applying
the theoretical work of Rush & Nadim [32] and Lamb [14], we present the temporal evolution of total energy:

E(t) = E0e
−2n(n−1)ν∗t (29)

where n stands for the oscillation mode number, t for time, and ν∗ is a nondimensionalized viscosity scaled
by the ratio of timescales specific to diffusion and oscillation: ν∗ = µl/

√
ρlσR. R is the radius of the droplet

when it is circular. In the results below, we use the dominant, second oscillation mode, so n = 2.
The Figure 11 presents the comparison between the analytical total energy formula and the value of

kinetic energy for our different convective methods along the time. Note that energy is non-dimensionalized
by the initial energy E0. The uniform mesh resolution is 64× 64. Obviously the E and Ek are comparable
only when the latter is maximum and Ep = 0, i.e. at Ek peaks. We observe a better fit to the analytical
curve once we adopt the conservative momentum scheme for the convective term. The non-conservative
form, which produces too high energy dissipation, performs the worst.
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Figure 11: non-dimensional theorical energy and non-dimensional kinetic energic for: conservative momen-
tum method(green), conservative form (yellow), non-conservative form (blue).
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Figure 12: Non-dimensional theorical energy and non-dimensional kinetic energic for the conservating mo-
mentum method on single grid

It is interesting to note that the 642 grid is almost converged in this case. A brief convergence study
is presented graphically on Fig. 12 using the conservative momentum scheme. On 322 grid, the energy is
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dissipated too quickly. Closest to the analytical curve, the results on the 642 grid shows that the energy
decay is slightly overrated. The energy curve of the 1282 grid is closest to the theoretical curve, showing
the capability of the scheme to conserve energy on fine grid. The mesh convergence is successful for energy
decay.

We note a shift between curves indicating an error in oscillating period, depending on the mesh size. This
error can be estimated by comparison with theoretical value. From the work of Lamb [14], the pulsation of
oscillating 2D droplet are (for n-th mode):

w2
n = n(n− 1)(n+ 1)

ρl + ρg

σ

R3 (30)

The period is calculated by using a relation T = 2π
wn

, we obtain in this case T = 10.99s. We understand the
oscillation period as a full cycle of horizontal and vertical stretches(every third minimum of kinetic energy).

The Table 3 is then constructed using this theoretical period and data from Fig. 12. From the relative
error in Table 3, we conclude that oscillating periods converge correctly. The order of the method is
calculated and included in 3.

Mesh Periods Relative error Scheme order
32x32 11.94s 0.0725
64x64 11.50s 0.0467 0.63

128x128 11.36s 0.0367 0.32

Table 3: Periods of oscillating droplet, compared to (30)

The Table 4 is constructed using energy peaks from Fig. 12 and compare to the theoritical value of
energy peak. The order of the method is given in 4.

Mesh Relative error Scheme order
32x32 0.1136
64x64 0.0526 1.11
128x128 0.0245 1.29

Table 4: Error on Energy peaks

5. Comparison with experimental data

Comparison of numerical simulations with experimental data is a big challenge specifically in case of
sheared flow with high density ratio. Recently, the development of specific methods (Momentum conserva-
tion methods, Velocity extension) allows numerical simulation of realistic configurations. We present two
simulations of assisted atomisation: a 2D sheared liquid sheet and a 3D coaxial injection. Experimental
data on these configurations are provided by the LEGI laboratory in Grenoble and they are used to validate
our simulations. Note that Fuster et al. [10], Kim et al. [16] et Desjardins et al. [6] have all simulated
similar configurations.

5.1. The sheared liquid sheet
The simulation is performed in 2D in order to achieve relatively high resolution. The simulation domain

(Fig. 13) is a rectangle of size Lx = 8 · 10−2m and Ly = 4 · 10−2m. The mesh is 1024x512 for a cell size of
78µm .

Gas and liquid are injected at Ug = 30m/s and Ul = 2.6 · 10−1m/s respecetively with initial layer
thickness of Hg = 10−2m and Hl = 10−2m. At the injector nozzle, flows are separated by a thin plate of
thickness e = 1.5 · 10−4m beveled by a α = 3.5o angle. Fluids properties of water and air are given in the
Table 5.
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Figure 13: Experimental configuration

water air
ρ (kg.m−3) 1000 1.2

µ (kg.m−1.s−1) 1.002 · 10−3 1.8 · 10−5

σ(N.m−1) 7.2 · 10−3

Table 5: Physical properties of water and air

As previously observed in jet atomization simulations (Cousin et al. [3]), boundary layers have a strong
influence on the instabilities development. To be consistent with the experiment [29] at the channel entrance,
the velocity field is defined as follow in order to fit with experimental profiles given by [29].

u =





0.26 m/s if y < Hl
0 m/s if Hl < y < Hl + e

Ug cos
(α

2

)
erf

(
y −Hl

0.0007826

)
if Hl + e < y < Hl +Hg + e

0 if Hl +Hg + e < y

v =





0 m/s if y < Hl
0 m/s if Hl < y < Hl + e

Ug sin
(α

2

)
erf

(
y −Hl

0.0007826

)
if Hl + e < y < Hl +Hg + e

0 if Hl +Hg + e < y

(31)

where erf() is the error function.

Simulations are carried out on 512 cores, and we reach 0.3s physical time with 2.7 ·106 time steps. While
that configuration led previously to breakdown of the code, the new method does not show any numerical
instabilities.

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

2

3

4

5

6

Figure 14: Magnitude of vorticity and interface representation

Qualitative observation is presented in Fig. 14, the vorticity magnitude is represented in greyscale and
the interface is the red line. Note that a x-velocity jump between area 1 ( 0 m/s) and area 2 (30 m/s) gives
rise to strong vorticity which generates structures by means of a Kelvin-Helmholtz type instability. As it
is observed in experiments ([29],[5],[24]), some instabilities appear close to the outlet of the injector (n0. 3
on Fig. 14 ). Further on, they intensify leading to wave formation (n0. 4). At the top of the waves, some
ligaments detach with a large ejection angle (n0. 5). These are finally broken into small droplets (n0. 6).
In the wakes of the droplets, a strong vorticity is observed, showing the large inertia of liquid structures.

From analysis of experimental data, Ben Rayana [29] brings to light the presence of a liquid cone which
the length can be modeled by :

Lcone = 12HL√
M

(32)

M is the momentum flux ratio M =
ρgU

2
g

ρlU2
l

.

In this configuration M = 16 and Lcone = 3cm
To compare with the modeling approach, we superpose the interface position during 0.2s (Fig. 15). We
observe a good agreement with the model. Moreover the graph can be compared to the results of Fuster
and al. [11], [20] and Desjardins and al. [6]. The same behaviour is observed in both results.
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Figure 15: Length of the liquid core from position of interface along time

5.2. Air assisted atomization: coaxial injector
In a coaxial-assisted atomization, the liquid is injected at lower velocity than the gas around it. Gas

transfers energy to the liquid accelerating it and destabilizing the interface. Many experiments were con-
ducted on these injectors by Rehab and al. [30] , Lasheras and al. [17], Marmottant and Villermaux [23]
following many parameters at various regimes and for different fluids. They have found eg that when the ve-
locity difference is small, weak disturbances of the interface are observed with small flappering of the liquid,
rims propagating and possibly "bags" appearance. Once the velocity difference increases, stripping of the
liquid is generated and the atomization process takes place leading to the formation of ligaments and droplets.

The geometric configuration of the numerical simulation is identical to the expriment in LEGI and
presented on Fig. 16. The inside diameter measure D1 = 7.6 · 10−3m and the outside diameter D2 =
1.14 ·10−2m. A lip e of 2 ·10−4m separates the two flows. The dimensions of the 3D domain are 6.84 ·10−2m
x 3.42 · 10−2m x 3.42 · 10−2m. The simulations are performed on a cartesian mesh 1024x512x512 with a cell
size equal to 6.68 · 10−5m. (Higher resolution is time consuming, so only one configuration is considered.)
The parameters are chosen with respect to experimental data. Fluids properties of water and air are given
in Table 5. The injection velocity of the liquid is 0.26m/s and a flat profile is assumed at the inlet. Gas
velocities are taken from experimental measurements at the nozzle exit (Delon [4]). The following inlet
profile are defined, with respect to the experimental boundary layer and mean velocity data:

u(r) =





(
r −D1/2− e

δ

)
Umax if r > D1

2 + e and r <
D1
2 + e+ δ

Umax if r > D1
2 + e+ δ and r <

D2
2 − δ

Umax −
(
r − (D2/2− δ)

δ

)
Umax if r > D2

2 − δ and r <
D2
2

(33)

(34)
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Figure 16: Diagram of the injector used for the experiments at LEGI

where δ = 2 · 10−4m is the boundary layer thickness.
Umax = 25m/s is the maximum gas velocity.

As previously observed with the 2D sheared sheet, in this 3D coaxial configuration at similarly high
density ratio, the solver is stable, and non-physical velocity magnitude never appeared. In Fig. 19, experi-
mental and numerical pictures have been combined, showing macroscopic consistency of numerical results.

Angle of the spray at the outlet of the injector has been evaluated [4] (Fig. 17 a). To obtain it, the
authors performed a superposition of pictures along time. The procedure is simple, a pixel is colored black if
in at least one of the images the liquid has been recorded there. We apply the same method to our numerical
data (Fig. 17 b). The angle is relatively well simulated but, nevertheless, we observe it further from the
injector outlet.

Employing a similar procedure, the length of the liquid core was evaluated [4] (Fig. 18 a). In this
case, a pixel is colored black only if on all the image the liquid has been recorded there. The procedure
was reproduced on our numerical pictures (Fig. 18 b). The length of liquid core measured in our numerical
results is well captured. Extended comparisons between experiments and simulations will be published soon.
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b - Numerical results to estimate ejection angle

Figure 17: Comparison between numerical simulation and experimental results on the ejection angle
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12.1 mm
a - Length of liquid core from experimental data.

12 mm

b - Length of liquid core in numerical simulation.

Figure 18: Length of liquid core.
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Figure 19: Comparison between numerical simulation and experimental results on the interface topology.

6. Conclusions

When modelling two phase flows, high density ratio coupled to high sheared flows – characteristic e.g.
of assisted atomization – is a challenge. It has been shown, that the widespread MAC approach introduces
significant numerical errors, leading in turn to unstability of the solver or non-physical velocity values. The
source of the problem is modelling of convective term in a nonconservative fashion, which causes unexpected
energy transfers between modelled phases.

Following the idea of Rudman, the conservative momentum method has been adapted to CLSVOF in-
terface tracking – without subgrid – to be compatible with our Archer solver. To obtain the consistency
between mass and momentum transport, a new method to evaluate all mass fluxes has been presented.
Once known, the fluxes are then introduced into the convective term calculation. As shown in a number of
test cases, the newly presented conservative-momentum method has greatly improved the momentum flux
calculation, thus ensuring consistency between mass and momentum transport. This allowed us to simulate
two example configurations of assisted liquid atomization: with realistic density ratios which were unfeasible
before. The outcome is not only stable behaviour of our solver: also the visualized results, by means of
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qualitative comparison with experimental results, have proven realistic. Also each of the quantitative we
have measured shows a good agreement with the experimental data.
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