Tuning the architectural integrity of high-performance magneto-fluorescent core-shell nanoassemblies in cancer cells

Abstract : High-density nanoarchitectures, endowed with simultaneous fluorescence and contrast properties for MRI and TEM imaging, have been obtained using a simple self-assembling strategy based on supramolec- ular interactions between non-doped fluorescent organic nanoparticles (FON) and superparamagnetic nanoparticles. In this way, a high-payload core-shell structure FON@mag has been obtained, protecting the hydrophobic fluorophores from the surroundings as well as from emission quenching by the shell of magnetic nanoparticles. Compared to isolated nanoparticles, maghemite nanoparticles self-assembled as an external shell create large inhomogeneous magnetic field, which causes enhanced transverse relaxivity and exacerbated MRI contrast. The magnetic load of the resulting nanoassemblies is evaluated using magnetic sedimentation and more originally electrospray mass spectrometry. The role of the stabilizing agents (citrate versus polyacrylate anions) revealed to be crucial regarding the cohesion of the resulting high-performance magneto-fluorescent nanoassemblies, which questions their use after cell internalization as nanocarriers or imaging agents for reliable correlative light and electron microcopy.
Type de document :
Article dans une revue
Journal of Colloid and Interface Science, Elsevier, 2016, 479 (68), pp.139 - 149. 〈10.1016/j.jcis.2016.06.064〉
Domaine :
Liste complète des métadonnées

https://hal.sorbonne-universite.fr/hal-01526071
Contributeur : Jerome Fresnais <>
Soumis le : lundi 22 mai 2017 - 16:03:37
Dernière modification le : lundi 17 décembre 2018 - 01:22:51

Identifiants

Citation

Adrien Faucon, Houda Benhelli-Mokrani, Fabrice Fleury, Laurence Dubreil, Philippe Hulin, et al.. Tuning the architectural integrity of high-performance magneto-fluorescent core-shell nanoassemblies in cancer cells. Journal of Colloid and Interface Science, Elsevier, 2016, 479 (68), pp.139 - 149. 〈10.1016/j.jcis.2016.06.064〉. 〈hal-01526071〉

Partager

Métriques

Consultations de la notice

175